
The Sparse Synchronous Model
Stephen A. Edwards

Computer Science at
Columbia University

Real-Time Software: Time as Important as Value

Sslang
Program

O
u

tp
u

t

In
p

u
t

100
@7

011
@5

01
@9

10
@6

6 975

Implemented on Resource-Constrained Microcontrollers

0ms 50ms 100ms 150ms

Time modeled arithmetically Time in seconds
Can add, subtract, multiply, and
divide time intervals

blink led =
loop

after ms 50,
led <− not (deref led)

wait led

led = 0

0ms 50ms 100ms 150ms

Time modeled arithmetically

Time is quantized;
quantum not user-visible

Quantum might be
1 MHz, 16 MHz, etc.
Integer timestamps thwart Zeno

blink led =
loop

after ms 50,
led <− not (deref led)

wait led

led = 0

0ms 50ms 100ms 150ms

Time modeled arithmetically

Time is quantized;
quantum not user-visible

Program thinks processor is
infinitely fast: execution a
sequence of zero-time instants
(hence “synchronous”)

Every instruction that runs in an
instant sees the same
timestamp

blink led =
loop

after ms 50,
led <− not (deref led)

wait led

led = 0

0ms 50ms 100ms 150ms

Time modeled arithmetically

Time is quantized;
quantum not user-visible

Program thinks processor is
infinitely fast: execution a
sequence of zero-time instants
(hence “synchronous”)

Nothing happens in
most instants (hence “sparse”)

blink led =
loop

after ms 50,
led <− not (deref led)

wait led

led = 0

0ms 50ms 100ms 150ms

led is mutable; can be scheduledblink led =
loop

after ms 50,
led <− not (deref led)

wait led

led = 0

0ms 50ms 100ms 150ms

led is mutable; can be scheduledblink led =
loop

after ms 50,
led <− not (deref led)

wait led

led = 0

0ms 50ms 100ms 150ms

led is mutable; can be scheduled

Infinite loop

blink led =
loop

after ms 50,
led <− not (deref led)

wait led

led = 0

0ms 50ms 100ms 150ms

led is mutable; can be scheduled

Infinite loop

Schedule a future update

blink led =
loop

after ms 50,
led <− not (deref led)

wait led

led = 0

0ms 50ms 100ms 150ms

led is mutable; can be scheduled

Infinite loop

Schedule a future update

blink led =
loop

after ms 50,
led <− not (deref led)

wait led

led = 0

led← 1

0ms 50ms 100ms 150ms

led is mutable; can be scheduled

Infinite loop

Schedule a future update

Wait for a write on a variable

blink led =
loop

after ms 50,
led <− not (deref led)

wait led

led = 0

led← 1

0ms 50ms 100ms 150ms

led is mutable; can be scheduled

Infinite loop

Schedule a future update

Wait for a write on a variable

blink led =
loop

after ms 50,
led <− not (deref led)

wait led

led

= 0

led← 1

0ms 50ms 100ms 150ms

led is mutable; can be scheduled

Infinite loop

Schedule a future update

Wait for a write on a variable

blink led =
loop

after ms 50,
led <− not (deref led)

wait led

led

= 0

led← 1

0ms 50ms 100ms 150ms

led is mutable; can be scheduled

Infinite loop

Schedule a future update

Wait for a write on a variable

blink led =
loop

after ms 50,
led <− not (deref led)

wait led

led

= 0

led← 1

0ms 50ms 100ms 150ms

led is mutable; can be scheduled

Infinite loop

Schedule a future update

Wait for a write on a variable

blink led =
loop

after ms 50,
led <− not (deref led)

wait led

led

= 0

led← 1

0ms 50ms 100ms 150ms

led is mutable; can be scheduled

Infinite loop

Schedule a future update

Wait for a write on a variable

blink led =
loop

after ms 50,
led <− not (deref led)

wait led

led

= 0

led← 1

0ms 50ms 100ms 150ms

led is mutable; can be scheduled

Infinite loop

Schedule a future update

Wait for a write on a variable

blink led =
loop

after ms 50,
led <− not (deref led)

