Understand Video Games; Understand Everything

Stephen A. Edwards

Columbia University

The Subject of this Lecture

0

The Subjects of this Lecture

1But let your communication be, Yea, yea; Nay, nay: for whatsoever is more than these cometh of evil.

- Matthew 5:37

Engineering Works Because of Abstraction

There are only 10 types of people in the world: Those who understand binary and those who don't.

Boolean Logic

AN INVESTIGATION

or
THE LAWS OF THOUGHT, ON WHICH ARE FOUNDED

THE MATHEMATICAL THEORIES OF LOGIC
AND PROBABILITIES.

BY
GEORGE BOOLE, LL.D.
phormmon of mathenatice in questis collman, conk

LONDON:
WALTON AND MABERLY,
UPPEE GOWER-STREET, ANDIVT-LANE, PATERNOSTER-ROW,
CAMBRIDGE: MACMILLAN AND CO.
1854.

George Boole 1815-1864

Boole's Intuition Behind Boolean Logic

Variables X, Y, \ldots represent classes of things
No imprecision: A thing either is or is not in a class

If X is "sheep" and Y is "white things," $X Y$ are all white sheep,

$$
X Y=Y X
$$

and

$$
x x=x
$$

and

$$
x+X=X
$$

If X is "men"
and Y is
"women," $X+Y$
is "both men and women,"

$$
X+Y=Y+X
$$

If X is "men," Y is "women," and
Z is "European,"
$Z(X+Y)$ is
"European men and women" and
$Z(X+Y)=Z X+Z Y$.

Simplifying a Boolean Expression

"You are a New Yorker if you were born in New York or were not born in New York and lived here ten years."
$X=$ born in New York
$Y=$ lived here ten years
$X+(\bar{X} \cdot Y)$

Axioms
$X+Y=Y+X$
$X \cdot Y=Y \cdot X$
$X+(Y+Z)=(X+Y)+Z$
$X \cdot(Y \cdot Z)=(X \cdot Y) \cdot Z$
$X+(X \cdot Y)=X$
$X \cdot(X+Y)=X$
$X \cdot(Y+Z)=(X \cdot Y)+(X \cdot Z)$
$X+(Y \cdot Z)=(X+Y) \cdot(X+Z)$
$X+\bar{X}=1$
$X \cdot \bar{X}=0$

Lemma:

$$
\begin{aligned}
X \cdot 1 & =X \cdot(X+\bar{X}) \\
& =X \cdot(X+Y) \text { if } Y=\bar{X} \\
& =X
\end{aligned}
$$

Simplifying a Boolean Expression

"You are a New Yorker if you were born in New York or were not born in New York and lived here ten years."
$X=$ born in New York
$Y=$ lived here ten years

$$
\begin{aligned}
X & +(\bar{X} \cdot Y) \\
& =(X+\bar{X}) \cdot(X+Y)
\end{aligned}
$$

Axioms
$X+Y=Y+X$
$X \cdot Y=Y \cdot X$
$X+(Y+Z)=(X+Y)+Z$
$X \cdot(Y \cdot Z)=(X \cdot Y) \cdot Z$
$X+(X \cdot Y)=X$
$X \cdot(X+Y)=X$
$X \cdot(Y+Z)=(X \cdot Y)+(X \cdot Z)$
$X+(Y \cdot Z)=(X+Y) \cdot(X+Z)$
$X+\bar{X}=1$
$X \cdot \bar{X}=0$

Lemma:

$$
\begin{aligned}
X \cdot 1 & =X \cdot(X+\bar{X}) \\
& =X \cdot(X+Y) \text { if } Y=\bar{X} \\
& =X
\end{aligned}
$$

Simplifying a Boolean Expression

"You are a New Yorker if you were born in New York or were not born in New York and lived here ten years."
$X=$ born in New York
$Y=$ lived here ten years

$$
\begin{aligned}
X & +(\bar{X} \cdot Y) \\
& =(X+\bar{X}) \cdot(X+Y) \\
& =1 \cdot(X+Y)
\end{aligned}
$$

Axioms
$X+Y=Y+X$
$X \cdot Y=Y \cdot X$
$X+(Y+Z)=(X+Y)+Z$
$X \cdot(Y \cdot Z)=(X \cdot Y) \cdot Z$
$X+(X \cdot Y)=X$
$X \cdot(X+Y)=X$
$X \cdot(Y+Z)=(X \cdot Y)+(X \cdot Z)$
$X+(Y \cdot Z)=(X+Y) \cdot(X+Z)$
$X+\bar{X}=1$
$X \cdot \bar{X}=0$

