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Moore’s Law: Lots of Cheap Transistors...

“The complexity for
minimum component
costs has increased at a
rate of roughly a factor of
two per year.”

Closer to every 24 months

Gordon Moore, Cramming More Components onto Integrated Circuits,

Electronics, 38(8) April 19, 1965.



Pollack’s Rule: ...Give Diminishing Returns for Processors
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Slope = ~0.5

Performance ~ Sqrt(Area)

Single-core processor performance follows the square root of area.

It takes 4× the transistors to give 2× the performance.

Fred J. Pollack, MICRO 1999 keynote. Graph from Borkar, DAC 2007



Dally: Calculation is Cheap; Communication is Costly
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“Chips are power limited
and most power is spent
moving data

Performance = Parallelism

Efficiency = Locality

Bill Dally’s 2009 DAC Keynote, The End of Denial Architecture



Parallelism for Performance and Locality for Efficiency

Dally: “Single-thread processors are in
denial about these two facts”

We need
different programming paradigms
and
different architectures
on which to run them.



Bacon et al.’s Liquid Metal

Fig. 2. Block level diagram of DES and Lime code snippet

JITting Lime (Java-like, side-effect-free, streaming) to FPGAs
Huang, Hormati, Bacon, and Rabbah, Liquid Metal, ECOOP 2008.



Goldstein et al.’s Phoenix

int squares()
{

int i = 0,
sum = 0;

for (;i<10;i++)
sum += i*i;

return sum;
}
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Figure 3: C program and its representation comprising three hy-

perblocks; each hyperblock is shown as a numbered rectangle. The

dotted lines represent predicate values. (This figure omits the token

edges used for memory synchronization.)

Figure 8: Memory access network and implementation of the value

and token forwarding network. The LOAD produces a data value

consumed by the oval node. The STORE node may depend on the

load (i.e., we have a token edge between the LOAD and the STORE,

shown as a dashed line). The token travels to the root of the tree,

which is a load-store queue (LSQ).

C to asynchronous logic, monolithic memory

Budiu, Venkataramani, Chelcea and Goldstein, Spatial Computation, ASPLOS 2004.



Ghica et al.’s Geometry of Synthesis
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Figure 1. In-place map schematic and implementation
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Algol-like imperative language to handshake circuits
Ghica, Smith, and Singh. Geometry of Synthesis IV, ICFP 2011



Greaves and Singh’s Kiwi

In this section we demonstrate how a circuit that performs

communication over an I2C bus can be expressed using

the Kiwi library. The motivation for tackling such an ex-

ample arises from the fact that the typical coding style for

such circuits involves hand coding state machines using

nested case statements in VHDL (or equivalent features

in Verilog). In particular, the sequencing of operations

public static void SendDeviceID()
{ int deviceID = 0x76;

for (int i = 7; i > 0; i−−)
{ scl = false;

sda out = (deviceID & 64) != 0;
Kiwi.Pause(); // Set it i−th bit of the device ID
scl = true; Kiwi.Pause(); // Pulse SCL
scl = false; deviceID = deviceID << 1;
Kiwi.Pause();

}
}

C# with a concurrency library to FPGAs

Greaves and Singh. Kiwi, FCCM 2008



Arvind, Hoe et al.’s Bluespec

GCD Mod Rule

Gcd(a, b) if (a b)!(b " 0)# Gcd(a$b, b)
GCD Flip Rule

Gcd(a, b) if a b# Gcd(b, a)
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Figure 1.3 Circuit for computing Gcd(a, b) from Example 1.
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Guarded commands and functions to synchronous logic

Hoe and Arvind, Term Rewriting, VLSI 1999



Sheeran et al.’s Lava

where the constant WN is de,ned as e j "#N -

Each signal in the transformed sequence X5k6 depends on
every input signal x5n6: the DFT operation is therefore ex?
pensive to implement directly-

The Fast Fourier Transforms 5FFTs6 are e@cient algorithms
for computing the DFT that exploit symmetries in the twid$
dle factors W k

