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Popular Science, November 1969Popular Science, November 1969



Where Is My Jetpack?Where Is My Jetpack?

Popular Science, November 1969Popular Science, November 1969





Where The HeckWhere The Heck
Is MyIs My

10 GHz Processor?10 GHz Processor?



Moore’s Law

“The complexity for
minimum component
costs has increased at a
rate of roughly a factor
of two per year.”

Closer to every 24
months

Gordon Moore, Cramming More Components onto Integrated Circuits,

Electronics, 38(8) April 19, 1965.



Four Decades of Microprocessors Later...

Source: https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/

https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/


What Happened in 2005?

Pentium 4 Core 2 Duo Xeon E5
2000 2006 2012

1 core 2 cores 8 cores
Transistors: 42 M 291 M 2.3 G



The Cray-2: Immersed in FluorinertThe Cray-2: Immersed in Fluorinert

1985 ECL 150 kW1985 ECL 150 kW



Heat Flux in IBM Mainframes: A Familiar Trend

Schmidt. Liquid Cooling is Back. Electronics Cooling. August 2005.



Liquid Cooled Apple Power Mac G5Liquid Cooled Apple Power Mac G5

2004 CMOS 1.2 kW2004 CMOS 1.2 kW



Dally: Calculation Cheap; Communication Costly
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“Chips are power
limited and most power
is spent moving data

Performance =
Parallelism

Efficiency = Locality

Bill Dally’s 2009 DAC Keynote, The End of Denial Architecture



Parallelism for Performance; Locality for Efficiency

Dally: “Single-thread processors are
in denial about these two facts”

We need
different programming paradigms
and
different architectures
on which to run them.



Dark SiliconDark Silicon



Related Work



Xilinx’s Vivado (Was xPilot, AutoESL)
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SystemSystem--level Synthesis Data Modellevel Synthesis Data Model
  SSDMSSDM (System(System--level Synthesis Data Model)level Synthesis Data Model)
!! Hierarchical Hierarchical netlistnetlist of concurrent processes and communication of concurrent processes and communication 

channelschannels

!! Each leaf process contains a sequential program which is represeEach leaf process contains a sequential program which is representednted
by an extended LLVM IR with hardwareby an extended LLVM IR with hardware--specific semanticsspecific semantics
•• Port / IO interfaces, bitPort / IO interfaces, bit--vector manipulations, cyclevector manipulations, cycle--level notationslevel notations

HardwareHardware--Specific SSDM SemanticsSpecific SSDM Semantics
Process port/interface semanticsProcess port/interface semantics

FIFO:FIFO: FifoReadFifoRead() / () / FifoWriteFifoWrite()()
Buffer: Buffer: BuffReadBuffRead() / () / BuffWriteBuffWrite()()
Memory:Memory: MemReadMemRead() / () / MemWriteMemWrite()()

BitBit--vector manipulationvector manipulation
Bit extraction / concatenation / insertionBit extraction / concatenation / insertion
BitBit--width attributes for every operation and every valuewidth attributes for every operation and every value

CycleCycle--level notationlevel notation
Clock: Clock: waitClockEventwaitClockEvent()()

SystemC input; classical high-level synthesis for processes
Jason Cong et al. ISARS 2005



Taylor and Swanson’s Conservation Cores
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Custom datapaths, controllers for loop kernels; uses existing
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Swanson, Taylor, et al. Conservation Cores. ASPLOS 2010.



Bacon et al.’s Liquid Metal

Fig. 2. Block level diagram of DES and Lime code snippet

JITting Lime (Java-like, side-effect-free, streaming) to FPGAs
Huang, Hormati, Bacon, and Rabbah, Liquid Metal, ECOOP 2008.



Goldstein et al.’s Phoenix

int squares()
{

int i = 0,
sum = 0;

for (;i<10;i++)
sum += i*i;

return sum;
}
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Figure 3: C program and its representation comprising three hy-

perblocks; each hyperblock is shown as a numbered rectangle. The

dotted lines represent predicate values. (This figure omits the token

edges used for memory synchronization.)

Figure 8: Memory access network and implementation of the value

and token forwarding network. The LOAD produces a data value

consumed by the oval node. The STORE node may depend on the

load (i.e., we have a token edge between the LOAD and the STORE,

shown as a dashed line). The token travels to the root of the tree,

which is a load-store queue (LSQ).

C to asynchronous logic, monolithic memory
Budiu, Venkataramani, Chelcea and Goldstein, Spatial Computation, ASPLOS 2004.



