Digital Systems Area

Stephen E. Edwards
Steven M. Nowick
Stephen Unger

Outline

m Overview of Computer Engineering: Prof. Nowick

m The EE Side of Computer Engineering: Prof. Zukowski
m Research Overview: Prof. Edwards

m Research Overview: Profs. Nowick/Unger

Overview of Computer Engineering

m Interdisciplinary Program: between CS & EE Depts.

m Current Focus: Digital Systems area

m Pending:
e 2 separate “tracks”™: (a) Digital Systems; (b) Networking

m History:
e BS Program: started 1994
e MS Program: being approved -- to start in Fall 2003
— University Senate’s Education Committee: approved last week

— full University Senate: being approved today

People

m CS:
e Stephen Edwards: embedded systems/languages
e Steven Nowick: asynchronous digital design, CAD tools

e Stephen Unger: asynchronous digital design

m EE:
e Andrew Campbell: telecom/mobile systems
e Ken Shepard: high-speed VLSI circuits, bio-chips

e Charles Zukowski: digital circuits, low power

Undergraduate Majors

Recent # of majors (juniors + seniors):

Fall/Spring
1998-99: 41/36

1999-00: 54/53
2000-01: 68/67
2001-02: 72/71

... nearly 100% increase in majors in last 4 years

Now one of largest majors in Engineering School

CS Course Requirements:
Comp Eng Major

Highly structured: includes most of CS + EE core major regs.

Programming Sequence:

— Intro. To Programming (1007/1009)
— Data Structures/Algorithms (3137/3139)
— Advanced Programming (3157)

Hardware/Architecture:
— Digital Logic (3823)
— Computer Organization (3824)

Software Systems:
— Programming Languages & Translators (4115)
— Operating Systems (4118)

Theory:

— Discrete Math (3203)
— Computability (3261)

CS Technical Electives:
Comp Eng Major

Specially relevant elective courses:

e Embedded systems

e Digital CAD

e Computer Architecture (advanced)
e Compilers & Translators

Future Needs: Computer Engineering

Currently, not enough Comp Eng faculty to cover all courses

m Some target hiring areas (CS side):

— computer architecture (no architects currently in CS/EE)
— digital system design

— embedded systems

— CAD: high-level synthesis, logic synthesis

— reconfigurable computing

— formal hardware verification

m Desired growth in “digital systems” area: next 3-4 years
e 4-6 more faculty (CS + EE)

EE Side of Comp. Eng.
Charles Zukowski, EE Chair

Administration of Comp. Eng.
Academic Programs — EE Courses
Research Programs — NY MDC

Research in Digital Systems — EE Projects

1. EE Faculty on Computer
Engineering Committee

Charles Zukowski (Committee)

Ken Shepard (Committee, Acting Chair)
Andrew Campbell (Committee)
Potential Future Committee Member

Position within EE Focus Areas

Communications/ Networking (Lazar, Maxemchuk, Coffman, Jelenkovic,
Campbell, Rubenstein)

Signal/Image Processing (anastassiou, Chang, Eleftheriadis, Ellis, Wang)
Circuits (Tsividis, Kinget, Toth, Zukowski, Shepard)

Devices, Photonics, E&M (0sgood, Wang, Heinz, Bergman, Sen,
Diament)

Computer Engineering Committee

Circuits Signal &
|mage
Processing

Devices,
Comm. & Photonics,
Networking | E&M

==

2. EE Courses in Comp. Eng.

Intro. to EE + Lab

Circuits + Lab

Electronics + Lab

Signals & Systems + Lab

Lab for Digital Systems

Microprocessor / Computer Hardware Labs

Technical Electives

3. Research Programs — New York
Microelectronic Design Center (MDC)

m History

e Virtual Center across NY Universities
e NYSTAR ECAT Program
e Critical Mass, Collaboration, Industry Links

m Structure

e Director: Eby Friedman, U. Rochester

e Assoc. Director: Charles Zukowski, Columbia

e Rochester CEIS Administrative Staff

e Columbia Comp. Eng. = 1/6 of 30 PIs at 12 Univ.