N - The laws that state these symmetries areA

W !
N B C

WN
N B C

W k
n  W

m
n B W k"m

n

W k
n B W  k

 n & 5n& k ! N6

We will later use the fact that W #
$ equals "j-

These lawsE together with a restriction of sequence length
5for example to powers of two6E simplify the computations-
An FFT implementation has fewer gates than the original
direct DFT implementationE which reduces circuit area and
power consumption- FFTs are key building blocks in most
signal processing applications-

We discuss the description of circuits for two diIerent FFT
algorithmsA the Radix?K FFT and the Radix?K FFT LHeNOP-

 !" Two FFT circuits

The decimation in time Radix?K FFT is a standard al?
gorithmE which operates on input sequences of which the
length is a power of two LPMNKP- This restriction makes it
possible to divide the input into smaller sequences by re?
peated halving until sequences of length two are reached-
A DFT of length two can be computed by a simple butter$
1y circuit- ThenE at each stageE the smaller sequences are
combined to form bigger transformed sequences until the
complete DFT has been produced-

The Radix?K FFT algorithm can be mapped onto a com?
binational network as in ,gure SE which shows a size CU
implementation- In this diagramE digits and twiddle factors
on a wire indicate constant multiplication and the merging
of two arrows means addition- The bounding boxes contain
two FFTs of size W-

A less well?known algorithm for computation of the DFT is
the decimation in frequency Radix?K FFTE which assumes
that the input length N is a power of four-

The corresponding circuit implementation 5in ,gure W6 is
also very regular and might be mistaken for a reversed
Radix?K circuit at a passing glance- HoweverE it diIers sub?
stantially in that two diIerent butterXy networks are used in
each stageE the twiddle factor multiplications are modi,edE
and "j multiplication stages have been inserted-

 ! Components

We need three main components to implement FFT circuits-
The ,rst is a butter1y circuitE which takes two inputs x# and
x to two outputs x# Y x and x# " x 5see ,gure N6- It is
the heart of FFT implementations since it computes the K?
point DFT- Systems of such components will be applied to
the in?signals in many stages 5,gures S and W6-

The FFT butterXy stages are constructed by ri[ing together
two halves of a sequence of length kE processing them by a

Figure NA A butterXy

Figure C\A A butterXy stage of size W expressed with ri[ing

column of k)K butterXy circuitsE and unri[ing the result
5see ,gure C\6- Here riffle is the shu[e of a card sharp
who perfectly interleaves the cards of two half decks-

bfly '' CmplxArithmetic m
01 2CmplxSig5 61 m 2CmplxSig5

bfly 2i78 i95 0
do o7 <6 csubtract @i78 i9A

o9 <6 cplus @i78 i9A
return 2o78 o95

bflys '' CmplxArithmetic m
01 Int 61 2CmplxSig5 61 m 2CmplxSig5

bflys n 0
riffle 161 raised n two bfly 161 unriffle

Another important component of an FFT algorithm is mul?
tiplication by a complex constantE which can be imple?
mented using a primitive component called a twiddle factor
multiplier- This circuit maps a single complex input x to
x  W k

N for some N and k- The circuit w n k computes
W k
N -

wMult '' CmplxArithmetic m
01 Int 61 Int 61 CmplxSig 61 m CmplxSig

wMult n k a 0
do twd <6 w @n8 kA

ctimes @twd8 aA

The multiplication of complete buses with "j is de,ned as
followsE using the fact that W #

$ equals "j-

minusJ '' CmplxArithmetic m
01 2CmplxSig5 61 m 2CmplxSig5

minusJ 0 mapM @wMult H 7A

Another useful component is the bit reversal permutationE
used in the ,rst or last stage of the FFT circuits- A new
wire position is the reversed binary representation of the old
position LPMNKP- The permutation can be expressed using
riffleA

bitRev '' Monad m 01 Int 61 2a5 61 m 2a5
bitRev n 0
compose 2 raised @n6iA two riffle