wait led

led

= 0

0ms 50ms 100ms 150ms

led is mutable; can be scheduled

Infinite loop

Schedule a future update

Wait for a write on a variable

blink led =
loop

after ms 50,
led <− not (deref led)

wait led

led

= 0

0ms 50ms 100ms 150ms

led is mutable; can be scheduled

Infinite loop

Schedule a future update

Wait for a write on a variable

blink led =
loop

after ms 50,
led <− not (deref led)

wait led

led

= 0

0ms 50ms 100ms 150ms

led is mutable; can be scheduled

Infinite loop

Schedule a future update

Wait for a write on a variable

blink led =
loop

after ms 50,
led <− not (deref led)

wait led

led

= 0

0ms 50ms 100ms 150ms

led is mutable; can be scheduled

Infinite loop

Schedule a future update

Wait for a write on a variable

blink led =
loop

after ms 50,
led <− not (deref led)

wait led

led

= 0

led← 0

0ms 50ms 100ms 150ms

led is mutable; can be scheduled

Infinite loop

Schedule a future update

Wait for a write on a variable

blink led =
loop

after ms 50,
led <− not (deref led)

wait led

led

= 0

led← 0

0ms 50ms 100ms 150ms

led is mutable; can be scheduled

Infinite loop

Schedule a future update

Wait for a write on a variable

blink led =
loop

after ms 50,
led <− not (deref led)

wait led

led

= 0

led← 0

0ms 50ms 100ms 150ms

led is mutable; can be scheduled

Infinite loop

Schedule a future update

Wait for a write on a variable

blink led =
loop

after ms 50,
led <− not (deref led)

wait led

led

= 0

led← 0

0ms 50ms 100ms 150ms

led is mutable; can be scheduled

Infinite loop

Schedule a future update

Wait for a write on a variable

blink led =
loop

after ms 50,
led <− not (deref led)

wait led

led

= 0

0ms 50ms 100ms 150ms

led is mutable; can be scheduled

Infinite loop

Schedule a future update

Wait for a write on a variable

blink led =
loop

after ms 50,
led <− not (deref led)

wait led

led

= 0

led← 1

0ms 50ms 100ms 150ms

led is mutable; can be scheduled

Infinite loop

Schedule a future update

Wait for a write on a variable

blink led =
loop

after ms 50,
led <− not (deref led)

