Language Design is LEGO Design and Library Design

Stephen A. Edwards

Columbia University

Forum on Specification & Design Languages
Southampton, United Kingdom, September 3, 2019

feeEEOECUCOO0 0O .
200 @eQ0OQOOOOW
EXEEEEE SRR 2 2
am:aoad‘l#ﬁ.aa;\
cooc "I o0 0
Sma)m.\nn - oweely
eoeowe Y eV

~geee

User-defined functions and pointers in imperative languages

Language design choices are often heavily influenced by processor
architectures. Understand the processor to understand the language

656100000000 006000 o}

Best to understand how to compile a feature before adding it to the language

Report on the Algorithmic Language ALGOL 60

Prrer NAUR (Editor)
J. W. Backus C. Katz H. RUTISHAUSER J. H. WEGsTEIN
F. L. BAUER J. McCaRrHY K. SaMELsON A. vaAN WIINGAARDEN
J. GREEN A. J. PERLIS B. Vauvquois M. WoopGER

1954: The IBM 704 Electronic Data-Processing Machine

‘ INPUT-OUTPUT COMPONENTS

AUXILIARY STORAGE
r UNITS o

Magnetic Magpnetic Card Card Printer Cathode

Drum Tapes Punch Reader Ray

Tube

ﬁ(-1 0
-~ -7 ™ -
e -
~ - -
-—

Magnetic Core Storage
t (Contains Stored Program)

[IBM 704 Manual of Operation, 1955]

36-bit Integer &
Floating-point ALU

36-bit instructions
Core: 4-32K words

Incubated
FORTRAN and LISP

"Mass Produced”:
IBM sold 125 @
$2M ea.

1954: IBM 704 Processor Architecture

—3 15-bit Index Registers

5 __38-bit Accumulator
_-36-bit M-Q Register

~— —15-bit Program Counter

1954: Calling a Subroutlne on the IBM 704

0w i;}\ earon opemation I ADDRESS ‘: } DECREMENT CommENTs
FICATION |55 | cooe | 4| symsouic ‘ ABsoLuTE a‘» i1 svmsouc ABSOLUTE
lc.sea |sxo cBOX < Save contents of C
i TSX || SINX lc Transfer to SIN X
i | Storage for X
| LXD CBOX lcl Restore contents of C
..... Y P Ay I !
' CBOX | ‘ } ‘ ‘ Erasable storage in main program
1oeNT- :E Location | OFERATION 7 ADORLES SECREGERT COMMENTS
FicATION |13 cooe |} symBoLic ABSOLUTE symoLic \ ABSOLUTE
L SINX_ | cLA] Place X in AC
! STO SINX + i ! Store X
SXD | Save index C
Rl ol s Bt s | Computation for sin x
BOXC l Storage for C in subroutine
! LXD ‘C Restore C
i TRA 2 ‘C Exit to main program

TSX SINX,
TRA 2, C

C Branch to SINX, remember PC in index register C
Return to 2 words past address in index register C

1954: FORTRAN

Fortran

| AUTOMATIC CODING SYSTEM

L
j RIS - = . =
FOR THE IBM 704

1954: FORTRAN

Since FORTRAN should virtually eliminate coding and debugging, it should
be_possible to solve problems for less than half the cost that would be re-
quired without such a system. Furthermore, since it will be possible to
devote nearly all usable machine time to problem solution instead of only half

— J. W. Backus, H. Herrick, and 1. Ziller.
Specifications for the the IBM Mathematical FORmula TRANslating System.
IBM, November 10, 1954.

1957: FORTRAN | on the IBM 705

Fom

-
CONNENT

I'hl'l'll‘lhl’

FORTRAN STATEMENT

TRIGF(X, Y) = SINF (X+Y)**24COSF(X-Y)**2

DIMENSION A(100), 8(100), C(100), P(100), Q(100)

READB, A, B, C

DO61=1,100

P(D) = SQRTF(TRIGF(A(D*B(D, C(D))

__ Q{0 = TRIGF(AM, C@M)

PRINT 8, (Am: F{D. cm; P(D, Q{ﬂ': I=1,100)

FORMAT (5F 10.4)

\OH\IG‘H&HN'—-

STOP

'I
|
B
)
|
!
I
|
|
=
|
|
|
|
!