K i <6 27LLn5
5
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Functional specifications of regular structures

Bjesse, Claessen, Sheeran, and Singh. Lava, ICFP 1998



Kuper et al.’s CλaSH

fir (State (xs, hs)) x =
(State (shiftInto x xs , hs), (x ⊲ xs) • hs)

Fig. 6. 4-taps FIR Filter

More operational Haskell specifications of regular structures

Baaij, Kooijman, Kuper, Boeijink, and Gerards. Cλash, DSD 2010



AutoESL (Xilinx, was Cong’s xPilot)

Page 11

SystemSystem--level Synthesis Data Modellevel Synthesis Data Model
  SSDMSSDM (System(System--level Synthesis Data Model)level Synthesis Data Model)
!! Hierarchical Hierarchical netlistnetlist of concurrent processes and communication of concurrent processes and communication 

channelschannels

!! Each leaf process contains a sequential program which is represeEach leaf process contains a sequential program which is representednted
by an extended LLVM IR with hardwareby an extended LLVM IR with hardware--specific semanticsspecific semantics
•• Port / IO interfaces, bitPort / IO interfaces, bit--vector manipulations, cyclevector manipulations, cycle--level notationslevel notations

HardwareHardware--Specific SSDM SemanticsSpecific SSDM Semantics
Process port/interface semanticsProcess port/interface semantics

FIFO:FIFO: FifoReadFifoRead() / () / FifoWriteFifoWrite()()
Buffer: Buffer: BuffReadBuffRead() / () / BuffWriteBuffWrite()()
Memory:Memory: MemReadMemRead() / () / MemWriteMemWrite()()

BitBit--vector manipulationvector manipulation
Bit extraction / concatenation / insertionBit extraction / concatenation / insertion
BitBit--width attributes for every operation and every valuewidth attributes for every operation and every value

CycleCycle--level notationlevel notation
Clock: Clock: waitClockEventwaitClockEvent()()

SystemC input; classical high-level synthesis for processes

Jason Cong, presentation at ISARS 2005



Optimization of Parallel “Programs” Enables Chip Design

Sun’s UltraSPARC T2

The “Niagara 2”

8 cores; 64 threads

Built 2007, 1.6 GHz, 65 nm

Released open-source as
the OpenSPARC T2

www.opensparc.net

454 000 lines of synthesizable Verilog → 503 000 000 transistors
A mix of Boolean logic and structure



The Lesson of Logic Synthesis: the Enabling Technology

How do you compile and optimize a digital logic circuit?

Use a simple, formal model and automate it.

f1 = abcd +abce +abcd +abcd +ac + cd f +abcde +abcd f

f2 = bd g +bd f g +bd g +bdeg

Minimize

f1 = bcd +bce +bd +ac + cd f +abcde +abcd f

f2 = bd g +d f g +bd g +deg

Factor

f1 = c
(
b(d +e)+b(d + f )+a

)+ac(bde +bd f )

f2 = g
(
d(b + f )+d(b +e)

)
Decompose

f1 = c(x +a)+acx
f2 = g x

x = d(b + f )+d(b +e)

After Brayton et al.’s class on Multi-Level Logic Synthesis
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High-Level Synthesis: Adding Time Meant Scheduling

Figure &' Organization of the BNG3based high3level synthe3
sis system

loop unfolding <=>? After these transformationsA the order of
operations in the CDFG is considered to be Exed? The next
step is the mapping of this Exed3order CDFG into the BNG
representationA which is an RTLKGate3level representation
of all possible schedules that the Exed3order CDFG can as3
sume?

The tasks of schedulingA allocation and resource sharing
are performed on the BNG? Since it is a logic3level represen3
tationA one can also perform logic transformations and static
timing analysis on the design in order to evaluate accurately
the costs involved during high3level synthesis? After these
tasksA the BNG itself represents the Enal RTLKGate3level
network?