wait led

led

= 0

led← 1

Concurrent Code Executes in Syntactic Order for Determinism

add2 x = x <- deref x + 2 / / Add 2 as a side-effect

mult4 x = x <- deref a * 4 / / Multiply by 4 as a side-effect

main =
let a = new 1 / / Allocate a new mutable variable

par add2 a / / Runs first: a← 1 + 2 = 3
mult4 a / / Runs second: a← 3× 4 = 12

par mult4 a / / Runs third: a← 12× 4 = 48
add2 a / / Runs fourth: a← 48 + 2 = 50

Concurrent Code Executes in Syntactic Order for Determinism

add2 x = x <- deref x + 2 / / Add 2 as a side-effect

mult4 x = x <- deref a * 4 / / Multiply by 4 as a side-effect

main =
let a = new 1 / / Allocate a new mutable variable

par add2 a / / Runs first: a← 1 + 2 = 3
mult4 a / / Runs second: a← 3× 4 = 12

par mult4 a / / Runs third: a← 12× 4 = 48
add2 a / / Runs fourth: a← 48 + 2 = 50

Concurrent Code Executes in Syntactic Order for Determinism

add2 x = x <- deref x + 2 / / Add 2 as a side-effect

mult4 x = x <- deref a * 4 / / Multiply by 4 as a side-effect

main =
let a = new 1 / / Allocate a new mutable variable

par add2 a / / Runs first: a← 1 + 2 = 3
mult4 a / / Runs second: a← 3× 4 = 12

par mult4 a / / Runs third: a← 12× 4 = 48
add2 a / / Runs fourth: a← 48 + 2 = 50

Concurrent Code Executes in Syntactic Order for Determinism

add2 x = x <- deref x + 2 / / Add 2 as a side-effect

mult4 x = x <- deref a * 4 / / Multiply by 4 as a side-effect

main =
let a = new 1 / / Allocate a new mutable variable

par add2 a / / Runs first: a← 1 + 2 = 3
mult4 a / / Runs second: a← 3× 4 = 12

par mult4 a / / Runs third: a← 12× 4 = 48
add2 a / / Runs fourth: a← 48 + 2 = 50

Concurrent Code May Block on wait

blink led period =
let timer = new () / / void/unit scheduled variable
loop
led <- not (deref led) / / Toggle led now
after period, timer <- () / / Wait for the period
wait timer

main led =
par blink led (ms 50)

blink led (ms 30)
blink led (ms 20) / / led toggles three times at time 600

FDL 2020: C API for SSM Runtime

Basic trick: Two priority queues

First queue for scheduled variable update events

Second queue for code to be executed in the current instant

A wait statement reminds the variable that something is waiting on it

When a variable is written, it schedules the waiting code in the second queue

FDL 2020: C API for SSM Runtime
/ / Routine activation record management
rar_t *enter(size_t size, void (*step)(rar_t *), rar_t *caller,

uint32_t priority, uint8_t depth)
void call(rar_t *rar)
void fork(rar_t *rar)
void leave(rar_t *rar, size_t size)

/ / Variable management
void initialize_type(cv_type_t *var, type val) / / new
void assign_type(cv_type_t *var, uint32_t priority, type val) / / <-
void later_type(cv_type_t *var, uint64_t time, type val) / / after
bool event_on(cv_t *var)

/ / Trigger management (for wait statements)
void sensitize(cv_t *var, trigger_t *trigger)
void desensitize(trigger_t *trigger)

FDL 2020: C API Example

examp a =
let loc = new 0
wait a
loc <- 42
after ms 10, a <- 43
par foo 42 loc
par foo 40 loc

bar 42

rar_examp_t *enter_examp(rar_t *caller, uint32_t priority, unit8_t depth, cv_int_t *a) {
rar_examp_t *rar = (rar_examp_t *)

enter(sizeof(rar_examp_t), step_examp, caller, priority, depth);
rar->a = a; / / Store pass-by-reference argument
rar->trig1.rar = (rar_t *) rar; / / Initialize our trigger

}
void step_examp(rar_t *gen_rar) {

rar_examp_t *rar = (rar_examp_t *) gen_rar;
switch (rar->pc) {
case 0:

initialize_int(&rar->loc, 0); / / let loc = new 0
sensitize((cv_t *) rar->a, &rar->trig1); / / wait a
rar->pc = 1; return;

case 1:
if (event_on((cv_t *) rar->a)) { / / if @a then
desensitize(&rar->trig1); / / De-register our trigger

} else return;
assign_int(&rar->loc, rar->priority, 42); / / loc <- 42
later_int(rar->a, now+10000, 43); / / after 10ms, a <- 43
rar->pc = 2; / / Single routine call: foo 42 loc
call((rar_t *) enter_foo((rar_t *) rar, rar->priority, rar->depth, 42, &rar->loc));
return;

case 2: / / Concurrent call: par foo 40 loc; bar 42
{ uint8_t new_depth = rar->depth - 1; / / 2 children
uint32_t pinc = 1 << new_depth;
uint32_t new_priority = rar->priority;
fork((rar_t *) enter_foo((rar_t *) rar, new_priority, new_depth, 40, &rar->loc));
new_priority += pinc;
fork((rar_t *) enter_bar((rar_t *) rar, new_priority, new_depth, 42)); }

rar->pc = 3; return;
case 3: ; }
leave((rar_t *) rar, sizeof(rar_examp_t)); / / Terminate