Ghica et al.’s Geometry of Synthesis
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Figure 1. In-place map schematic and implementation

226

Algol-like imperative language to handshake circuits
Ghica, Smith, and Singh. Geometry of Synthesis IV, ICFP 2011



Greaves and Singh’s Kiwi

In this section we demonstrate how a circuit that performs

communication over an I2C bus can be expressed using

the Kiwi library. The motivation for tackling such an ex-

ample arises from the fact that the typical coding style for

such circuits involves hand coding state machines using

nested case statements in VHDL (or equivalent features

in Verilog). In particular, the sequencing of operations

public static void SendDeviceID()
{ int deviceID = 0x76;

for (int i = 7; i > 0; i−−)
{ scl = false;

sda out = (deviceID & 64) != 0;
Kiwi.Pause(); // Set it i−th bit of the device ID
scl = true; Kiwi.Pause(); // Pulse SCL
scl = false; deviceID = deviceID << 1;
Kiwi.Pause();

}
}

C# with a concurrency library to FPGAs
Greaves and Singh. Kiwi, FCCM 2008



Arvind, Hoe, et al.’s Bluespec

GCD Mod Rule

Gcd(a, b) if (a b)!(b " 0)# Gcd(a$b, b)
GCD Flip Rule

Gcd(a, b) if a b# Gcd(b, a)

#
# # #  

δ
Flip,a

δ
Flip,b

Mod,a
δFlip,a

δ

Flip
π
Mod

π

Flip

π
Mod

π

Flip
π

Flip,b
δ

Mod
π

Flip
π

=0
ce

ce

b

a

+

δ
Mod,a

Figure 1.3 Circuit for computing Gcd(a, b) from Example 1.
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Guarded commands and functions to synchronous logic
Hoe and Arvind, Term Rewriting, VLSI 1999



Sheeran et al.’s Lava

where the constant WN is de,ned as e j "#N -

Each signal in the transformed sequence X5k6 depends on
every input signal x5n6: the DFT operation is therefore ex?
pensive to implement directly-

The Fast Fourier Transforms 5FFTs6 are e@cient algorithms
for computing the DFT that exploit symmetries in the twid$
dle factors W k
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We will later use the fact that W #
$ equals "j-

These lawsE together with a restriction of sequence length
5for example to powers of two6E simplify the computations-
An FFT implementation has fewer gates than the original
direct DFT implementationE which reduces circuit area and
power consumption- FFTs are key building blocks in most
signal processing applications-

We discuss the description of circuits for two diIerent FFT
algorithmsA the Radix?K FFT and the Radix?K FFT LHeNOP-

 !" Two FFT circuits

The decimation in time Radix?K FFT is a standard al?
gorithmE which operates on input sequences of which the
length is a power of two LPMNKP- This restriction makes it
possible to divide the input into smaller sequences by re?
peated halving until sequences of length two are reached-
A DFT of length two can be computed by a simple butter$
1y circuit- ThenE at each stageE the smaller sequences are
combined to form bigger transformed sequences until the
complete DFT has been produced-

The Radix?K FFT algorithm can be mapped onto a com?
binational network as in ,gure SE which shows a size CU
implementation- In this diagramE digits and twiddle factors
on a wire indicate constant multiplication and the merging
of two arrows means addition- The bounding boxes contain
two FFTs of size W-

A less well?known algorithm for computation of the DFT is
the decimation in frequency Radix?K FFTE which assumes
that the input length N is a power of four-

The corresponding circuit implementation 5in ,gure W6 is
also very regular and might be mistaken for a reversed
Radix?K circuit at a passing glance- HoweverE it diIers sub?
stantially in that two diIerent butterXy networks are used in
each stageE the twiddle factor multiplications are modi,edE
and "j multiplication stages have been inserted-

 ! Components

We need three main components to implement FFT circuits-
The ,rst is a butter1y circuitE which takes two inputs x# and
x to two outputs x# Y x and x# " x 5see ,gure N6- It is
the heart of FFT implementations since it computes the K?
point DFT- Systems of such components will be applied to
the in?signals in many stages 5,gures S and W6-

The FFT butterXy stages are constructed by ri[ing together
two halves of a sequence of length kE processing them by a

Figure NA A butterXy

Figure C\A A butterXy stage of size W expressed with ri[ing

column of k)K butterXy circuitsE and unri[ing the result
5see ,gure C\6- Here riffle is the shu[e of a card sharp
who perfectly interleaves the cards of two half decks-

bfly '' CmplxArithmetic m
01 2CmplxSig5 61 m 2CmplxSig5

bfly 2i78 i95 0
do o7 <6 csubtract @i78 i9A

o9 <6 cplus @i78 i9A
return 2o78 o95

bflys '' CmplxArithmetic m
01 Int 61 2CmplxSig5 61 m 2CmplxSig5

bflys n 0
riffle 161 raised n two bfly 161 unriffle

Another important component of an FFT algorithm is mul?
tiplication by a complex constantE which can be imple?
mented using a primitive component called a twiddle factor
multiplier- This circuit maps a single complex input x to
x  W k