 !" Control and Data Flow Graphs

This work uses a CDFG similar to <N> consisting of separate
control3Oow and data3Oow graphs? Figure P shows a simple
VHDL description and the corresponding CFG and DFG?
This example will be used throughout this paper?

This VHDL description can be synthesized in diSerent
ways by HLSA ranging from a solution where no states are
inserted Ti?e?A the description is treated as an RTL speci3
EcationU to a solution where several states are created by
scheduling to satisfy certain constraints Ti?e?A it is treated as
a behavioral speciEcationU? The BNG representation pre3
sented here allows the full range of schedules to be modeled?

 ! Data2Flow Analysis

An essential step in language3based synthesis is data3Oow
analysis TDFAU <V>? Given that data3Oow analysis is essential
for the BNG generation algorithmA it is important that its
main concepts be reviewed here?

DFA is a technique for computing the de"nition'use or
lifetime of a given value? A value is deEned as any assign3
ment to a language variableA and two assignments to the
same variable count as two values? In VHDL termsA values
are deEned as any assignment to variables and signals?

DFA computes the exact path in the CFG where a given
value is deEnedA alive and used for the last time? In Fig3
ure PTbUA for exampleA the value assigned to variable A in
operation O is alive at operations O!A O"A O#$A O#%A O# A
O#&A O#'A O#(A and continues to be alive in the following
iteration of the graph Tthrough the feedback edgeU? This
value is not alive at operation O## because it assigns a new
value to AA thus terminating the lifetime of the previous
value along that path?

The lifetimes of values determine the possible intercon3
nections between operations that create a value and those
using the value? For exampleA operation O#% uses variable
B as input? At this operation there are four possible values
of B aliveA assigned from' T&U O% if M& equals YA or TPU O&

if M& equals &A or TZU O$ if M& equals PA or TNU O) if M&
equals Z? Depending on the scheduleA these values may come
from a register or the operators directlyA and may have to
be channeled through a multiplexer into the operator imple3
menting operation O#%?
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CFG

port ( clock: in bit;

       in1, in2, m1: in integer range 0 to 3;

       m2: in boolean;

end bde;

Architecture behavior of bde is

Begin

  Process

    Variable A, B : integer range 0 to 3;

  Begin

    Wait until not clock’stable and clock=’1’;

    B := 0;                         -- O0

    Case (m1) is                    -- O1

      when  0  =>  B := in1 + in2;  -- O2

                   A := A + B;      -- O3

      when  1  =>  B := 3;          -- O4

      when  2  =>  A := in2;        -- O5

      when  3  =>  A := 0;          -- O6

                   B := 2;          -- O7

    end Case;                       -- O8

    out1 <= A;                      -- O9

    If  (m2)                        -- O10

    then  A := in1;                 -- O11

    else  out2 <= B;                -- O12

          out3 <= A + in1;          -- O13

    end if;                         -- O14

    out4 <= A + B;                  -- O15

  end process;                      -- O16

end behavior;

(b)(a)

       out1,out2,out3,out4: integer range 0 to 3);

Figure &' (a* VHDL description6 (b* Separate control and
data:;ow graphs

 !" Scheduling Basics

Scheduling decides the controller states in which the CDFG
operations will be executedA and indirectly determines the
values that will need to be stored in registersE To be able to
handle general types of designs it is important that sched:
uling algorithms be able to handle control and data:;ow
operations eHcientlyE This requires a full analysis of all
paths in the control:;ow graph : such algorithms are called
control:;ow:based schedulers (eEgEA JKLA KKA K&M*E The CFGs
considered in this work are generalA including conditional
operationsA loops and non:series:parallel topologiesE