Lemma:

$$
\begin{aligned}
X \cdot 1 & =X \cdot(X+\bar{X}) \\
& =X \cdot(X+Y) \text { if } Y=\bar{X} \\
& =X
\end{aligned}
$$

Simplifying a Boolean Expression

"You are a New Yorker if you were born in New York or were not born in New York and lived here ten years."
$X=$ born in New York
$Y=$ lived here ten years

$$
\begin{aligned}
X & +(\bar{X} \cdot Y) \\
& =(X+\bar{X}) \cdot(X+Y) \\
& =1 \cdot(X+Y) \\
& =X+Y
\end{aligned}
$$

Axioms
$X+Y=Y+X$
$X \cdot Y=Y \cdot X$
$X+(Y+Z)=(X+Y)+Z$
$X \cdot(Y \cdot Z)=(X \cdot Y) \cdot Z$
$X+(X \cdot Y)=X$
$X \cdot(X+Y)=X$
$X \cdot(Y+Z)=(X \cdot Y)+(X \cdot Z)$
$X+(Y \cdot Z)=(X+Y) \cdot(X+Z)$
$X+\bar{X}=1$
$X \cdot \bar{X}=0$

Lemma:

$$
\begin{aligned}
X \cdot 1 & =X \cdot(X+\bar{X}) \\
& =X \cdot(X+Y) \text { if } Y=\bar{X} \\
& =X
\end{aligned}
$$

Alternate Notations for Boolean Logic

Operator Math Engineer Schematic

Copy $x \quad x \quad x-$ or $x-1$

Complement
$\neg X$
\bar{X}
$x-D o-\bar{x}$

AND
$x \wedge y \quad X Y$ or $X \cdot Y$

OR

$$
x \vee y \quad X+Y
$$

Expressions to Schematics

$$
F=\bar{X} Y+X \bar{Y}
$$

Expressions to Schematics

$$
F=\bar{X} Y+X \bar{Y}
$$

Expressions to Schematics

$$
F=\bar{X} Y+X \bar{Y}
$$

Expressions to Schematics

$$
F=\bar{X} Y+X \bar{Y}
$$

Expressions to Schematics

$$
F=\bar{X} Y+X \bar{Y}
$$

Expressions to Schematics

$$
F=\bar{X} Y+X \bar{Y}=(X+Y)(\bar{X}+\bar{Y})
$$

The Decimal Positional Numbering System

Ten figures: 0123456789
$7 \times 10^{2}+3 \times 10^{1}+0 \times 10^{0}=730_{10}$
$9 \times 10^{2}+9 \times 10^{1}+0 \times 10^{0}=990_{10}$

Why base ten?

Binary

	0	0
	1	1
	2	10
$\stackrel{\infty}{\circ}$	3	11
-	4	100
ن	5	101
-	6	110
¢	7	111
$\stackrel{0}{0}$	8	1000
-	9	1001
山	10	1010

$$
\begin{aligned}
\mathrm{PC}= & 0 \times 2^{11}+1 \times 2^{10}+0 \times 2^{9}+1 \times 2^{8}+1 \times 2^{7}+0 \times 2^{6}+ \\
& 1 \times 2^{5}+1 \times 2^{4}+1 \times 2^{3}+1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0} \\
= & 1469_{10}
\end{aligned}
$$

Binary Addition Algorithm

10011
+11001

$$
1+1=10
$$

$$
\begin{array}{r|rr}
+ & 0 & 1 \\
\hline 0 & 00 & 01 \\
1 & 01 & 10 \\
10 & 10 & 11
\end{array}
$$

Binary Addition Algorithm

$$
\begin{aligned}
& 1 \\
& 10011 \\
& +11001 \\
& 1+1=10 \\
& 1+1+0=10 \\
& \begin{array}{r|rr}
+ & 0 & 1 \\
\hline 0 & 00 & 01 \\
1 & 01 & 10 \\
10 & 10 & 11
\end{array}
\end{aligned}
$$

Binary Addition Algorithm

$$
\left.\begin{array}{rr}
11 \\
10011 \\
+11001 \\
00 & \\
\hline 1+1=10 & + \\
1+0 & \\
1+0 & 1
\end{array}\right)
$$

Binary Addition Algorithm

$$
\begin{aligned}
& 011 \\
& 10011 \\
& +11001 \\
& 100 \\
& \begin{array}{r}
1+1=10 \\
1+1+0=10 \\
1+0+0=01 \\
0+0+1=01
\end{array} \\
& \begin{array}{r|rr}
+ & 0 & 1 \\
\hline 0 & 00 & 01 \\
1 & 01 & 10 \\
10 & 10 & 11
\end{array}
\end{aligned}
$$