1, 2, 3D arrays

Arithmetic
expressions

Integer and
floating-point
Loops and
conditionals

User-defined
functions:
expressions only

[Programmer’s Primer for FORTRAN Automatlc Codlng System for the IBM 704, 1957]

1957: FORTRAN | User-Defined Functions

rom
commEnT

FORTRAN STATEMENT

[* courmustion

STATENENT
NURBER

3 2 = 1k

1 FIRSTE(X) = X**2 + A*%2

|
} 2 | | _SECONDF(R,S)= SQRTF(FIRSTF(R/R+S)))
| I . e
i \E : _
| 1 | ;)
I - —
27 _P= SECONDF(1.7* DELTA, ALPHA)*P1

1 : S

Notice that it is permissible to use a previously defined
function in the definition of subsequent functions. Notice also that
the variable A is involved in the definition of FIRSTF but is not an
argument. A may be used in the same way as any other variable
in the problem, and its current value is used each time FIRSTF
is evaluated.

Free variables
are globals

No recursion;
backward
references only

No arrays

" Activation
Records”
allocated
statically

1957: EQUIVALENCE Statement for Sharing Storage

GENERAL FORM EXAMPLES

“EQUIVALENCE (a, b, ¢, ...), (d, e, f, ...), EQUIVALENCE (A, B(1), C(5)), D(17), E@))
where a, b, ¢, d, e, f, ... are variables
optionally followed by a single unsigned

fixed point constant in parentheses.

The EQUIVALENCE statement enables the programmer, if he wishes, to con-
trol the allocation of data storage in the object program. In particular, it permits
him to economise on data storage requirements by causing storage locations
to be shared by two or more quantities, when the logic of his program permits.
It also permits him, if he wishes, to call the same quantity by several different
names, and then ensure that those names are treated as equivalent.

Memory scarce

No stack, functions, or
automatic variables

EQUIVALENCE for
sharing memory of
non-overlapping uses
of variables/arrays

A sort of manual
“register” allocation

[Programmer’s Reference Manual for the FORTRAN Automatic Coding System for the IBM 704 EDPM, 1956]

FORTRAN II: User-defined Subprograms

Six new statements:

CALL Call a subroutine
RETURN Return from function or subroutine
END End-of-file & compiler directives

SUBROUTINE Define a subroutine name & arguments

FUNCTION Define a function name & arguments

COMMON Like EQUIVALENCE, but between subprograms
Also for creating global variables

Reference Manual
FORTRAN II
for the IBM 704 Data Processing System

FOR
C«
COMMENT

STATEMENT
HUNBLR

3 3

[® convimuarion

FORTRAN STATEMENT

k]

FUNCTION SUM (A, NA, B, NB)

DIMENSION A(500), B{500)

|] | |SUM=A{1)
_{ __DO5J=2, NA
15]| [SUM=SUM +A(])
| __|Do101=1, NB
110 SUM= SUM + B({I)
| __|RETURN
DIMENSION X(500), Y(500), V(500), W(500) -
READ 2, NX, NY, NV, NW, X, Y, V., W . —]
__|AVERG = (SUM({X,NX, Y,NY) + SUM‘V NV, W, NW))/FLOATF (NX + NY + NV + NW)

PRINT 10, AVERG

]

FORMAT (418/ (1P5E14.6)) e ———
FORMAT (3SHAVERAGE OF X, Y, V, ANDW LISTSIS 1PE14.5) _

1 T 1 1 1]
|

STOP

FORTRAN

1957 optimizing compiler far ahead of its time:
register allocation, common subexpression elimination, strength reduction

Static-only storage allocation philosophy ultimately a dead end
No implicit stack or notion of an activation record
Recursion wasn’t standarized until FORTRAN 90

EQUIVALENCE and COMMON were ripe for abuse

1960: ALGOL
Report on the Algorithmic Language ALGOL 60

Prrer Navur (Editor)

J. W. Backus C. Katz H. RUTISHAUSER J. H. WEGSTEIN
F. L. BAuEr J. McCARTHY K. SAMELSON A. vAN WIJNGAARDEN
J. GREEN A. J. Peruis B. Vauquois M. WoODGER
procedure Transpose(a)Order:(n) ; valuen ; Block-structured; simple memory reuse
a ; inte n ; . el
Zzzryl real w ; gf:;teger ik Nested procedure/function definitions
fori := 1step 1 until n do . . .
fork := 1+i stop I until n do CaII—by—n.an)e (subs.tltutlon) semantics
begin w := a[ik] ; subtle, difficult to implement
alikj := alk,i] ; L .
alki] i = w Recursion introduced stealthily by
end Dijkstra et al.
end Transpose | [Naur, SIGPLAN Notices, 13(8), 1978]

[CACM 3(5):299-314, May 1960]

1960: Dijkstra Advocates Stacking Activation Records

Numerische Mathematik 2, 312—318 (1960)

Recutsive Programming™
By
E. W. DIJKSTRA
The Aim

If every subroutine has its own private fixed working spaces, this has two
consequences. In the first place the storage allocations for all the subroutines
together will, in general, occupy much more memory space than they ever need
stmultaneously, and the available memory space is therefore used rather un-
economically. Furthermore—and this is a more serious objection—it is then
impossible to call in a subroutine while one or more previous activations of the
same subroutine have not yet come to an end, without losing the possibility of
finishing them off properly later on.