Scheduling a CFG implies Onding places in the graph
where states are going to start and endE The term state$cut
will be used hereafter to denote these placesE In Figure &(b*A
if the scheduling goal were to Ond a solution with only one
addition operation per stateA one possible solution would be
to place state$cuts between operations O  O!A O! O"A and
O#!  O#$A resulting in the FSM shown in Figure R(a*E If
this FSM is implemented using one$hot encoding the result is
the logic network shown in Figure R(b*E There is an implied
assumption that the Orst node in the CFG is also the initial
stateA which is similar to say that the feedback edge going
into the Orst node has an implicit state$cut E

Each state$cut has direct implications on the storage ele:
ments and interconnections in the datapathE When a state$
cut is placed inside the lifetime interval of a value (as com:
puted by DFA*A it forces that value to be stored in a register
since its deOnition is in one state and its use in anotherE A
value that is used as input to an operation may come directly
from the operation creating the valueA if there is no state$cut
between the two operationsA or from a register storing the
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Figure &' (a* FSM for scheduled CFG in Figure 7(b*9
(b* Hardware implementation of FSM using one?hot encod?
ing

value9 if there is a state$cut A
It is clear that the positions of the state$cuts determine

the basic control and datapath logicA Hence9 for the BNG to
represent all schedules9 it needs to encompass the diEerent
hardware conFgurations for diEerent choices of state$cuts A

 Behavioral Network Graph

The Behavioral Network Graph is an RTLKgate?level repre?
sentation of a behavioral speciFcationA The BNG uses the
CFG as a starting point for creating a logic network rep?
resenting the FSMs for all possible schedulesA It uses the
DFG and the results of data?Mow analysis to create a logic
network representing the datapaths for all schedules (prior
to resource sharing and logic optimizations*A This is accom?
plished by the use of special logic gates called State$Value
Node9 Register$Value Node and Current$Value NodeA

The algorithms describing the generation of the control
and data parts of the BNG are given in the next sectionsA

 01 Control BNG

As shown in Figure &9 each state$cut creates a new state
starting at the succeeding operation9 hence there is a direct
correspondence between state$cuts and registers in the one?
hot encoded FSMA State$cuts can be placed at any CFG
edgeA

Let SCi ? denoted state$cut variable ? be a variable associ?
ated with each predecessor edge of control?Mow node iA This
variable can assume values R and S depending on whether a
state$cut is placed at node i (iAeA9 on the control?Mow edge
preceeding node i*A If a control?Mow node has multiple pre?
decessor edges then state$cut variables SCia9 SCib9AA9 are as?
sociated with each predecessor edgeA

The State$Value Node (STN* is a logic structure which
represents the choice of either having or not having a state$
cut on a particular control?Mow edgeA The STN is a switch
which can choose between storing the input value9 or passing
it through the output immediately9 controlled by a state$cut
variableA The logic for a STN is given in Figure TA

If SCi is R (no state$cut on edge*9 the STN simpliFes to
a wire9 thus not enforcing a new stateA If SCi is S (there is a
state$cut *9 the STN simpliFes to a register9 thus enforcing
a state transitionA

In the BNG representing all possible schedules9 SCi is
a variableA Once the schedule is Fxed9 the SCi for each
control?Mow edge is set to R or S9 and the network can then
be simpliFed by means of constant propagationA

The algorithm for Control BNG generation uses the CFG
as input and consists of the following steps'
+, Traverse the CFG and associate a SCi variable with

Figure T' State?Value Node logic representation

each edge preceeding control?Mow node iA If a node has mul?
tiple predecessors (a join node* then variables SCia9 SCib

are associated with each predecessor edgeA
-, Traverse the CFG and for each control?Mow node i with
a single predecessor and a single successor9 create a State?
Value node STNi A The net at the output of the STNi gate9
also called STNi net9 represents the control signal activating
the operation in control?Mow node iA
., For join nodes9 create a State?Value node STNij for
each predecessor edge and connect all STNij nets to a single
OR gateA The output of the OR gate is called net STNi A
/, For nodes with multiple successor edges (fork nodes*9
create a State?Value node STNi and connect its output net
to as many AND gates as successor edgesA Each AND gate
has two inputs' the Frst input is net STNi (for the fork
node* and the other input is a net representing the condi?
tion on the corresponding successor edgeA This condition
net may be a primary input or a net coming from the data?
pathA The output of each AND gate is called net STNij A
0, Connect the multiple STNi boxes in the same topology
as the CFGA