MDC (cont.)

m Funding
e $2.6M [/ 2 yrs.
e Individual & Collaborative Projects
e Matching for Company Support
e Technology Transfer is Focus
e Semiconductor Research Corp. (SRC) Program

Results

e Ramping up well, NY Gov't Pleased
e Annual Conference, Up to 120 (50 Industry)
e Good for Columbia Comp. Eng. (+ Circuits)

4. EE Research Projects in Digital
Systems

Computer-Aided Design (CAD)

e Stochastic Circuit Analysis (Shepard)
e Interconnect Extraction & On-chip Sampling (Shepard)

Circuit Design Techniques

e Multi-GHz Resonant Clocking (Shepard)

e Charge Recycling Voltage Domains (Shepard)
e On-chip Serial Links (Shepard)

e Low-power Logic Circuits (Zukowski)

m Applications
e Asynchronous DSPs (Nowick, Shepard)
e Active CMOS Biochips (Shepard)
e Packet Processing with Dynamic VDD (Zukowski)
e Hardware Simulation of Gene Networks (Zukowski)

Resonant clock load

spiral inductors

H
I i
8 1 = T

|

P

i
I & s]

s

i
|
F
|
|

4

T power/clock mesh

clock tree

Traditional tree-driven grid augmented with spiral inductors to resonate
the clock capacitance at the fundamental of the clock frequency.

Gene Network Simulator Chip

1 L — mey emem . g=m: mem -
\Q\:% IEI-I -;-; I;!é nmim i-:- :-:- II:l et EEed il diel Bedi Bl BEEE iedn BEei EE RlEl elE

Research Areas

Stephen A. Edwards

Department of Computes, SClence Ran

= '!'-' T ._—.ﬁ’

Columbia UnlverS|ty P s ‘:?
- ?l a3

\WW\W.CS. columbla edu/s sedwards o T

sedwards@cs. columbla edu e

Embedded Systems

Computers masquerading as something else.

Casio Nokia 7110 Sony
Camera Browser Playstation 2
Watch Phone

=

Philips Philips
DVD Player TiVo Recorder

Long-Term Goal

Supplying tools that speed the development of embedded
systems.

Complexity

Concurrency Legacy Languages

Software complexity gro

Size of Typical Embedded System
1985 13 KLOC

1989 21 kLOC | 44 % per year
1998 1 MLOC
2000 2 MLOC

2008 16 MLOC = Windows NT 4.0
2010 32 MLOC = Windows 2000

Source: “ESP: A 10-Year Retrospective,” Embedded Systems Programming,
November 1998

Written in stone-age

Q
-
m

“Which of the following programming languages have you
used for embedded systems in the last 12 months?”

C 81%
Assembly 70%
C++ 39%
Visual Basic 16%
Java 7%

Source: “ESP: A 10-Year Retrospective,” Embedded Systems Programming,
November 1998

Where | fit

Languages

Hardware
Design

Networking

Worlds:
DAC
ICCAD
IWLS
EMSOFT
Synchron

Domain-Specific Language

Little languages that fit the problem

More succinct description that are
1. Quicker to create

2. Easier to get right

and analysis

General-purpose languages
hindered by undecidability

Domain-specific languages much
simpler

Real-Time
Languages

Esterel

The Esterel Real-Time LE
e

Synchronous language developed by
Gérard Berry in France

Basic idea: use global clock for
synchronization in software like that in
synchronous digital hardware.

Challenge: How to combine
concurrency, synchronization, and
Instantaneous communication

Esterel

Restart when
RESET present

Infinite loop

Wait for next cycle
with A present

Run concurrently

Same-cycle
bidirectional
communication

every RESET do

| oop
,,,//”//’ awai t A
emt B:
present C then
emt D
end:;
pause
end
| |
| oop
present B then

emt C

end:;
pause
end
end

Previous Esterel Work

Thesis on Esterel semantics in a heterogeneous
environment (Ptolemy/Edward Lee/Berkeley)

e To appear in Science of Computer Programming

e Compiler that speeds up certain large programs 100 x
e Used inside Synopsys’ CoCentric System Studio
e Has limitations (e.g., owned by former employer)

e Published in IEEE Transactions on Computer-Aided
Design 21(2), 2002.

every R do
loop
await A;
emit B;
present C then
emit D end;
pause
end
| |
loop
present B then
emit C end;
pause
end
end

Esterel

Source

Concurrent

Sequential
CFG

if ((sO & 3) == 1) {

if (S {
s3 = 1,

s2 = 1,

el se

if (sl >> 1)
sl = 3;

el se {

if ((s3 & 3)

s3 = 2; t3 = L1;

