Making Cyclic Circuits Acyclic

Stephen A. Edwards
Department of Computer Science, Columbia University
www.cs.columbia.edu/~sedwards
sedwards@cs.columbia.edu
Malik [ICCAD 1993]: “A circuit is combinational for an input pattern if three-valued simulation starting from Xs converges to 0s and 1s.”

Shiple [1996]: “This is equivalent to stability in Brzozowski and Seger’s [1995] asynchronous model.”

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>q</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Given a cyclic circuit that is combinational for some inputs, create a similarly-structured acyclic circuit that computes the same combinational function.

Circuit after Rivest [1977]
Applications

Fixing cyclic circuits produced by high-level synthesis

Stok [ICCAD 92]: resource sharing creates false cycles

Cycles arise naturally in Esterel programs [Berry 1992]

Acyclic circuits easier to simulate efficiently

The next speaker [Riedel] will show how to synthesize cyclic circuits. *He puts ’em together, I take ’em apart.*
Result

1. Exact algorithm for finding all combinational behavior

 * Applies a controlling value to each SCC*
 * Produces set of acyclic circuit fragments*

2. Heuristic algorithm for building equivalent acyclic circuit

 * Merges fragments while duplicating few gates*

Result: A practical algorithm that builds acyclic circuits from cyclic combinational ones.
Conceptually

1. Compute the circuit’s truth table under three-valued simulation.

2. Build a small circuit that computes this function.

 Treat inputs for which three-valued simulation produces Xs as don’t-cares.
Conceptually and Concretely

1. Compute the circuit’s truth table under three-valued simulation.

2. Build a small circuit that computes this function.
 Treat inputs for which three-valued simulation produces Xs as don’t-cares.

1. Find input patterns that apply values that break all cycles in the cyclic circuit.

2. Assemble the acyclic circuit fragments these patterns imply into a small acyclic circuit.
Key Insight

For an input pattern to be combinational, at least one input coming from outside each strongly-connected component must have a controlling value.

If all external inputs were non-controlling, the gates in the SCC would stay at X.
Applying Controlling Values

Each of these four fragments covers part of the domain.

Merging these fragments gives the final acyclic circuit.
Merging Fragments
Merging Fragments
Merging Fragments
Merging Fragments

Apply constant 1 to the don’t-care input

Simplify
Another Example: Searching

\[
x = 0 \\
y = 0, x = 0 \\
y = 0, z = 0
\]
Another Example: Merging

This is smaller
Experimental Results

Average increase before SIS: 113%

Average increase after SIS: 4%

2× more

1/2 as many
Conclusions Redux

Algorithm for building an equivalent acyclic circuit from a cyclic combinational circuit

Key idea: apply controlling value to a gate in each SCC

Algorithm finds acyclic fragments, then merges them.

Finding fragments may be exponentially costly

Merging is done with a heuristic

Appears practical for small examples