
Timestamp Peripherals for
Precise Real-Time Programming

John Hui Kyle J. Edwards Stephen A. Edwards

COMPUTER SCIENCE AT
COLUMBIA UNIVERSITY

MEMOCODE. Hamburg, Germany. September 22, 2023.

RP2040

PIOPIO

Input
Capture

Output
Compare

CPU w/ language runtime

100@7
`

011@5 01@9 10@6

Sslang Program

What is the right programming model?

Programs should compose, but we have limited hardware timers

Polling input (in software) is wasteful: events are bursty

Timing prescriptions should not depend on device clock rate

Sslang at a glance

Procedural language with ML-like (functional) features:

polymorphism, static type inference, first-class functions, automatic memory management

waitfor (var: &a) (val: a) = // type: ∀a, &a -> a -> ()
 while deref var != val // current value is not val
 wait var // suspend until next update

Extended with synchronous primitives: after, wait, par (more on this later)

All computation other than wait takes zero logical time

Sslang at a glance

Variables (&) are mutable references

Sslang program
100@7 011@5 01@9 10@6

new : a -> &a // construct variable from value
deref : &a -> a // read current value of variable
_ <- _ : &a -> a -> () // update value of variable

Variables convey buffered events (value + timestamp), both internal and external

sleep (d: Time) =
 let timer = new () // construct event variable
 after d, timer <- () // schedule a wake-up event
 wait timer // suspend until then

timer = new () timer <- ()wait timerafter d

instant t
e.g., 100ms

instant t + d
e.g., 105ms

blink (press: &()) (led: &Led) =
 loop
 wait press // block until button press
 led <- On // turn LED on immediately
 after ms 200, led <- Off // schedule LED off after 200ms
 wait led // block until LED turns off

Input
(button)

Output
(LED)

debounce (button: &PushButton) (press: &()) =
 loop
 waitfor button Pressed // active-low button pressed
 press <- () // send “press” event
 sleep (ms 10) // debounce press
 waitfor button Released // button released
 sleep (ms 10) // debounce release

Input
(button)

Output
(LED)

blink (press: &()) (led: &Led) =
 loop
 wait press // block until button press
 led <- On // turn LED on immediately
 after ms 200, led <- Off // schedule LED off after 200ms
 wait led // block until LED turns off

debounce (button: &PushButton) (press: &()) =
 loop
 waitfor button Pressed // active-low button pressed
 press <- () // send “press” event
 sleep (ms 10) // debounce press
 waitfor button Released // button released
 sleep (ms 10) // debounce release

main (button: &PushButton) (led: &Led) =
 let press = new ()
 par debounce button press // run debounce and blink
 blink press led // in parallel

RP2040

PIOPIO

Input
Capture

Output
Compare

CPU w/ language runtime

100@7
`

011@5 01@9 10@6

Sslang Program

Input Capture

time
1@3 1@8 1@12

1@13

Input FIFO
Polled by CPU

From input capture

1@31@81@121@13

Input
pin

Output Compare

time

1@4 0@8

Output
pin

0

@8

value

timestamp

From CPU

Polled by output compare

PIO: Programmable I/O
On each PIO device:

● 4 “state machines”
● 32 instruction memory
● 9 op codes
● 4 registers
● Single-cycle execution

Limited programmability

Clocked using system clock, derived from external crystal oscillator

Timestamp Peripherals
System clock @ 128MHz / 8-cycle counter = PIO sample rate @ 16MHz

Input Capture Output Compare

Experimental Goals

What is the overhead of processing events through this system?

What level of accuracy and precision can we achieve with
timestamp peripherals?

10-20 us

62.5 ns / 16 MHz

Input
(button)

Output
(LED) ~20us reaction time

Input

Output
(C)

Output
(Sslang)

C: 1.80us
reaction time

Sslang: 13.8us
reaction time

Input

Output
(C)

Input

Output
(Sslang)

≈ 1 / 16MHz

Pulse Width Measurement

Frequency Counter

Timestamp peripherals enable precise timing behavior
from expressive synchronous languages

blink (press: &()) (led: &Led) =
 loop
 wait press
 led <- On
 after ms 200, led <- Off
 wait led

https://github.com/ssm-lang/sslang https://github.com/ssm-lang/pico-ssm

SSM
+

timestamp
peripherals