} else {
t3 = L2;
}

C code

Ongoing Esterel Work

 New compiler infrastructure designed for research

Better circuits from Esterel programs (Jia Zeng)
e Faster code from PDGs (Cristian Soviani)
e Event-driven code (Vimal Kapadia, Michael Halas)

e An interpreter for small-footprint applications
(Aruchunan Vaseekaran)

The
Hardware/Software
Boundary

Device Drivers

Languages for Device Drive

Device drivers are those pieces of
software that you absolutely need .
that never seem to work

Big security/reliability hole: run in |
Kernel mode

Responsible for 80% of all Windows crashes
Tedious, difficult-to-write

Ever more important as customized hardware proliferates

Work by Others

Thibault, Marlet, and Consel
IEEE Transactions Software Engineering, 1999

Developed the Graphics Adaptor Language for writing
XFree86 video card drivers

Report GAL drivers are 1/9th the size of their C
counterparts

No performance penalty

Ongoing Work

Develop language for network card drivers under Linux
(Chris Conway)

Sharing drivers between Linux and FreeBSD (Noel Vega)

Ultimate vision: compiler takes two programs: device
spec. and OS spec. and synthesizes appropriate driver.

OS vendor makes sure OS spec. Is correct; Hardware
designer makes sure hardware spec. is correct.

NE2000 Ethernet driver (fragment

| oports ne2000 {
bits cr {
bit stop, sta, transmt;
enum 3 { 00l=renRead, 010=remNite,
Oll=sendPacket, 1**=DMAdone }
enum 2 { 00=pageO, Ol=pagel, 10=page2 }

}
paged p {
pageO { cr.page0; } {

t wobyt e cl da;

byte bnry;

bits tsr {

bit ptx, 1, col, abt, crs, 0, cdh, owc;
}

pagel { cr.pagel; } {
byte: 6 par;
byte curr;
byte: 8 mar;

}

Program
Correctness

Verification Library
Language

Verification Library Languag

Joint work with Al Aho

Language extensions to support verification
libraries for Java

Traditional Libraries Provide functionality

Verification Libraries Provide improved confidence
In program correctness

Vision is a new methodology: verification as part of the
development process, part of the same toolbox as adding
functionality.

Example Verification Libraries

e Lint-like function call chekers

e Library that assumes the program is an FSM and can
be checked using standard FSM tools

e Library that statically checks if a Java program uses a
particular set of methods (e.g., deprecated ones)

e Library that removes array-bounds-checking code that
can be proven unecessary

Think of a language mechanism that can supply - al | ,
lint, purify, Spin, SLAM, Prefix, etc. as libraries as easy to
use as those for 1/O, GUIs, etc.

Funding and Collaborations

in Interested in hardware synthesis
® technology; gift and hardware donation.

" 2002 CAREER award on Esterel and
;: Device Driver language projects.

X

Multi-year grant to work on Esterel

\ hardware synthesis problem.

Ongoing interaction/collaboration with

development tools.

Research in Asynchronous
and Mixed-Timing Digital Systems

Prof. Steven M. Nowick
Prof. Stephen Unger (on leave)

Emall: {nowick, unger} @cs.columbia.eau

Introduction

m Synchronous vs. Asynchronous Systems?

e Synchronous Systems: use a global clock
— entire system operates at fixed-rate

—uses ‘centralized control”

- |-
o |
\ \

Introduction (cont.)

m Synchronous vs. Asynchronous Systems? (cont.)

» Asynchronous Systems: no global clock
—components can operate at varying rates
— communicate locally via "handshaking”

-
-

—uses 'distributed control”

-
-

Introduction (cont.)

Asynchronous Circuits:
— long history (since early 1950°s), but...

— early approaches often impractical: slow, complex

Synchronous Circuits:

— used a/most everywhere!: highly successful

— benefits: simplicity, support by existing design tools

But recently: renewed interest in asynchronous circuits

Trends and Challenges

Key Trends in Chip Design: next decade
o "Semiconductor Industry Association (SIA) Roadmap”(97-8)

Unprecedented Challenges:

e complexity and scale (= size of systems)
e clock speeds

e power management

e “time-to-market”

Design becoming unmanageable using a centralized
(synchronous) approach....

Trends and Challenges (cont.)

1. Clock Rate:

o 1980: several MegaHertz
e 2001: ~/50 MegaHertz - 1+ GigaHertz
o 2004: several GigaHertz

Design Challenge:

e 'clock skew”: clock must be near-simultaneous across
entire chip!