Static links for accessing non-local variables - Displays for efficiency

1961: Side-Effects Complicate Call-By-Name

begin real B, D; array A[1:10, 2:20];
procedure P(a, b, ¢, d); real a, b, c, d;
a:=b:=c+d+ a+ c;

real procedure C(dd); real dd; begin

dd := dd + 5;

C :=dd - 3
end C;
D :=5; B :=4; A[10, 7] := -20;
P(A[D, B+3], B, C(D) - 4, D)

end

4

Passing C(D) - 4 for ¢ means every reference to c adds 5 to D as a side-effect.
This changes the meaning of a, A[D, B+3] [Jensen and Naur, P. BIT 1(1):38-47, 1961]

Parameters passed as addresses of thunks: short address-generating

subroutines

[Ingerman, CACM, 4(1):55-58, 1961]

ALGOL

begin real a;
procedure Q1;
begin real b,c;

Q2: begin real e;
procedure R3;
begin real f,g;

L: g=0

end R3;
Q3: begin real 4;

M: R3,

end; '
end

end QI;
PI: begin real i, j;
P2: l.)e.sg.in real [;
N: 0I;
end

end
end

R3:

03:

02:

oI:

P2:

Pl

P:

TOP OF STACK

g

h |
ez oa |
‘ 1

)

Recursive
Stack of activation records

Static and dynamic links for accessing
non-local variables

Procedures can be passed as
arguments, but not returned

Procedures can only return simple
types (real, integer, or Boolean), a
syntactic restriction

[Randell and Russell, ALGOL-60 Implementation, 1964]

1962: CPL
The main features of CPL

By D. W. Barron, J. N. Buxton, D. F. Hartley, E. Nixon and C. Strachey

function Euler [function Fct, real Eps; integer Tim]= result of
§1 dec §1.1 real Mn, Ds, Sum
integer 7, ¢
index n=0
m = Array [real, (0, 15)] §1.1
i, t, m[0] := 0, 0, Fct[0]

Sum = m[0]/2
§1.2i:=i+1
Mn = Fet[i]

for k = step 0, 1, n do
m(k], Mn := Mn, (Mn + m[k])/2
test Mod[Mn] < Mod[m[n]] A n < 15
then do Ds, n, m[n+-1} := Mn[2, n+1, Mn
ordo Ds:= Mn
Sum = Sum + Ds
t 1= (Mod[Ds] < Eps) >t + 1,0§..2
repeat while ¢t < Tim
result := Sum §1.

[The Computer Journal, 6(2), 1963]

Cambridge and London

Very ambitious

Based on ALGOL 60

Richer types, type checking, and type inference
Nested function definitions

Call-by-name plus call-by-value and
call-by-reference

Fixed (side-effect-free) and free procedures

1962: CPL was too complicated

While attempting to write the CPL compiler in a subset of CPL,

“We found we did not need to define functions within other
functions. This allowed us to represent functions by just their entry
points without any additional environment information. This also
meant that function calls did not need to implement either Dijkstra
displays or Strachey’s free variable lists. It also allowed the compiler
to be broken into several sections each compiled separately. We only
needed called-by-value arguments, since pointers could be used for
call-by-reference arguments, and call-by-name could be implemented
by passing functions. It is worth noting that the CPL program given
in Strachey’s GPM paper only used call-by-value and never defined a
function within another.”

—NMartin Richards, Christopher Strachey and the Developent of CPL, 2016

1967: BCPL
BCPL: A tool for compiler writing and
system programming
by MARTIN RICHARDS*

University M athemaiical Laboratory
Cambridge, England

Exactly one data type: a machine word (24-36 bits)

n n+l n+2 n+4

Figure 1—The machine’s store

[Spring Joint Computer Conference, 1969]

1967: BCPL Nested Functions, But Free Variables Had To Be Static

BCPL: A tool for compiler writing and
system programming
by MARTIN RICHARDS*

University Mathemaiical Laboratory
Cambridge, England

All functions and routines in BCPL are automati-
cally recursive and so, for instance, one can call a
function while an activation of that function is already
in existence. In order to allow for recursion and yet
maintain very high execution efficiency, the restriction
has been imposed that all free variables of both funec-
tions and routines must be static. Randell and Russell”
give a good description of the kind of mechanism
normally required for recursive calls in ALGOL;
however, with this restriction, a recursive call in BCPL
can be very efficient.

