
Research Areas

Stephen A. EdwardsStephen A. Edwards

Department of Computer Science,Department of Computer Science,
Columbia UniversityColumbia University

www.cs.columbia.edu/˜sedwardswww.cs.columbia.edu/˜sedwards

sedwards@cs.columbia.edusedwards@cs.columbia.edu

Embedded Systems

Computers masquerading as something else.

Casio Nokia 7110 Sony
Camera Browser Playstation 2
Watch Phone

Philips Philips
DVD Player TiVo Recorder

Long-Term Goal

Supplying tools that speed the development of embedded
systems.

Embedded Systems Challenges

Real-time Complexity

Concurrency Legacy Languages

Software complexity growing

Size of Typical Embedded System

1985 13 kLOC

1989 21 kLOC ↓ 44 % per year

1998 1 MLOC

2000 2 MLOC

2008 16 MLOC ≈ Windows NT 4.0

2010 32 MLOC ≈ Windows 2000

Source: “ESP: A 10-Year Retrospective,” Embedded Systems Programming,

November 1998

Written in stone-age languages

“Which of the following programming languages have you
used for embedded systems in the last 12 months?”

C 81%

Assembly 70%

C++ 39%

Visual Basic 16%

Java 7%

Source: “ESP: A 10-Year Retrospective,” Embedded Systems Programming,

November 1998

Domain-Specific Languages

Little languages that fit the problem

More succinct description that are

1. Quicker to create

2. Easier to get right

More opportunities for optimization
and analysis

General-purpose languages
hindered by undecidability

Domain-specific languages much
simpler

Real-Time
Languages

Esterel

The Esterel Real-Time Langauge

Synchronous language developed by
Gérard Berry in France

Basic idea: use global clock for
synchronization in software like that in
synchronous digital hardware.

Challenge: How to combine
concurrency, synchronization, and
instantaneous communication

Esterel
Restart when

RESET present every RESET do

Infinite loop

loop

Wait for next cycle
with A present

await A;
emit B;
present C then

emit D
end;
pause

end
Run concurrently ||

loop

Same-cycle
bidirectional

communication

present B then
emit C

end;
pause

end
end

Previous Esterel Work

• Thesis on Esterel semantics in a heterogeneous
environment (Ptolemy/Edward Lee/Berkeley)

• To appear in Science of Computer Programming

• Compiler that speeds up certain large programs 100×

• Used inside Synopsys’ CoCentric System Studio

• Has limitations (e.g., owned by former employer)

• Published in IEEE Transactions on Computer-Aided
Design 21(2), 2002.

Previous Esterel Compiler

every R do
loop

await A;
emit B;
present C then

emit D end;
pause

end
||

loop
present B then

emit C end;
pause

end
end

R

1 s 2

A

B B

C C

D

s=2 s=1

R

1 s 2

A
B

t=0 t=1

B
C

0 t 1

C
D

s=2 s=1

if ((s0 & 3) == 1) {

if (S) {

s3 = 1; s2 = 1; s1 = 1;

} else

if (s1 >> 1)

s1 = 3;

else {

if ((s3 & 3) == 1) {

s3 = 2; t3 = L1;

} else {

t3 = L2;

}

Esterel Concurrent Sequential C code

Source CFG CFG

Ongoing Esterel Work

• New compiler infrastructure designed for research

• Better circuits from Esterel programs (Cristian
Soviani)

• Faster code from PDGs (Jia Zeng)

• Event-driven code (Vimal Kapadia, Michael Halas)

• An interpreter for small-footprint applications

The
Hardware/Software

Boundary

Device Drivers

Languages for Device Drivers

Device drivers are those pieces of
software that you absolutely need
that never seem to work

Big security/reliability hole: run in
Kernel mode

Responsible for 80% of all Windows crashes

Tedious, difficult-to-write

Ever more important as customized hardware proliferates

Work by Others

Thibault, Marlet, and Consel

IEEE Transactions Software Engineering, 1999

Developed the Graphics Adaptor Language for writing
XFree86 video card drivers

Report GAL drivers are 1/9th the size of their C
counterparts

No performance penalty

Ongoing Work

Develop language for network card drivers under Linux
(Chris Conway)

Sharing drivers between Linux and FreeBSD (Tom
Heydt-Benjamin)

Ultimate vision: compiler takes two programs: device
spec. and OS spec. and synthesizes appropriate driver.