Trends and Challenges (cont.)

2. Power Consumption

e Low power: ever-increasing demand
—consumer electronics: battery-powered

— high-end processors: avoid expensive fans, packaging

Design Challenge:

o clock inherently consumes power continuously!
e “power-down” techniques: only partly effective

Trends and Challenges (cont.)

3. Future Trends: “"Mixed Timing” Domains

Chips themselves now becoming distributed systems....
e contain many sub-regions, operating at different speeds:

Design Challenge: breakdown of single centralized
clock control

Asynchronous Design

Several Potential Advantages:

e |Lower Power
— no clock ==> components use power only “on demand”

e Robustness, Scalability
— no global timing==>"mix-and-match” varied components

e Higher Performance
— systems not limited to “worst-case” clock rate

Asynchronous Design: Challenges

m Critical Design Issues:

e components must communicate cleanly: 'hazard-free’ design

o highly-concurrent designs: much harder to verify!

m Lack of Existing Design Tools:

e most commercial "CAD" tools targeted to synchronous

Asynchronous Design: Recent Developments

1. Philips Semiconductors:
e async chips in commercial pagers, cell phones, smart cards
less electromagnetic interference ("EMI”)

2. Intel:

e experimental async Pentium instruction-length decoder
than synchronous

3. Sun Labs, IBM Research:

e experimental high-speed pipelines, routing fabric, systems

Recent Startups: Fulcrum, Theseus Logic

Government Agency: DARPA “Clockless Logic” Initiative (2003)

Research Highlights:

Prof. Unger (on leave)

Research Areas

Designing Fast Async Components:
e adders, comparators, etc. [Cheng/Unger, 1996-97]
o develop novel “iterative circuits” in tree structures

Novel Async Communication Protocols:
e communicate between components using pulses
e provide greater speed, simplicity, ... [Plana/Unger, 1997]

Hazard Elimination Techniques:
e ... by adding extra delays to a circuit

Applications: Async ATM Switches [Cheng/Unger, 1996-pres.]

Research Highlights:

Prof. Nowick

Research Group

m Current Students:
Tiberiu Chelcea (PhD)
Cheoljoo Jeong (PhD)
Cheng-Hong Li (PhD)
Melinda Agyekum(MS)
Amitava Mitra (MS)
Charles O'Donnell (ugrad)

m Former PhD’s:
e Montek Singh (asst. prof., Univ. of North Carolina, CS Dept.)
e Michael Theobald (visiting scientist, CMU CS Dept.)

e Robert Fuhrer (IBM T.J. Watson)

My Research: Funding

NSF: 2 Medium-Scale "/7R”Awards ($2.5 Million) [2000]

1. "CAD Tools” to Design & Optimize Asynchronous Systems
(joint with USC)

2. 3rd-Generation Wireless Systems (async, very low power)
(joint with Columbia EE - Prof. Ken Shepard)

Other Funding: NSF, Sun, NYS MDC, Sloan Foundation

Research Highlights

3 Main Asynchronous Areas:

1. CAD Tools: optimization algorithms + software packages

— (@) for large-scale systems
— (b) for individual controllers

2. High-Speed Design: pipelined adders, multipliers, etc.

3. Interface Circuits: for mixed-timing systems

1. Developing Asynchronous CAD Tools

Software programs to aid designers =

‘computer-aided design” tools
—automatically synthesize and optimize digital circuits

Input: Output:

desired circuit ‘ ‘ optimized circuit
specification implementation

1. Developing Asynchronous CAD Tools

Focus: 2 types of CAD tools

(a) for entire digital systems [
(b) for /individual controllers (/. e., finite-state machines)

(a) High-Level Synthesis Package
— M. THEOBALD, T. CHELCEA

(b) The “MINIMALIST” Package
— R. FUHRER, M. THEOBALD

Include: sophisticated optimization algorithms
Goal: provide many flexible designer options

1(a). Synthesis and Optimization of
Large-Scale Asynchronous Systems

Several existing CAD tools for /arge async systems

e Tangram: Philips Semiconductors
-- used in research labs + product divisions

e Balsa: Univ. of Manchester (UK) -- public-domain

Start point: high-level behavioral system specification

e use concurrent program language (based on CSP)
e features: block-structured, algorithmic, models concurrency

End point: VLSI circuit implementation (layout)

Asynchronous CAD Frameworks

Many commercial + academic chips/applications:

o Philips” Tangram: microcontroller chips, error correctors, ...
—in several commercial products:
==> smart cards, pagers, cell phones

e Balsa: ARM processors, smart cards, ...