N for some N and k- The circuit w n k computes
W k
N -

wMult '' CmplxArithmetic m
01 Int 61 Int 61 CmplxSig 61 m CmplxSig

wMult n k a 0
do twd <6 w @n8 kA

ctimes @twd8 aA

The multiplication of complete buses with "j is de,ned as
followsE using the fact that W #

$ equals "j-

minusJ '' CmplxArithmetic m
01 2CmplxSig5 61 m 2CmplxSig5

minusJ 0 mapM @wMult H 7A

Another useful component is the bit reversal permutationE
used in the ,rst or last stage of the FFT circuits- A new
wire position is the reversed binary representation of the old
position LPMNKP- The permutation can be expressed using
riffleA

bitRev '' Monad m 01 Int 61 2a5 61 m 2a5
bitRev n 0
compose 2 raised @n6iA two riffle

K i <6 27LLn5
5
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Functional specifications of regular structures
Bjesse, Claessen, Sheeran, and Singh. Lava, ICFP 1998



Kuper et al.’s CλaSH

fir (State (xs, hs)) x =
(State (shiftInto x xs , hs), (x ⊲ xs) • hs)

Fig. 6. 4-taps FIR Filter

More operational Haskell specifications of regular structures
Baaij, Kooijman, Kuper, Boeijink, and Gerards. Cλash, DSD 2010



My Crusade



Deterministic Concurrency: A Fool’s Errand?

What Models of Computation Provide Determinstic Concurrency?

Synchrony The Columbia Esterel Compiler
2001–2006

Kahn Networks The SHIM Model/Language
2006–2010

The Lambda Calculus This Project
2010–



Our Project: Functional Programs to Hardware
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Our Project: Functional Programs to Hardware



Why Functional?

Ï Referential transparency simplifies
formal reasoning about programs

Ï Inherently concurrent and
deterministic
(Thank Church and Rosser)

Ï Immutable data makes it vastly
easier to reason about memory in
the presence of concurrency



To Implement Real Algorithms, We Need

Structured, recursive data types

Recursion to handle recursive data types

Memories

Memory Hierarchy



Structured, Recursive Data
Types



Algebraic Data Types

In modern functional languages: ML, OCaml, Haskell, . . .

An algebraic type is a sum of product types

Basic example: List of integers

data IntList = Nil
| Cons Int IntList

Constructing a list:

Cons 42 (Cons 17 (Cons 2 (Cons 1 Nil)))

Summing the elements of a list:

sum li = case li of
Nil → 0
Cons x xs → x + sum xs



An Interpreter in One Slide

Abstract syntax tree data type:

data Expr = Lit Int
| Plus Expr Expr
| Minus Expr Expr
| Times Expr Expr

Recursive evaluation function:

eval e = case e of
Lit x → x
Plus e1 e2 → eval e1 + eval e2
Minus e1 e2 → eval e1 − eval e2
Times e1 e2 → eval e1 * eval e2

eval (Plus ( Lit 42) (Times (Lit 2) ( Lit 50)))

gives 42+2×50 = 142



Algebraic Datatypes in Hardware: Lists

data IntList = Cons Int IntList
| Nil

01323348

1 Consintpointer

0 Nil



Recursion to Handle
Recursive Data Types



What Do We Do With Recursion?

Compile it into tail recursion with explicit stacks

[Zhai et al., CODES+ISSS 2015]

[Proceedings of the ACM Annual Conference, 1972]

Really clever idea:

Sophisticated language ideas such as recursion and
higher-order functions can be implemented using simpler
mechanisms (e.g., tail recursion) by rewriting.



Removing Recursion: The Fib Example

fib n = case n of
1 → 1
2 → 1
n → fib (n−1) + fib (n−2)



Transform to Continuation-Passing Style

fibk n k = case n of
1 → k 1
2 → k 1
n → fibk (n−1) (λn1 →

fibk (n−2) (λn2 →
k (n1 + n2)))

fib n = fibk n (λx → x)



Name Lambda Expressions (Lambda Lifting)

fibk n k = case n of
1 → k 1
2 → k 1
n → fibk (n−1) (k1 n k)

k1 n k n1 = fibk (n−2) (k2 n1 k)
k2 n1 k n2 = k (n1 + n2)
k0 x = x
fib n = fibk n k0



Represent Continuations with a Type

data Cont = K0 | K1 Int Cont | K2 Int Cont

fibk n k = case (n,k) of
(1, k) → kk k 1
(2, k) → kk k 1
(n, k) → fibk (n−1) (K1 n k)

kk k a = case (k, a) of
((K1 n k), n1) → fibk (n−2) (K2 n1 k)
((K2 n1 k), n2) → kk k (n1 + n2)
(K0, x ) → x

fib n = fibk n K0



Merge Functions

data Cont = K0 | K1 Int Cont | K2 Int Cont
data Call = Fibk Int Cont | KK Cont Int

fibk z = case z of
(Fibk 1 k) → fibk (KK k 1)
(Fibk 2 k) → fibk (KK k 1)
(Fibk n k) → fibk (Fibk (n−1) (K1 n k))

