Synchronous Reactive Systems

Stephen Edwards

http://www.eecs.berkeley.edu/~sedwards/

University of California, Berkeley
Outline

- Synchronous Reactive Systems
- Heterogeneity and Ptolemy
- Semantics of the SR Domain
- Scheduling the SR Domain
Reactive Embedded Systems

- Run at the speed of their environment
- *When* as important as *what*
- Concurrency for controlling the real world
- Determinism desired
- Limited resources (e.g., memory)
- Discrete-valued, time-varying
- Examples:

 - Systems with user interfaces
 - Digital Watches
 - CD Players
 - Real-time controllers
 - Anti-lock braking systems
 - Industrial process controllers
The Digital Approach

Why do we build digital systems?

- Voltage noise is unavoidable
- Discretization plus non-linearity can filter out low-level noise completely
- Complex systems becomes predictable and controllable
- Incredibly successful engineering practice
The Synchronous Approach

Idea: Use the same trick to filter out “time noise.”

- Noise: Uncontrollable and unpredictable delays
- Discretization \(\Leftrightarrow\) global synchronization
- The synchrony hypothesis:

 Things compute instantaneously

- Already widespread:
 - Synchronous digital systems
 - Finite-state machines
The Synchronous Model of Time

- **Synchronous**: time is an ordered sequence of instants
- **Reactive**: Instants initiated by environmental events

System responds to each instant

Nothing happens between instants

- A system only needs to be “fast enough” to simulate synchronous behavior
Outline

- Synchronous Reactive Systems
- Heterogeneity and Ptolemy
- Semantics of the SR Domain
- Scheduling the SR Domain
Heterogeneity

Why are there so many system description languages?

- Want a succinct description for *my* system.
- “Let the language fit the problem”

Bigger systems have more diverse problems; use a fitting language for each subproblem.

Want a heterogeneous coordination scheme that allows many languages to communicate.
Heterogeneity in Ptolemy

Ptolemy: A system for rapid prototyping of heterogeneous systems

A Ptolemy *domain* (model of computation):

- **Set of blocks:**
 Atomic pieces of computation that can be “fired” (evaluated).

- **Scheduler:**
 Determines block firing order before or during system execution.
Schedulers Support Heterogeneity

- Scheduler does not know block contents, only how to fire
- Block contents may be anything
- “Wormhole”: A block in one domain that behaves as a system in another
- Hierarchical heterogeneity: Any system may contain subsystems described in different domains
Outline

- Synchronous Reactive Systems
- Heterogeneity and Ptolemy
- Semantics of the SR Domain
- Scheduling the SR Domain
The SR Domain

- Reactive systems need concurrency
- The synchronous model makes for deterministic concurrency
 - No “interleaving” semantics
 - Events are totally-ordered
 - “Before,” “after,” “at the same time” all well-defined and controllable
- Embedded systems need boundedness; dynamic process creation a problem
- SR system: fixed set of synchronized, communicating processes
Zero-delay blocks

Instantaneous communication with feedback

Single driver, multiple receiver channels

- Block functions may change between instants for time-varying behavior
- Blocks may be specified in any language
Zero Delay and Feedback

How to maintain determinism?

Which goes first?

Need an order-invariant semantics

Contradictory!

Need to attach meaning to such systems.
Dealing with Feedback

Why bother at all?
Answer: *Heterogeneity*

- Cycles are usually broken by delay elements *at the lowest level*
- Some schemes insist on this
- False feedback often appears at higher levels
- Data dependent cycles can appear when sharing resources
- *Virtually all cycles are “false,” yet must be dealt with.*
Fixed-point Semantics are Natural for Synchronous Specifications with Feedback

Why a fixed point?

Self-reference:
The essence of a cycle

\[f(x_t) = x_t \]

System function Vector of signals
(composition of at time \(t \) block functions) (zero delay)

fixed point \(\iff \) stable state
determinism \(\iff \) unique solution
Unique Least Fixed Point Theorem

A monotonic function on a complete partial order (with \bot) has a unique least fixed point.

What does it mean to make the system function f monotonic and the signal values a CPO?
The Least Fixed Point of What?

Interpret as

Take LFP

\[B(I, f(I)) = f(I) \]
Vector of Signals is a CPO

Values along an upward path grow more defined.

Formally, $x \sqsubseteq y$ if y is at least as defined as x.
Adding \(\bot \) Is Enough

Any set \(\{a_1, a_2, \ldots, a_n, \ldots\} \) can easily be “lifted” to give a flat partial order:

\[
a_1 \quad a_2 \quad a_3 \quad \cdots \quad a_n \quad \cdots
\]

A CPO for signals with pure events:

\[
\text{absent} \quad \text{present}
\]

A CPO for valued events:

\[
\text{absent} \quad v_1 \quad v_2 \quad \cdots \quad v_n \quad \cdots
\]

Why not \(\text{absent} \sqsubseteq \text{present} \)?

\[
\text{present} \quad \text{A then} \quad \ldots \quad \text{else} \quad \ldots \quad \text{end}
\]

Violates monotonicity
Monotonic Block Functions

Giving a more defined input to a monotonic function always gives a more defined output.

\[f(f(f(f(\bot)))) \]

\[f(f(f(\bot))) \]

\[f(f(\bot)) \]

\[f(\bot) \]

\[\bot \]

Formally, \(x \sqsubseteq y \) implies \(f(x) \sqsubseteq f(y) \).

