
Language Design is LEGO Design and Library Design

Stephen A. Edwards

Columbia University

Forum on Specification & Design Languages
Southampton, United Kingdom, September 3, 2019

User-defined functions and pointers in imperative languages

Language design choices are often heavily influenced by processor
architectures. Understand the processor to understand the language

Best to understand how to compile a feature before adding it to the language

1954: The IBM 704 Electronic Data-Processing Machine

[IBM 704 Manual of Operation, 1955]

36-bit Integer &
Floating-point ALU

36-bit instructions

Core: 4–32K words

Incubated
FORTRAN and LISP

“Mass Produced”:
IBM sold 125 @
$2M ea.

1954: IBM 704 Processor Architecture

3 15-bit Index Registers

38-bit Accumulator

36-bit M-Q Register

15-bit Program Counter

1954: Calling a Subroutine on the IBM 704

TSX SINX, C Branch to SINX, remember PC in index register C
TRA 2, C Return to 2 words past address in index register C

1954: FORTRAN

1954: FORTRAN

— J. W. Backus, H. Herrick, and I. Ziller.
Specifications for the the IBM Mathematical FORmula TRANslating System.
IBM, November 10, 1954.

1957: FORTRAN I on the IBM 705

1, 2, 3D arrays

Arithmetic
expressions

Integer and
floating-point

Loops and
conditionals

User-defined
functions:
expressions only

[Programmer’s Primer for FORTRAN Automatic Coding System for the IBM 704, 1957]

1957: FORTRAN I User-Defined Functions

Free variables
are globals

No recursion;
backward
references only

No arrays

“Activation
Records”
allocated
statically

1957: EQUIVALENCE Statement for Sharing Storage

Memory scarce

No stack, functions, or
automatic variables

EQUIVALENCE for
sharing memory of
non-overlapping uses
of variables/arrays

A sort of manual
“register” allocation

[Programmer’s Reference Manual for the FORTRAN Automatic Coding System for the IBM 704 EDPM, 1956]

1958: FORTRAN II: User-defined Subprograms

Six new statements:

CALL Call a subroutine
RETURN Return from function or subroutine
END End-of-file & compiler directives

SUBROUTINE Define a subroutine name & arguments
FUNCTION Define a function name & arguments
COMMON Like EQUIVALENCE, but between subprograms

Also for creating global variables

FORTRAN

1957 optimizing compiler far ahead of its time:
register allocation, common subexpression elimination, strength reduction

Static-only storage allocation philosophy ultimately a dead end

No implicit stack or notion of an activation record

Recursion wasn’t standarized until FORTRAN 90

EQUIVALENCE and COMMON were ripe for abuse

1960: ALGOL

Block-structured; simple memory reuse

Nested procedure/function definitions

Call-by-name (substitution) semantics
subtle, difficult to implement

Recursion introduced stealthily by
Dijkstra et al.
[Naur, SIGPLAN Notices, 13(8), 1978]

[CACM 3(5):299–314, May 1960]

1960: Dijkstra Advocates Stacking Activation Records

Static links for accessing non-local variables · Displays for efficiency

1961: Side-Effects Complicate Call-By-Name

begin real B, D; array A[1:10, 2:20];
procedure P(a, b, c, d); real a, b, c, d;
a := b := c * d + a + c;

real procedure C(dd); real dd; begin
dd := dd + 5;
C := dd - 3

end C;

D := 5; B := 4; A[10, 7] := -20;
P(A[D, B+3], B, C(D) - 4, D)

end

Passing C(D) - 4 for c means every reference to c adds 5 to D as a side-effect.
This changes the meaning of a, A[D, B+3] [Jensen and Naur, P. BIT 1(1):38–47, 1961]

Parameters passed as addresses of thunks: short address-generating
subroutines [Ingerman, CACM, 4(1):55–58, 1961]

ALGOL

Recursive

Stack of activation records

Static and dynamic links for accessing
non-local variables

Procedures can be passed as
arguments, but not returned

Procedures can only return simple
types (real, integer, or Boolean), a
syntactic restriction

[Randell and Russell, ALGOL-60 Implementation, 1964]

1962: CPL

Cambridge and London

Very ambitious

Based on ALGOL 60

Richer types, type checking, and type inference

Nested function definitions

Call-by-name plus call-by-value and
call-by-reference

Fixed (side-effect-free) and free procedures

[The Computer Journal, 6(2), 1963]

1962: CPL was too complicated

While attempting to write the CPL compiler in a subset of CPL,

“We found we did not need to define functions within other
functions. This allowed us to represent functions by just their entry
points without any additional environment information. This also
meant that function calls did not need to implement either Dijkstra
displays or Strachey’s free variable lists. It also allowed the compiler
to be broken into several sections each compiled separately. We only
needed called-by-value arguments, since pointers could be used for
call-by-reference arguments, and call-by-name could be implemented
by passing functions. It is worth noting that the CPL program given
in Strachey’s GPM paper only used call-by-value and never defined a
function within another.”