Many sophisticated tool features:

e profilers, early estimation tools (power, delay), testing

History: based on “Macromodules Project” (Clark/Molnar, 1960’s)

Basic "Silicon Compiler” Flow

TANGRAM/BALSA
PROGRAM

syntax-directed
translation

(unoptimized!)

"HANDSHAKE
CIRCUIT"

template-based
mapping

"MAPPED"
IMPLEMENTATION

Synthesizing a System: a Small Example

2-Place "Ripple Register” (FIFO)

proc (a?T & bIT)

begin

x0, x1: var T
| forever do

bl x1;

x1 := x0;

a? x0
od

end 8—(T p—re{ X0 T p—n(XTp— T p—b

DATAPATH

syntax-directed translation (with no optzns.)

A Larger
Example

Manchester “"Baby”

Processor (1948):
SSEM

Our Research Goal:
to develop a powerful
optimizer for these
“intermediate circuits”

W ke Cormpeonem:
Exectie tnias ha Had

TRETIOET ©

3 [= e}
Sk for aach iTetrmeiton
Cace Cormpomemi:
che ok el Toe tom
-]
E d234.548; a Il
" JE]
L]
- | | | |
= | = AdrmmoMiT | q]
1
F - Slwnafl. 31 11 1
= F ACCH..31] = | =
Lo | M OA[..31] = |
Gi0.4] F |

Y A.a1])

Mam A

MamaA

Contribution: a “"Back-End” Optimizer

New Optimizing Transformations:

e Peephole: replace components in sliding ‘window’ by other components

e Resynthesis: re-synthesize a cluster of components

goal = overcome limitations of strict syntax-directed compilation

CAD Package Integration:
e integrating into Univ. of Manchester’s “Balsa” tool

e work in progress...:
— incorporating commercial CAD tools (Synopsys, Cadence)
— improving and formalizing transforms
— developing ‘design scripts’

Collaborators: University of Manchester, UK (S. Furber et al.)
Applications: async ARM processors for smart cards, etc.

Revised Synthesis Flow: with Back-End Optimizer

TANGRAM/BALSA
PROGRAM

INIT "HANDSHAKE
CIRCUIT" N\
unoptimized

new transforms

L [BACK-END OPTIMIZER |

. 8

FINAL"HANDSHAK oy
<CIR CUID optimized

"MAPPED" RESYNTHESIZED
IMPLEMENTATION IMPLEMENTATION

New Optimizations (1)

Before optimizations After optimizations

components components

Control components

(0p)
e
c
Q
c
@
(@
&
O
(®)
Ie)
u
.
c
o
@)

Peephole: replace components in ‘window' by other components

New Optimizations (2)

Before optimizations After optimizations

\’components components

Clustered control components

(0p)
e
c
Q
c
@
(@
&
O
(®)
Ie)
u
.
c
o
@)

Resynthesis: cluster together components (both control and datapath)

Summary: Synthesis & Optzn. of
Large-Scale Async Systems

Developing powerful “back-end optimizer” for Balsa CAD package

m Contributions: [Chelcea/Nowick, DAC-01]
e propose new set of resynthesis + peephole optimizations
e integrate into public-domain Balsa CAD tool

m Overcome drawback of unoptimized syntax-directed translation
e up to 54% performance improvement

m Work in progress ...
e formal verification
e develop “design scripts” to apply transforms
e introduce new transforms
e |large case-studies: entire microprocessors

Research Highlights

3 Main Asynchronous Areas:

1. CAD Tools: optimization algorithms + software packages

— (@) for large-scale systems
— (b) for individual controllers

2. High-Speed Design: pipelined adders, multipliers, etc.

3. Interface Circuits: for mixed-timing systems

1(b) The MINIMALIST CAD Package
MINIMALIST: developed at Columbia University [1994-]

e extensible CAD package for async controllers
e integrates synthesis + verification tools
e used in 80+ sites/17+ countries (... now being taught in IIT Bombay)

e URL: http://www.cs.columbia.edu/async

Includes several optimization tools:

e State Minimization

e CHASM: optimal state encoding
e 2-Level Logic Minimization

e Verilog Back-End

o Verifier

Key goal: facilitate design-space exploration

1(b). Synthesizing A Controller
Using the "MINIMALIST" CAD Tool

»
@req-send+ treq+ rd-iq+/
adbld+

¢ adbld-out+/

Inputs: Outputs:
reg-send tack

treq peack
rd-iq adbld
adbld-out

ack-pkt

From HP Labs
“"Mayfly” Project

req-send-/

peack+

adbld-out- @rd-iq-/

treq- ack-pkt+/ peack- adbld-
peack+ tack+
O 3
ack-pkt+/ adbld-out- treg-
peack-tack- vy rd-id+/ adbld+

treq-/ m adbldk'f e
tack- tack+ 6 peac adbld-out-
_ treq+ rd-ig+
rd-iq-/ peack- adbld+
ack-pkt- treq-/

adbld- tack-
peack- tack-

i adbld-out- treq+ ack-pkt+/
peack+ tack+

Design-Space Exploration

using MINIMALIST:
different ‘'modes’ provide user

with flexibility

IUo0CK dduuuﬁuuduuuuﬁ&uu
il Tf TT

uuu%?

|

&

T,P Ug

PE _SEND IFC-FL PE_SEND_IFC-Fs

using an ‘area script” using a "speed script”

Research Highlights

3 Main Asynchronous Areas:

1. CAD Tools: optimization algorithms + software packages

— (@) for large-scale systems
— (b) for individual controllers

2. High-Speed Design: pipelined adders, multipliers, etc.

B 3. Interface Circuits: for mixed-timing systems

2. Ultra High-Speed Digital Design

NON-PIPELINED COMPUTATION: "datapath component” =

adder, multiplier, etc.

global clock

1

2. Ultra High-Speed Digital Design

"PIPELINED COMPUTATION”: like an assembly line

I
S Rim e

- -l

no global clock

2. Ultra High-Speed Digital Design

Goal: extremely fast async datapath components
e speed: comparable to fastest existing synchronous designs

e additional benefits:
— gracefully adapt to varying interface speeds
— “elastic” processing of data in pipeline
— no global clock distribution

Contribution: 3 new async pipeline styles [SINGH/NOWICK]
e use novel highly-concurrent protocols

e basic operating speed: 3.5+ GigaHertz

Technology Transfer to IBM Research

Recently invited by IBM to transfer async pipeline technology:
... to fabricate an experimental FIR filter chip (for disk drives)

PhD Student (Montek Singh): 5-month internship (5-12/00)
IBM Design Application: filter design
Fabricated Chip: evaluated in Feb.-March 2001 [ISSCC-02]

Mixed-Timing Features:
— “sandwich” async between sync interfaces

Benefits: power, speed, flexibility

Potential for future use in disk drives....

Research Highlights

3 Main Asynchronous Areas:

1. CAD Tools: optimization algorithms + software packages

— (@) for large-scale systems
— (b) for individual controllers

2. High-Speed Design: pipelined adders, multipliers, etc.

3. Interface Circuits: for mixed-timing systems

=)

3. Robust Interface Circuits
for "Mixed-Timing” Systems

to /nterface sync/async systems,

sync/sync systems with different clock rates
--robustly, at high-speed

X

[CHELCEA/NOWICK, DAC-01]

CLOCK 1

R

CLOCK 2

Summary: Collaborations/Tech Transfer

1. 3rd Generation Wireless Systems: Columbia EE [Prof. K. Shepard]
... using asynchronous components

2. CAD Tools for Large-Scale Async Systems:
o USC [Prof. P. Beerel]
e Univ. of Manchester (UK) [Profs. D. Edwards, S. Furber]

3. High-Speed Pipelines:
e IBM T.J. Watson [Drs. J. Tierno, P. Kudva]

4. Interface Circuits for Mixed-Timing Domains:
e [... a Silicon Valley company...]

Conclusions

Main Research Goal: making async circuits practical for designers

Projects:

1. CAD Tools:
o for large-scale systems: optimizing back-end silicon compiler

... €an be used to synthesize entire ARM processors
— integration into public-domain Balsa CAD Package (Manchester, UK)

e for individual controllers: the "MINIMALIST"” tool

2. High-Throughput Pipelines:
— 3 new styles: for both static + dynamic CMOS circuits

3. Interface Circuits for Mixed-Timing Domains:
— for sync/sync, mixed async-sync