}

MEMOCODE 2022: Scoria: SSM Embedded in Haskell
sigGen :: (?out0 :: Ref GPIO) => Ref Word64 -> SSM ()
sigGen hperiod = routine $ while true (do

after (ns (deref hperiod)) ?out0 (not' (deref ?out0))
wait ?out0)

remoteControl :: (?ble :: BLE) => Ref Word64 -> SSM ()
remoteControl hperiod = routine $ do

enableScan ?ble
while true (do

wait (scanref ?ble)
if deref (scanref ?ble) ==. 0
then hperiod <∼ deref hperiod * 2
else hperiod <∼ max' (deref hperiod /. 2) 1)

entry :: (?ble :: BLE, ?out0 :: Ref GPIO) => SSM ()
entry = routine $ do

hperiod <- var (time2ns (secs 1))
fork [sigGen hperiod, remoteControl hperiod]

MEMOCODE 2022: Timer and Interrupts Drive the Runtime

SSM runtime libSystem tick driver

Input ISR

Input ISR
Input queue

Tick
loop

Semaphore

set alarmTimer

External
Inputs

Event queue

wait

post

Alarm ISR

schedule

post

1:351:271:24 1:36

tick

1:42 1:49

TCRS 2023: SSM as a Lua Library
local ssm = require("ssm")

function ssm.pause(d)
local t = ssm.Channel {}
t:after(ssm.msec(d), { go = true })
ssm.wait(t)

end

function ssm.fib(n)
if n < 2 then
ssm.pause(1)
return n

end
local r1 = ssm.fib:spawn(n - 1)
local r2 = ssm.fib:spawn(n - 2)
local rp = ssm.pause:spawn(n)
ssm.wait { r1, r2, rp }
return r1[1] + r2[1]

end

local n = 10

ssm.start(function()
local v = ssm.fib(n)

print(("fib(%d) => %d"):format(n, v))
==prints “fib(10) => 55”

local t = ssm.as_msec(ssm.now())
print(("Completed in %.2fms"):format(t))
==prints “Completed in 10.00ms”

end)

MEMOCODE 2023: The RP2040

2 ARM Cortex M0+
processor cores,
133 MHz

264K SRAM

Off-chip QSPI flash
(e.g., 2 MB)

30 GPIO pins

2 Programmable
I/O Blocks (PIO)

US$1 quantity 1

MEMOCODE 2023: A PIO Block

4 “State Machines”

32-instruction
memory (shared)

9 instructions
(jump, wait, in,
out, etc.)

4 32-bit registers

Single-cycle
execution

MEMOCODE 2023: Sslang on an RP2040

PIO0

PIO0

Interrupt Routines

SSM RuntimeRP2040 Platform Runtime

Tick
loop

tick

SSM event queue

schedule
3

@4
2

@3
4

@1

PIO Input Queue

Peripheral ISR 5
@6

1
@5

8
@2

Input Queue

PIO ISR

Alarm ISR

System Timer
1 MHz
64 bit

set_alarm
IRQ

Semaphore

wait

post

Capture SM

16 MHz
32 bit

3 5 1

RX FIFO
DMA

Pins

IRQ0

Buffer SM

TX FIFO

Pins

Alarm SM

IRQ4

TX FIFO

16 MHz
32 bit

value

time

Sslang
Program

Latency: 10-20 µs Accuracy: 62.5 ns / 16 MHz

sleep delay =
let timer = new ()
after delay, timer <- ()
wait timer

waitfor var value =
while deref var != value

wait var

debounce delay input press =
loop
waitfor input 0
press <- ()
sleep delay
waitfor input 1
sleep delay

pulse period press output =
loop
wait press
output <- 1
after period, output <- 0
wait output

buttonpulse button led =
let press = new ()
par debounce (ms 10) button press

pulse (ms 200) press led

21 µs Button-to-LED latency

MEMOCODE 2023: 100 µs pulse: C vs Sslang Latency

Input

Output
(C)

Output
(Sslang)

C: 1.80us
reaction time

Sslang: 13.8us
reaction time

MEMOCODE 2023: 100 µs pulse: C vs Sslang Falling edge

Input

Output
(C)

C falling edge:
1.41 µs late, 960 ns jitter

Input

Output
(Sslang)

≈ 1 / 16MHz

Sslang falling edge:
0 µs late, 62.6 ns jitter (16 MHz clock)