OS vendor makes sure OS spec. is correct; Hardware
designer makes sure hardware spec. is correct.

NE2000 Ethernet driver (fragment)
ioports ne2000 {

bits cr {
bit stop, sta, transmit;
enum:3 { 001=remRead, 010=remWrite,

011=sendPacket, 1**=DMAdone }
enum:2 { 00=page0, 01=page1, 10=page2 }

}
paged p {
page0 { cr.page0; } {
twobyte clda;
byte bnry;
bits tsr {
bit ptx, 1, col, abt, crs, 0, cdh, owc;

}
page1 { cr.page1; } {
byte:6 par;
byte curr;
byte:8 mar;

}

Program
Correctness

Verification Library
Language

Verification Library Language

Joint work with Al Aho

Language extensions to support verification
libraries for Java

Traditional Libraries Provide functionality

Verification Libraries Provide improved confidence
in program correctness

Vision is a new methodology: verification as part of the
development process, part of the same toolbox as adding
functionality.

“Hello World” Example

Require Java class names to start with capital letters.

enforce vll.capitalIdentifiers;

public class MyExample {

public int nothing;

}

vllpackage vll.capitalIdentifiers;

AST() {

find "class <name>" in ast

if (name[0] < ’A’ || name[0] > ’Z’)

warning("Uncapitalized class name: ", name);

}

Example 2: Locks

Ensuring locks are acquired in a consistent order.
public class MyClass {

private static final Object l1 = new Integer(0);
private static final Object l2 = new Integer(1);

public void method1() {
synchronized (l1) {

synchronized (l2) {
}

}
}

public void method2() {
synchronized (l2) { // l2 first makes this

synchronized (l1) { // a possible source of deadlock
}

}
}

}

Example 2: Locks Implementation

vllpackage vll.orderedLocks;

AST {

Digraph g; // g is a user-defined directed graph object

find "synchronized (<obj1>) {

...

synchronized (<obj2>) { ... }

...

}" in ast

if (!g.addEdgeWithoutCycle(obj1,obj2))

warning("Object ", obj2, " locked after ", obj1);

}

Example 3: Enforcing the Visitor
Pattern

Illustrates desire for application-specific verification
libraries.

enforce vll.visitor(MyVisitorClass, [Object1, Object2]);

public class MyVisitorClass {

void visit(Object1 o) { }

void visit(Object2 o) { }

}

Example 3: Enforcing the Visitor
Pattern

vllpackage vll.visitor;

AST(Class visitorClass, vector<Class> objectClasses) {
find "class #visitorClass" in ast then {
foreach (Class objClass in objectClasses) {

find "void accept(#visitorClass <arg>)
{ <arg>.visit(this); }" in objClass else

warning("Missing or erroneous accept() in ",
objClass);

find "void visit(#objClass <arg>) { ... }"
in visitorClass else
warning("Missing visit(", objClass, ")");

}
} else {
warning("visitor class ", visitorClass, " not defined");

}
}

Other Verification Libraries

• Lint-like function call chekers

• Library that assumes the program is an FSM and can
be checked using standard FSM tools

• Library that statically checks if a Java program uses a
particular set of methods (e.g., deprecated ones)

• Library that removes array-bounds-checking code that
can be proven unecessary

Think of a language mechanism that can supply -Wall,
lint, purify, Spin, SLAM, Prefix, etc. as libraries as easy to
use as those for I/O, GUIs, etc.

Porting Tools

Type inference for C

Type Inference for C

Intended use: porting C code from one environment to
another.

Assume that old header files are not available or difficult
to use.

Identifies missing function declarations and proposes
prototypes.

Type Inference for C: Example

void main()

{

if (today_is_wednesday()) {

double a = sin(1.23);

}

printf("Hello World");

}

would report

double sin(double);

bool today_is_wednesday();

void printf(char *);

Porting Tools

“One Long Strand”

One Long Strand

Distinguishes active and dead lines in C source.

Dead code, dead functions, dead declarations, dead
header file inclusions.

Uses:

• Cleaning up a large software project

• Removing unwanted features from reused software

• Understanding relationships among software features

One Long Strand: Example

#include <stdio.h>

#include <math.h>

void main()

{

if (0) {

double a = sin(1.23);

}

printf("Hello World");

}

void foo()

{

}

Thank you