let Node (x) = valof

- $(let P = Freelist
Freelist := P + 3
pto, pP!l, P!2 := x, @, 0@
resultis P §)

and Put (x, t) be

$(if t1@ = x return
T =t <X —> t +1, t +2
test rv t =0
then rv t := Node (Xx)
or Put (x, rv t) $)

Recursive functions
Function pointers
Static and dynamic (stacked) storage

Nested functions supported, but
free variables must be static

18-bit word-based

4K to 32K word
magnetic core memory

Only $72,000 in 1964
Transistor-based
500 kg, 2000 W
DEC sold 120 of them

1964: DEC PDP-7 Processor Architecture

e 18-bit Accumulator

ICII]:II][IIJ[IDQIJ[ID wm-bit Program Counter

<<<<<<<<<<<<

DooodEo e e ®

((((((

1969: B

Thompson was faced with a hardware environment cramped and
spartan even for the time: the DEC PDP-7 on which he started in 1968
was a machine with 8K 18-bit words of memory and no software
useful to him.

Thompson decided that Unix ... needed a system programming
language. After a rapidly scuttled attempt at Fortran, he created
instead a language of his own, which he called B. B can be thought
of as C without types; more accurately, it is BCPL squeezed into 8K
bytes of memory and filtered through Thompson’s brain.

—Dennis Ritchie, The Development of the C Language, SIGPLAN Notices, 28(3)
1993

/* The following program will calculate the constant e-2 to about
1 E)(SS). E; 4000 decimal digits, and print it S0 characters to the line in
- groups of 5 characters., The method is simple output conver-
sion of the expansion
1

1 =
21 + 3T t oeee = J111,..
where the bases of the digits are 2, 3, 4, ... */

main() {
extrn putchar, n, v;
auto i, ¢, col, aj;

i = col = 03
while(i<n)
vii++] = 13

while(col<2#n) {
a = n+1;
¢ =1= 0
while(i<n) {
c =+ v[i]*10;
vii++] = c%a;
c =/ a-—;

putchar(c+’0°);
i£(1(++col%5))
putchar(col%50?° “:"#n’);
putchar(‘*n*n’);
v[2000];
n 2000;
[Thompson, Users’ Reference to B, Bell Labs MM-72-1271-1, 1972]

: The DEC PDP-11

ADRS
Foiceu
DISPLAY
REGISTER

1970: DEC PDP-11 Architecture

INPUT

DEVICE

CORE

MEMORY

OPTIONS

PROCESSOR STATUS REGISTER

—

15

I PRIORITY
7

543210

LINE

PRINTER

UNI8US

ARITHMETIC

LOGICAL
UNIT

DiIsK

OTHER

DEVICES

CENTRAL PROCESSOR

EIGHT GENERAL-
PURPOSE REGISTERS

16-bit architecture
Byte and word operations

8 16-bit general-purpose
registers

Floating-point arithmetic
16-bit virtual addresses
Stack support

Many addressing modes,
including register+index

1971: C

The machines on which we first used BCPL and then B were
word-addressed The advent of the PDP-11 exposed several
inadequacies of B’s semantic model. First, its character-handling
mechanisms ... were clumsy ... even silly, on a byte-oriented machine.
Second, although the original PDP-11 did not provide for
floating-point arithmetic, the manufacturer promised that it would
soon be available. ...

Finally, the B and BCPL model implied overhead in dealing with
pointers: the language rules, by defining a pointer as an index in an
array of words, forced pointers to be represented as word indices.
Each pointer reference generated a run-time scale conversion from
the pointer to the byte address expected by the hardware.

—Dennis Ritchie, The Development of the C Language, SIGPLAN Notices, 28(3)
1993

1971: Cand PDP-11 Assembly

int gcd(m, n)

int r;
while ((r =
m = n;
n=r;

}

return n;

m% n) !=0) {

Frame Pointer: r5
Stack Pointer: r6

Program Counter: r7

.globl _gcd
. text
_gcd:
jsr r5, rsave
L2: mov 4(r5), rl
sxt r0
div 6(r5), ro

mov rl1, -10(r5)

jeq L3

mov 6(r5), 4(r5)
mov -10(r5), 6(r5)

jbr L2

L3: mov 6(r5), ro
jbr L1

L1: jmp rretrn

save SP in FP

rl =n

sign extend

r0, rl=m/ n
r=rl1 (m% n)

if r == 0 goto L3

m=n
n=r
r0 = n

return r0 (n)

