The Future of Embedded Linux

C3Expo, June 2005

Stephen A. Edwards

Columbia University
Developing Embedded Systems

From The Three Stooges’ *A-Plumbing We Will Go*, Columbia Pictures, 1940

In a word, plumbing.
Embedded System Challenges

Real-time

Complexity

Power

Cost
System Complexity Growing!

Size of Typical Embedded System

1985 13 kLOC
1989 21 kLOC ↓ 44 % per year
1998 1 MLOC
2000 2 MLOC

2008 16 MLOC ≈ Windows NT 4.0
2010 32 MLOC ≈ Windows 2000

How do you write this much code?

Simple: you don’t.

Instead, you grab it and integrate it.

Less like Legos

More like manufacturing cars
Embedded OS market was fragmented
Didn’t matter: amount of code was small and always custom-tailored
Today, interoperability is everything.
Consolidating: down to only a few players
Wind River VxWorks
Microsoft Windows CE
Embedded Linux
Most embedded operating systems are “real-time”

Fixed-priority preemptive scheduling is standard

Traditional operating system schedulers strive for fairness

The Linux Kernel isn’t well-suited to real-time applications!
Solutions

- RTLinux, Adeos: Run the Linux kernel as a task on an RTOS
- RTAI: run real-time tasks as threads in an uninterruptable Linux process
- KURT, Linux/RT: patch the kernel to add real-time scheduling policies
A nice solution to the plumbing problem