—Martin Richards, Christopher Strachey and the Developent of CPL, 2016

1967: BCPL

Exactly one data type: a machine word (24–36 bits)

[Spring Joint Computer Conference, 1969]

1967: BCPL Nested Functions, But Free Variables Had To Be Static

Recursive functions

Function pointers

Static and dynamic (stacked) storage

Nested functions supported, but
free variables must be static

1964: The DEC PDP-7

18-bit word-based

4K to 32K word
magnetic core memory

Only $72,000 in 1964

Transistor-based

500 kg, 2000 W

DEC sold 120 of them

1964: DEC PDP-7 Processor Architecture

18-bit Accumulator
13-bit Program Counter

1969: B

Thompson was faced with a hardware environment cramped and
spartan even for the time: the DEC PDP-7 on which he started in 1968
was a machine with 8K 18-bit words of memory and no software
useful to him.
Thompson decided that Unix ... needed a system programming
language. After a rapidly scuttled attempt at Fortran, he created
instead a language of his own, which he called B. B can be thought
of as C without types; more accurately, it is BCPL squeezed into 8K
bytes of memory and filtered through Thompson’s brain.

—Dennis Ritchie, The Development of the C Language, SIGPLAN Notices, 28(3)
1993

1969: B

[Thompson, Users’ Reference to B, Bell Labs MM-72-1271-1, 1972]

1970: The DEC PDP-11

1970: DEC PDP-11 Architecture

16-bit architecture

Byte and word operations

8 16-bit general-purpose
registers

Floating-point arithmetic

16-bit virtual addresses

Stack support

Many addressing modes,
including register+index

1971: C

The machines on which we first used BCPL and then B were
word-addressed The advent of the PDP-11 exposed several
inadequacies of B’s semantic model. First, its character-handling
mechanisms ... were clumsy ... even silly, on a byte-oriented machine.
Second, although the original PDP-11 did not provide for
floating-point arithmetic, the manufacturer promised that it would
soon be available. ...
Finally, the B and BCPL model implied overhead in dealing with
pointers: the language rules, by defining a pointer as an index in an
array of words, forced pointers to be represented as word indices.
Each pointer reference generated a run-time scale conversion from
the pointer to the byte address expected by the hardware.

—Dennis Ritchie, The Development of the C Language, SIGPLAN Notices, 28(3)
1993

1971: C and PDP-11 Assembly

int gcd(m, n)
{
int r;
while ((r = m % n) != 0) {

m = n;
n = r;

}
return n;

}

Frame Pointer: r5
Stack Pointer: r6
Program Counter: r7

.globl _gcd

.text
_gcd:

jsr r5, rsave save SP in FP
L2: mov 4(r5), r1 r1 = n

sxt r0 sign extend
div 6(r5), r0 r0, r1 = m / n
mov r1, -10(r5) r = r1 (m % n)
jeq L3 if r == 0 goto L3
mov 6(r5), 4(r5) m = n
mov -10(r5), 6(r5) n = r
jbr L2

L3: mov 6(r5), r0 r0 = n
jbr L1

L1: jmp rretrn return r0 (n)

1970: Pascal

Based on ALGOL 60

More types: files, records,
tagged unions, pointers, sets

Nested procedure/function
declarations

Function/procedure
arguments, but no
variables/types

1970: Pascal Nested Procedures, Static Links, and the Display

[Wirth, The Design of a PASCAL Compiler, SPE, 1971]

1980: Modula-2

Simplified Pascal for multiprogramming
(processes, monitors, signals)

Initially on the PDP-11

Essentially the rules for C

1983: Turbo Pascal for the IBM PC/Intel 8086

1989: Turbo Pascal 5.0 Added Procedural Types

Language Year Procedures

Recursion
Nested Definitions

Nested References

Function Pointers

FORTRAN I 1957
FORTRAN II 1958 !

ALGOL 60 1960 ! ! ! ! †

CPL 1962 ! ! ! !

BCPL 1967 ! ! ! !

B 1969 ! ! !

C 1971 ! ! !

Pascal 1970 ! ! ! ! †

Modula-2 1980 ! ! ! ! ‡

Turbo Pascal 1983 ! ! ! !

Turbo Pascal 5.0 1989 ! ! ! ! ‡

† Function arguments only
‡ Pointers to top-level functions only