(KK (K1 n k) n1) → fibk (Fibk (n−2) (K2 n1 k))
(KK (K2 n1 k) n2) → fibk (KK k (n1 + n2))
(KK K0 x ) → x

fib n = fibk (Fibk n K0)



Add Explicit Memory Operations

read :: CRef → Cont
write :: Cont →CRef
data Cont = K0 | K1 Int CRef | K2 Int CRef
data Call = Fibk Int CRef | KK Cont Int

fibk z = case z of
(Fibk 1 k) → fibk (KK (read k) 1)
(Fibk 2 k) → fibk (KK (read k) 1)
(Fibk n k) → fibk (Fibk (n−1) (write (K1 n k)))

(KK (K1 n k) n1) → fibk (Fibk (n−2) (write (K2 n1 k)))
(KK (K2 n1 k) n2) → fibk (KK (read k) (n1 + n2))
(KK K0 x ) → x

fib n = fibk (Fibk n (write K0))1



Simplified Functional to
Dataflow



Functional to Dataflow

Sum a list using an accumulator and tail-recursion

sum lp s =
case read lp of

Nil → s
Cons x xs → sum xs (s + x)

read

Nil Cons Nil Cons

+

lp s

x xs
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Non-strict functions enables pipelining
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Dataflow to Hardware



A Latency-Insensitive Protocol
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valid ready action

0 − No token
1 1 Token Transfer
1 0 Token held upstream

clk
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Inspired by Carloni et al.
[Cao et al., Memocode 2015]



Input and Output Buffers

Input Buf. Core Output Buf.Input Output

0
1 0

1

0
1

⊥

data

ready

1
0

ready

datadata

ready

Combinational paths broken:

Input buffer breaks ready path

Output buffer breaks data/valid path



Larger Systems Run Just As Fast

Splitters Token Fmax Area Resources

Bits MHz ALMs % Registers

2 32 167 189 1 414
2 64 157 350 1 798

2 128 152 672 2 1573
32 128 137 10821 26 25536
64 128 140 21704 52 51168

4 64 158 700 2 1621
8 64 145 1409 3 3261

16 64 147 2826 7 6559
32 64 144 5682 14 13148
64 64 138 11404 27 26414

128 64 140 22914 55 53087
Synthesis results on an Altera Cyclone V. 166 MHz target clock rate.



Ï Moore’s Law is alive and well

Ï But we hit a power wall in 2005.
Massive parallelism now
mandatory

Ï Communication is the culprit
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Ï Dark Silicon is the future: faster
transistors; most must remain off

Ï Custom accelerators are the
future; many approaches

Ï Our project: A Pure Functional
Language to FPGAs
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runs at 1.4 GHz 
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Code to Stylized Verilog and 
through a CAD flow. 



Ï Algebraic Data Types in Hardware

Ï Removing recursion

Ï Functional to dataflow

Ï Dataflow to hardware

Encoding the Types

Huffman tree nodes: (19 bits)

1 Leaf8-bit char

9-bit pointer9-bit pointer 0 Branch

Boolean input stream: (14 bits)

1 ConsB12-bit pointer

0 Nil

Character output stream: (19 bits)

1 Cons8-bit char10-bit pointer

0 Nil

Add Explicit Memory Operations

read :: CRef → Cont
write :: Cont →CRef
data Cont = K0 | K1 Int CRef | K2 Int CRef
data Call = Fibk Int CRef | KK Cont Int

fibk z = case z of
(Fibk 1 k) → fibk (KK (read k) 1)
(Fibk 2 k) → fibk (KK (read k) 1)
(Fibk n k) → fibk (Fibk (n−1) (write (K1 n k)))

(KK (K1 n k) n1) → fibk (Fibk (n−2) (write (K2 n1 k)))
(KK (K2 n1 k) n2) → fibk (KK (read k) (n1 + n2))
(KK K0 x ) → x

fib n = fibk (Fibk n (write K0))1

Functional to Dataflow

Sum a list using an accumulator and tail-recursion

sum lp s =
case read lp of

Nil → s
Cons x xs → sum xs (s + x)

read

Nil Cons Nil Cons

+

lp s

x xs

Input and Output Buffers

Input Buf. Core Output Buf.Input Output

0
1 0

1

0
1

⊥

data

ready

1
0

ready

datadata

ready

Combinational paths broken:

Input buffer breaks ready path

Output buffer breaks data/valid path
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