A monotonic function never recants (“changes its mind”).
Many Languages Use Strict Functions, Which Are Monotonic

A strict function:

\[g(\ldots, \bot, \ldots) = (\bot, \ldots, \bot) \]

inputs \hspace{3cm} outputs

Outside:
A strict monotonic function

Inside:
Simple “function call” semantics

Most common imperative languages only compute strict functions.

Danger: Cycles of strict functions deadlock—fixed point is all \(\bot \)—need some non-strict functions.
Outline

- Synchronous Reactive Systems
- Heterogeneity and Ptolemy
- Semantics of the SR Domain
- Scheduling the SR Domain
A Simple Way to Find the Least Fixed Point

\[\bot \subseteq f(\bot) \subseteq f(f(\bot)) \subseteq \cdots \subseteq \text{LFP} = \text{LFP} = \cdots \]

For each instant,

1. Start with all signals at \(\bot \)
2. Evaluate all blocks (in some order)
3. If any change their outputs, repeat Step 2

\[
\begin{align*}
(a, b, c) &= (\bot, \bot, \bot) \\
f_0(\bot, \bot, \bot) &= (0, \bot, \bot) \\
f_1(0, \bot, \bot) &= (0, 1, \bot) \\
f_2(0, 1, \bot) &= (0, 1, 0) \\
f_2(f_1(f_0(0, 1, 0))) &= (0, 1, 0)
\end{align*}
\]
The Dependency Graph

Transform into single-output functions:

\[
\begin{array}{c}
\text{A} \\
\text{B} \\
\downarrow \\
\text{C} \\
\text{D}
\end{array}
\]
The Scheduling Algorithm

1. Decompose into strongly-connected components
2. Remove a head (set of vertices) from each SCC, leaving a tail
3. Recurse on each tail
Evaluating SCCs

Split a strongly-connected graph into a head and tail:

Good heads break T’s strong connectivity.
Schedules

\[
\begin{align*}
\text{head} & \quad \text{tail} \\
(1, 2) & \quad (4, 5, 6) & & (0, 3) \\
\text{SCC} & & & \text{SCC}
\end{align*}
\]

\[5 4 5 6 3 0 3 1 2 5 4 5 6 3 0 3 1 2 5 4 5 6 3 0 3\]
Finding Good Heads

Must break strong connectivity—remove a border of a set of vertices:

![Diagram showing a graph with vertices A, B, C, D, E, F, G, H, I, and arrows indicating connections. The diagram includes a border of vertices A, B, C, and a subgraph showing vertices H, I, A, B, and C with incoming edges indicated.](image)
Choosing Good Border Sets

Heuristic: “Grow” a set starting from a vertex and greedily include the best border vertex:

<table>
<thead>
<tr>
<th>Set</th>
<th>Border</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>1 5</td>
<td>2 3</td>
</tr>
<tr>
<td>1 5 2</td>
<td>3</td>
</tr>
<tr>
<td>1 5 2 3</td>
<td>7</td>
</tr>
<tr>
<td>1 5 2 3 7</td>
<td>4 6</td>
</tr>
<tr>
<td>1 5 2 3 7 4</td>
<td>6</td>
</tr>
</tbody>
</table>
Scheduling Results

Time to Compute Schedule

Number of Outputs

Speedup Over Exact

Time to Compute Exact
The Cost of Using the Heuristic

Number of Outputs

Fraction of Runs

Increase in Cost of Schedule

5%
10%
15%
20%
25%
5%
10%
15%
20%
25%
0% 20% 40% 60% 80%
0% 20% 40% 60% 80%

Asymptotic Schedule Cost

Number of Outputs

Optimal Schedule Cost

n^2

$n^{1.5}$

n
Conclusions

- Reactive embedded systems
 - Run at the speed of their environment
 - \textit{When} as important as \textit{what}
 - Concurrent, deterministic, bounded, discrete-valued

- The synchronous approach
 - Discrete instants, globally synchronized
 - Assumes instantaneous computation

- Heterogeneity in Ptolemy
 - Domain: Blocks and Scheduler
 - Hierarchical heterogeneity through domain embedding
Conclusions (2)

- The SR domain
 - Concurrent zero-delay blocks
 - Semantics: the least fixed point of a monotonic function on a CPO
 - Values include “undefined” (\perp)
- Scheduling the SR Domain
 - Use single-output dependency graph
 - Decompose into SCCs; remove a head from each; recurse
 - Head is the border of the tail
 - Choose a head by greedily growing a set of vertices
 - Fast, efficient. $O(n^{1.25})$ execution