Binary Addition Algorithm

$$
\left.\begin{array}{rl}
0011 \\
10011 \\
+11001
\end{array}\right)
$$

Binary Addition Algorithm

$$
\left.\begin{array}{rl}
10011 \\
10011 \\
+11001
\end{array}\right)
$$

Arithmetic Circuits

Arithmetic: Addition

Adding two one-bit numbers:

A and B

Produces a two-bit result:
C S
(carry and sum)

A	B	C	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Full Adder

 In general, you need to add three bits:| $\begin{aligned} & 111000 \\ & 111010 \end{aligned}$ | $C_{i} A B$ | $C_{0} \mathrm{~S}$ |
| :---: | :---: | :---: |
| | 000 | 00 |
| + 11100 | 001 | 01 |
| 1010110 | 010 | 01 |
| | 011 | 10 |
| | 100 | 01 |
| $0+0=00$ | 101 | 10 |
| $\begin{array}{lll} 0+1+0=01 & 111 & 11 \\ 0+0+1=01 \end{array}$ | | |
| | | |
| $0+1+1=10$ | | |
| $1+1+1=11$ | | |
| $1+1+0=10$ | | |

A Four-Bit Ripple-Carry Adder

PONG

PONG, Atari 1973
Built from TTL logic gates; no computer, no software
Launched the video arcade game revolution

Horizontal Ball Control in PONG

M	L	R	A	B
0	0	0	X	X
0	0	1	0	1
0	1	0	0	1
0	1	1	X	X
1	0	0	X	X
1	0	1	1	0
1	1	0	1	1
1	1	1	X	X

The ball moves either left or right.
Part of the control circuit has three inputs: M ("move"), L ("left"), and R ("right").

It produces two outputs A and B.
Here, "X" means "I don't care what the output is; I never expect this input combination to occur."

Horizontal Ball Control in PONG

M	L	R	A	B	Assume all the X's are 0's:
0	0	0	0	0	$A=M \bar{L} R+M L \bar{R}$
0	0	1	0	1	
0	1	0	0	1	$B=\bar{M} \bar{L} R+\bar{M} L \bar{R}+M L \bar{R}$
0	1	1	0	0	$3 \mathrm{inv}+4$ AND $3+1$ OR2 + 1 OR3
1	0	0	0	0	
1	0	1	1	0	
1	1	0	1	1	
1	1	1	0	0	

Horizontal Ball Control in PONG

Horizontal Ball Control in PONG

| M | L | R | A | B | |
| :--- | :--- | :--- | :--- | :--- | :--- | Being even more clever:

The Actual Pong Circuit

Karnaugh Maps

Basic trick: put "similar" variable values near each other so simple functions are obvious

M	L	R	A	B
0	0	0	X	X
0	0	1	0	1
0	1	0	0	1
0	1	1	X	X
1	0	0	X	X
1	0	1	1	0
1	1	0	1	1
1	1	1	X	X

The M's are already arranged nicely

Karnaugh Maps

Basic trick: put "similar" variable values near each other so simple functions are obvious

M	L	R	A	B	Let's rearrange the	
0	0	0	X	X		
0	0	1	0	1	L's by permuting twopairs of rows	
0	1	0	0	1		
0	1	1	X	X		
1	0	0	X	X		
1	0	1	1	0		
			11	0	1	1
			11	1	X	X

Karnaugh Maps

Basic trick: put "similar" variable values near each other so simple functions are obvious

M	L	R	A	B				
0	0	0	X	X		Let's rearrange the		
0	0	1	0	1		L's by permuting two		
0	1	0	0	1		pairs of rows		
0	1	1	X	X				
1	0	0	X	X				
1	0	1	1	0				
					1	1	0	1
		1	1	X	X			

Karnaugh Maps

Basic trick: put "similar" variable values near each other so simple functions are obvious

Karnaugh Maps

Basic trick: put "similar" variable values near each other so simple functions are obvious

M	L	R	A	B	Let's rearrange the		
0	0	0	X	X			
0	0	1	0	1	L's by		ing two
0	1	0	0	1	pairs of rows		
0	1	1	X	X			
1	0	0	X	$\times 1$	10	1	1
1	0	1	1	0^{1}	11	X	X

Karnaugh Maps

Basic trick: put "similar" variable values near each other so simple functions are obvious

M	L	R	A	B	Let's rearrange the		
0	0	0	X	X			
0	0	1	0	1	L's by permuting two		
0	1	0	0	1	pairs of rows		
0	1	1	X	X			
				1	10	1	1
				1	11	X	X
1	0	0	X	X			
1	0	1	1	0			

