The SR Domain

Stephen Edwards
Edward A. Lee

http://www.eecs.berkeley.edu/~sedwards/

University of California, Berkeley
The SR Domain

- A specification scheme
 - Synchronous model of time
 * Predictable temporal behavior
 * Easier to design
 * Easier to analyze
 - Heterogeneous: compiler cannot see inside blocks
 * Mixing languages made easy
 * Allows separate compilation
 * Large designs are tractable
- Deterministic
 - Guaranteed by fixed-point semantics
- Fast, predictable execution time
 - Chaotic iteration-based scheme
 - Fully static scheduling
SR Systems

Zero-delay blocks compute continuous functions

Instantaneous communication with feedback

Single driver, multiple receiver wires with values from flat CPOs

- Block functions may change between instants for time-varying behavior
- Block functions may be specified in any language
Zero Delay and Feedback

How to maintain determinism?

Which goes first?
Need an order-invariant semantics

Contradictory!
Need to attach meaning to such systems.
Dealing with Feedback

Why bother at all?
Answer: Heterogeneity

- Cycles are usually broken by delay elements at the lowest level
- Some schemes (e.g., Lustre) insist on this
- False feedback often appears at higher levels
- Data dependent cycles can appear when sharing resources
- Virtually all cycles are “false,” yet must be dealt with.
Fixed-point Semantics are Natural for Synchronous Specifications with Feedback

Why a fixed point?

Self-reference:
The essence of a cycle

\[f(x_t) = x_t \]

System function \quad Vector of signals
(composition of block functions) \quad at time \(t \)
(zero delay)

fixed point \iff stable state

determinism \iff unique solution
The Least Fixed Point of What?

Interpret as

\[B(I, f(I)) = f(I) \]

Take LFP
Unique Least Fixed Point Theorem

Recall:
A monotonic function on a complete partial order (with \bot) has a unique least fixed point.

What does it mean to make the system function f monotonic and the signal values a CPO?
Vector of Signals is a CPO

Values along an upward path grow more defined.

```
1
  \downarrow
  "Undefined"
```

```
1 0
```

More Defined

Incomparable

Less Defined

```
11 01 10 00
```

vector-valued extension

```
11 1 1 1 0 0
```

Formally, $x \sqsubseteq y$ if y is at least as defined as x.
Adding \(\bot\) Is Enough

Any set \(\{a_1, a_2, \ldots, a_n, \ldots\}\) can easily be “lifted” to give a flat partial order:

\[
\begin{array}{c}
a_1 \\
\downarrow \\
a_2 \\
\downarrow \\
a_3 \\
\downarrow \\
\vdots \\
\downarrow \\
a_n \\
\downarrow \\
\vdots
\end{array}
\]

A CPO for signals with pure events:

- \(\text{absent}\)
- \(\text{present}\)

\[
\begin{array}{c}
\text{absent} \\
\downarrow \\
\text{present}
\end{array}
\]

A CPO for valued events:

- \(\text{absent}\)
- \(v_1\)
- \(v_2\)
- \(\vdots\)
- \(v_n\)

Why not \(\text{absent} \sqsubseteq \text{present}\)?

- \(\text{present}\)
- \(A\) then \(\ldots\)
- \(\text{else} \ldots\)
- \(\text{end}\)

Violates monotonicity
Monotonic Block Functions

Giving a more defined input to a monotonic function always gives a more defined output.

Formally, $x \sqsubseteq y$ implies $f(x) \sqsubseteq f(y)$.

A monotonic function never recants (“changes its mind”).
Many Languages Use Strict Functions, Which Are Monotonic

A strict function:

\[g(\ldots, \perp, \ldots) = (\perp, \ldots, \perp) \]

Outside:
A strict monotonic function

Inside:
Simple “function call” semantics

Most common imperative languages only compute strict functions.

Danger: Cycles of strict functions
deadlock—fixed point is all \(\perp \)—need some non-strict functions.
A Simple Way to Find the Least Fixed Point

\[\bot \subseteq f(\bot) \subseteq f(f(\bot)) \subseteq \cdots \subseteq \text{LFP} = \text{LFP} = \cdots \]

For each instant,

1. Start with all signals at \(\bot \)
2. Evaluate all blocks (in some order)
3. If any change their outputs, repeat Step 2

\[
\begin{array}{cccc}
 f_0 & a & f_1 & b & f_2 & c \\
 \downarrow & & & & & \\
 (a, b, c) & = & (\bot, \bot, \bot) \\
 f_0(\bot, \bot, \bot) & = & (0, \bot, \bot) \\
 f_1(0, \bot, \bot) & = & (0, 1, \bot) \\
 f_2(0, 1, \bot) & = & (0, 1, 0) \\
 f_2(f_1(f_0(0, 1, 0))) & = & (0, 1, 0)
\end{array}
\]
The Dependency Graph

Transform into single-output functions:

```
    A  1  2
   /\   /
  /   \ /   \  
 B  3  4  D  6  7
    \   /   
     \ /    
      \   /
       \ /
       \  
        \|
       5

\downarrow

1  2  3  4  5  6  7
```
The Scheduling Algorithm

1. Decompose into strongly-connected components

2. Remove a head (set of vertices) from each SCC, leaving a tail

3. Recurse on each tail
Evaluating SCCs

Split a strongly-connected graph into a head and tail:

Good heads break T’s strong connectivity.
Schedules

1 2
4 5

head

(1 2 . (4 . 5) 6 (0 . 3)

SCC

5 4 5 6 3 0 3 1 2 5 4 5 6 3 0 3 1 2 5 4 5 6 3 0 3
Finding Good Heads

Must break strong connectivity—remove a border of a set of vertices:

border of \{ A, B, C \}

(vertices with incoming edges)
Choosing Good Border Sets

Heuristic: “Grow” a set starting from a vertex and greedily include the best border vertex:

```
<table>
<thead>
<tr>
<th>Set</th>
<th>Border</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>1 5</td>
<td>2 3</td>
</tr>
<tr>
<td>1 5 2</td>
<td>3</td>
</tr>
<tr>
<td>1 5 2 3</td>
<td>7</td>
</tr>
<tr>
<td>1 5 2 3 7</td>
<td>4 6</td>
</tr>
<tr>
<td>1 5 2 3 7 4</td>
<td>6</td>
</tr>
</tbody>
</table>
```

2 is better (3 would increase border)
The Cost of Using the Heuristic

Increase in Cost of Schedule

Fraction of Runs

Number of Outputs

0% 5% 10% 15% 20% 25%

0 20 40 60 80

0% 50% 100% 150%
Asymptotic Schedule Cost

Number of Outputs

Optimal Schedule Cost

n^2

$n^{1.5}$

n
Conclusions

- Deterministic specification scheme combining synchrony and heterogeneity
- Semantics: the least fixed point of a continuous function on a CPO
- Iterative execution scheme based on recursive divide-and-conquer
- Exact scheduling practical for small graphs
- Heuristic practical for very large graphs
- Execution time for random graphs growing slower than $n^{1.5}$