1970: Pascal

Acta Informatica 1, 35-63 (1971)
© by Springer-Verlag 1971

The Programming Language Pascal
N. WIrTH*

Received October 30, 1970

Swummary. A programming language called Pascal is described which was developed
on the basis of ALcoL 60. Compared to ALGOL 60, its range of applicability is con-
siderably increased due to a variety of data structuring facilities. In view of its
intended usage both as a convenient basis to teach programming and as an efficient
tool to write large programs, emphasis was placed on keeping the number of funda-
mental concepts reasonably small, on a simple and systematic language structure,
and on efficient implementability. A one-pass compiler has been constructed for the
CDC 6000 computer family; it is expressed entirely in terms of Pascal itself.

procedure Bisect (function f: real; const low, high: real;
var, zero: real; p: Boolean);
var a, b, m: real;
begin a:=low; b:= high;
if (f(a) =2 0) v (f(b) < 0) then p := false else
begin p := true;
while abs (a —b) > eps do
begin m := (a +b)/2;
iffm)>0thenb:=melsea:=m
end;
zero:=a
end
end

Based on ALGOL 60

More types: files, records,
tagged unions, pointers, sets

Nested procedure/function
declarations

Function/procedure
arguments, but no
variables/types

1970: Pascal Nested Procedures, Static Links, and the Display

type header = record MP MP
slink, dlink: 4stack; o 0
pstatus: address a D (a]
end N~] ™ %
iy’ R
procedure P; begin...end; T » T
procedure 0; | \E s LN B I
procedure R; begin ... P...end;
begin...R...end; TN T~
begin {main pr ogram}... O ...end; State before State after
call of P start of P

[Wirth, The Design of a PASCAL Compiler, SPE, 1971]

1980: Modula-2

Niklaus Wirth

Programming in

Simplified Pascal for multiprogramming
(processes, monitors, signals)

Initially on the PDP-11

6.8. Procedure types

variables of a procedure type T may assume as their value a
procedure P. The (types of the) formal parameters of P must
correspond to those indicated in the formal type list of T. P must
not be declared local to another procedure, and neither can it be a
standard procedure.

$ ProcedureType = PROCEDURE [FormalTypeList].

$ FormalTypeList = "(* [[VAR] FormalType
$ {"," [VAR] FormalType}l] ")" [":" qualident].

Essentially the rules for C

1983: Turbo Pascal for the IBM PC/Intel 8086

TURBO VS. STANDARD PASCAL F

F. TURBO VS.STANDARD PASCAL

The TURBO Pascal language closely follows the Standard Pascal defined by
Jensen & Wirth in their User Manual and Report, with only minor differen-
cies introduced for the sheer purpose of efficieny. These differencies are desc-
ribed in the following. Notice that the extensions offered by TURBO Pascal
are not discussed.

F.7 Procedural Parameters

Ronu:mo

Procedures and functions cannot be passed as parameters.

1989: Turbo Pascal 5.0 Added Procedural Types

:
i BORLAND

Procedural Types

As an extension to Standard Pascal, Turbo Pascal allows procedures and
functions to be treated as objects that can be assigned to variables and
passed as parameters; procedural types make this possible.

type
GotoProc = procedure(X,Y: integer);
ProcList = array[l1..10] of GotoProc;
WindowPtr = *WindowRec;
WindowRec = record
Next: WindowPtr;
Header: string(31];
Top,Left,Bottom,Right: integer;
SetCursor: GotoProc;
end;
var
P: ProcList;
W: WindowPtr;

In addition to being of a compatible type, a procedure or function must
satisfy the following requirements if it is to be assigned to a procedural
variable:
u It must be compiled in the {$F+) state.
= It cannot be

o a standard procedure or function.

« a nested procedure or function.

e an inline procedure or function.

o an interrupt procedure or function.

C.00° (SR
A Gon g Oe&m\::) ?\e&e(ii‘oﬂvo\m
Language Year PO et est™T et gun©
FORTRAN | 1957
FORTRAN II 1958 Vv
ALGOL 60 1960 v v v v t
CPL 1962 v v v v
BCPL 1967 v v v v
B 1969 v v v
C 1971 vV v v
Pascal 1970 v v v v +
Modula-2 1980 v v v v f
Turbo Pascal 1983 v v v v
Turbo Pascal 5.0 1989 v v v v i

t Function arguments only
 Pointers to top-level functions only