Karnaugh Maps

Basic trick: put "similar" variable values near each other so simple functions are obvious

M	L	R	A	B	Let's rearrange the
0	0	0	X	X	
0	0	1	0	1	L's by permuting two
0	1	0	0	1	
0	1	1	X	X	
			1	1	11
			1	1	X X
1	0	0	X	X	
1	0	1	1	0	

Karnaugh Maps

Basic trick: put "similar" variable values near each other so simple functions are obvious

Karnaugh Maps

Basic trick: put "similar" variable values near each other so simple functions are obvious

M	L	R	A	B	
0	0	0	X	X	Let's rearrange the
0	0	1	0	1	
0	1	0	0	1	L's by permuting two
0	1	1	X	X	
1	1	0	1	1	
1	1	1	X	X	
1	0	0	X	X	
1	0	1	1	0	

Karnaugh Maps

Basic trick: put "similar" variable values near each other so simple functions are obvious

M	L	R	A	B	The R's are really crazy; let's use the second dimension
0	0	0	X	X	
0	0	1	0	1	
0	1	0	0	1	
0	1	1	X	X	
1	1	0	1	1	
1	1	1	X	X	
1	0	0	X	X	
1	0	1	1	0	

Karnaugh Maps

Basic trick: put "similar" variable values near each other so simple functions are obvious

Karnaugh Maps

Basic trick: put "similar" variable values near each other so simple functions are obvious

M	L	R	A	B
000001	$X 0$	$X 1$		The R's are really crazy; let's use the
001101	$0 X$	1 X	second dimension	
111101	1 X	1 X		
110001	X 1	$\mathrm{X0}$		

Karnaugh Maps

Basic trick: put "similar" variable values near each other so simple functions are obvious

M	L	R	A	B
00	00	01	X 0	X 1

Maurice Karnaugh’s Maps

The Map Method for Synthesis of
 Combinational Logic Circuits

M. KARNAUGH
nonmember alee

THE SEARCH for simple abstract techniques to be applied to the design of switching systems is still, despite some recent advances, in its early stages. The problem in this area which has been attacked most energetically is that of the synthesis of efficient combinational that is, nonsequential, logic circuits.
be convenient to describe other methods in terms of Boolean algebra. Whencver the term "algebra" is used in this paper, it will refer to Boolean algebra, where addition corresponds to the logical connective "or," while multiplication corresponds to "and."
The minimizing chart, ${ }^{2}$ developed at

(A)

(B)

Fig. 2. Graphical representations of the input conditions for three and for four
variables

The Seven-Segment Decoder Example

Karnaugh Map for Seg. a
$1 \overbrace{011}^{Z}$
Sum-of-Products Challenge

W	X	Y	Z	a
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	X
1	0	1	1	X
1	1	0	0	X
1	1	0	1	X
1	1	1	0	X
1	1	1	1	0

The Karnaugh Map

Cover all the 1 's and none of the 0's using as few literals (gate inputs) as possible.

Few, large rectangles are good.
Covering X 's is optional.

Karnaugh Map for Seg. a

The minterm solution: cover each 1 with a single implicant.

$$
\begin{aligned}
a= & \bar{W} \bar{X} \bar{Y} \bar{Z}+\bar{W} \bar{X} Y Z+\bar{W} \bar{X} Y \bar{Z}+ \\
& \bar{W} X \bar{Y} Z+\bar{W} X Y Z+\bar{W} X Y \bar{Z}+ \\
& W \bar{X} \bar{Y} \bar{Z}+W \bar{X} \bar{Y} Z
\end{aligned}
$$

$8 \times 4=32$ literals
4 inv +8 AND4 + 1 OR8

Karnaugh Map for Seg. a

$$
\left.\begin{array}{c}
x\left\{\begin{array}{c}
\left\{\begin{array}{llll}
(1) & \overbrace{0} & 1 & 1 \\
0 & 1 & 1 & 1 \\
X & X & 0 & X \\
1 & 1
\end{array}\right) \\
\underbrace{}_{Y} \\
Z
\end{array}\right\}
\end{array}\right\}
$$

Merging implicants helps

W	X	Y	Z	a
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	X
1	0	1	1	X
1	1	0	0	X
1	1	0	1	X
1	1	1	0	X
1	1	1	1	0

Recall the distributive law:
$A B+A C=A(B+C)$

$$
\begin{aligned}
a= & \bar{W} \bar{X} \bar{Y} \bar{Z}+\bar{W} Y+ \\
& \bar{W} X Z+W \bar{X} \bar{Y}
\end{aligned}
$$