The resulting Control BNG for the CFG in Figure 7(b*
is shown in Figure X(a*A Note that the extra STNi boxes
created for each predecessor edge in a join node are needed
in order to allow state$cuts to be placed on each edge inde?
pendently of the otherA

Prior to assigning values to all SCi variables9 this BNG
network represents all possible schedules for a given Fxed?
order CFGA By choosing diEerent sets of values for all SCi

variables9 one can eEectively generate the resulting FSMs
for multiple schedulesA For example9 to implement the same
schedule as shown in Figure &9 one would simply set the SCi

variables corresponding to the chosen state$cuts to S and
all other to RA Hence9 variables SC (for the initial state*9
SC!9 SC"a and SC#$b should be set to SA After constant
propagation9 the BNG is simpliFed to the network shown
in Figure X(b*9 which is logically equivalent to the FSM in
Figure &(b*A

The STNi nets are the controlling conditions of all op?
erations in the CFGA When a net STNi is S it means that
operation i is active (iAeA9 being executed*A After schedul?
ing is set and the Control BNG simpliFes to a single FSM9
several STNi nets may become the same net9 which simply
means that the corresponding operations are all scheduled
in the same stateA

In order to evaluate the FSMs for diEerent schedules9 one
has only to assign values to all SCi variables9 propagate the
constants and evaluate the logicA All of which can be done
with simple logic transformationsA

This process results in a one?hot encoded FSM9 which
can be further optimized by means of state?encoding and
state minimizationA

 04 Data BNG

The Data BNG is composed of gates representing registers9
operators and interconnections9 as well as the required con?
trol signalsA Prior to Fxing the schedule9 it is unknown
whether a value will become a register and therefore it is im?
possible to derive the Fnal interconnectionsA As mentioned
in Section 7A&9 the positions of the state$cuts determine the
FSM states as well as the values in the DFG that need to

Bergamaschi, Behavioral Network Graph, DAC 1999.



The High-Level Synthesis Lessons

Don’t Start From C

“The so-called high-level specifications in reality grew out of
the need for simulation and were often little more than an
input language to make a discrete event simulator
reproduce a specific behavior.”

Gupta and Brewer, High-Level Synthesis: A Retrospective, 2008.

Don’t Forget Memory

Goldstein et al.’s Phoenix synthesized asychronous hardware from
ANSI C. Required heroic work [CGO 2003] to recover any
parallelism.
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Why Functional Specifications?

Ï Referential transparency/side-effect
freedom make formal reasoning about
programs vastly easier

Ï Inherently concurrent and race-free
(Thank Church and Rosser). If you
want races and deadlocks, you need to
add constructs.

Ï Immutable data structures makes it
vastly easier to reason about memory
in the presence of concurrency



Why FPGAs?

Ï We do not know the structure of future
memory systems
Homogeneous/Heterogeneous?
Levels of Hierarchy?
Communication Mechanisms?

Ï We do not know the architecture of
future multi-cores
Programmable in Assembly/C?
Single- or multi-threaded?

Use FPGAs as a surrogate. Ultimately too flexible, but
representative of the long-term solution.



A Modern High-End FPGA: Altera’s Stratix V

2500 dual-ported 2.5KB 600 MHz memory blocks; 6 Mb total

350 36-bit 500 MHz DSP blocks (MAC-oriented datapaths)

300000 6-input LUTs; 28 nm feature size



Let’s Talk Details



Let’s Talk Details



Let’s Talk Details



Our Starting Point: A Functional IR

Inspired by the Glasgow Haskell Compiler’s “Core” representation

expr ::= name var∗ Function call

Includes primitive arithmetic operators and type constructors

Non-tail-recursive calls generally inlined to improve parallelism;
Mycroft and Sharp’s [IWLS 2000] propose sharing policies