$4+2+3+3=12$ literals
4 inv + 1 AND4 + 2 AND3 + 1 AND2
+1 OR4

Karnaugh Map for Seg. a

$$
\left.\begin{array}{c}
\begin{array}{|c|cc|}
\hline 1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array} \\
X \\
X
\end{array}\right]
$$

Missed one: Remember this is actually a torus.

$$
a=\frac{\bar{X} \bar{Y} \bar{Z}+\bar{W} Y+}{\bar{W} X Z+W \bar{X} \bar{Y}}
$$

$3+2+3+3=11$ literals
4 inv + 3 AND3 + 1 AND2 + 1 OR4

Karnaugh Map for Seg. a

W	X	Y	Z	a
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	X
1	0	1	1	X
1	1	0	0	X
1	1	0	1	X
1	1	1	0	X
1	1	1	1	0

Taking don't-cares into account, we can enlarge two implicants:

$$
a=\frac{\bar{X} \bar{Z}+\bar{W} Y+}{\bar{W} X Z+W \bar{X}}
$$

$2+2+3+2=9$ literals
3 inv + 1 AND3 + 3 AND2 + 1 OR4

Karnaugh Map for Seg. a

Can also compute the complement of the function and invert the result.

Covering the 0's instead of the 1's:

$$
\bar{a}=\bar{W} \bar{X} \bar{Y} Z+X \bar{Y} \bar{Z}+W Y
$$

$4+3+2=9$ literals
5 inv + 1 AND4 + 1 AND3 + 1 AND2 +1 OR3

Karnaugh Map for Seg. a

$$
\begin{aligned}
& \text { Z } \\
& x\left\{\begin{array}{ccc}
1 & \overbrace{0}^{0} & 1 \\
0 & 1 & 1 \\
0 & 1 & 1 \\
x & x & 1 \\
1 & 1 & \underbrace{0}_{Y} \\
\underbrace{x} & x
\end{array}\right\}, w
\end{aligned}
$$

To display the score, PONG used a chip with this:

Decoders

Decoders

Input: n-bit binary number
Output: 1-of-2 ${ }^{n}$ one-hot code

2-to-4		3-to-8 decoder		4-to-16 decoder	
in	out	in	out	in	Out
00	0001	000	00000001	0000	0000000000000001
01	0010	001	00000010	0001	0000000000000010
10	0100	010	00000100	0010	0000000000000100
11	1000	011	00001000	0011	0000000000001000
		100	00010000	0100	0000000000010000
		101	00100000	0101	0000000000100000
		110	01000000	0110	0000000001000000
		111	10000000	0111	0000000010000000
				1000	0000000100000000
				1001	0000001000000000
				1010	0000010000000000
				1011	0000100000000000
				1100	0001000000000000
				1101	0010000000000000
				1110	0100000000000000
				1111	1000000000000000

The 74138 3-to-8 Decoder

A '138 Spotted in the Wild

Pac-Man (Midway, 1980)

Multiplexers

The Two-Input Multiplexer

S	Y
0	A

$1 B$

Two-input Muxes in the Wild

Quad 2-to-1 mux 3B selects color from a sprite or the background

Pac-Man (Midway, 1980)

State-Holding Elements

Bistable Elements

Equivalent circuits; right is more traditional.
Two stable states:

A Bistable in the Wild

This "debounces" the coin switch.
Breakout, Atari 1976.

SR Latches in the Wild

Generates horizontal and vertical synchronization waveforms from counter bits.
Stunt Cycle, Atari 1976.

Atari Space Race, 1973

Atari Space Race PCB

Front

Back (mirrored)

Implementing ROMs

Add.	
00	Data
01	011
10	110
11	010

Implementing ROMs

Add.	
00	Data
01	011
10	110
11	010

Atari Space Race Schematic

The 1971 DEC M792-YB Bootstrap Diode Matrix

32-word, 16-bit (64-byte) ROM diode matrix

Color PROM in Pac-Man

00	00	
01	07	
02	66	
03	EF	
04	00	
05	F8	
06	EA	
07	6 F	
08	00	
09	$3 F$	
OA	00	
OB	C9	
OC	38	
OD	AA	
OE	AF	
OF	F6	
10	00	
\vdots	\vdots	
$1 F$	00	

$\mathrm{HIGH}_{4600}^{\text {SCORE }}$
360 4600

TMS9918 Video Display Processor

TMS9918 Video Display Processor

Nintendo NES/Famicom

TMS9918 Pattern Generation

TMS9918 Sprite Generation

TMS9918 Sprite Attribute Table Entry

BIT