True recursion transformed to tail recursion with a stack



Our Starting Point: A Functional IR

Inspired by the Glasgow Haskell Compiler’s “Core” representation

expr ::= name var∗ Function call
| let (var = expr)+ in expr Parallel evaluation

Parallelism and sequencing:

let v1 = e1

v2 = e2

v3 = e3 in e

e1

e2

e3

evaluated in parallel, then e



Our Starting Point: A Functional IR

Inspired by the Glasgow Haskell Compiler’s “Core” representation

expr ::= name var∗ Function call
| let (var = expr)+ in expr Parallel evaluation
| case var of (pat -> expr)+ Multiway conditional

pat ::= literal Exact match
| _ Default
| Constr. (var | literal | _)∗ Match a tagged union

Evaluate and return one of the expressions based on the pattern



Our Starting Point: A Functional IR

Inspired by the Glasgow Haskell Compiler’s “Core” representation

expr ::= name var∗ Function call
| let (var = expr)+ in expr Parallel evaluation
| case var of (pat -> expr)+ Multiway conditional
| var Variable reference
| literal Literal value

pat ::= literal Exact match
| _ Default
| Constr. (var | literal | _)∗ Match a tagged union



The Type System: Tagged Unions

Types are primitive (Boolean, Integer, etc.) or tagged unions:

type ::= Type Named type/primitive
| Constr Type∗ | · · · | Constr Type∗ Tagged union

Subsume C structs, unions, and enums

Comparable power to C++ objects with virtual methods

Sometimes called “algebraic data types”: sums of products



The Type System: Tagged Unions

Types are primitive (Boolean, Integer, etc.) or tagged unions:

type ::= Type Named type/primitive
| Constr Type∗ | · · · | Constr Type∗ Tagged union

Examples:

data Intlist = Nil −− Linked list of integers
| Cons Int Intlist

data Bintree = Leaf Int −− Binary tree w/ integer leaves
| Branch BinTree Bintree

data Expr = Literal Int −− Arithmetic expression
| Var String
| Binop Expr Op Expr

data Op = Add | Sub | Mult | Div



Syntax-Directed Translation of Expressions to Hardware

go ready

resultinputs

Combinational functions:

go

inputs

ready

result

Sequential functions:

clk

go

inputs

ready

result



Translating Let and Case

e1

en e

go

ready
result

Let makes all new variables available to its body.

go

v

e1

en

ready
result

Case invokes one of its sub-expressions, then synchronizes.



Representing Recursive Algebraic Data Types

Consider a list of integers:

data Intlist = Nil
| Cons Int Intlist

An obvious representation:

0 Nil

1 Integer Pointer Cons Int Intlist

Ï Usual byte-alignment unnecessary & wasteful in hardware

Ï Naturally stored & managed in a custom integer-list memory

Ï Width of pointer can depend on integer-list memory size



Removing Recursion: Recursive Fibonacci Example

Starting point: a dumb way to compute Fibonacci numbers

fib 1 = 1
fib 2 = 1
fib n = fib (n−1) + fib (n−2)



Removing Recursion: Recursive Fibonacci

Reformatting

fib 1 = 1
fib 2 = 1
fib n = fib (n−1) +

fib (n−2)



Removing Recursion: Continuation-Passing Style

In continuation-passing style (the “and then?” transformation):

fib1 1 c = c 1
fib1 2 c = c 1
fib1 n c = fib1 (n−1) −− Calls made sequential

(\n1 −> fib1 (n−2) −− Intermediates named
(\n2 −> c (n1 + n2))) −− Add scheduled last

fib n = fib1 n (\x −> x) −− Wrapper



Removing Recursion: Naming Functions

Naming functions; converting unbound variables to arguments:

fib1 1 c = c 1
fib1 2 c = c 1
fib1 n c = fib1 (n−1) (fib2 n c) −− Unbound variables passed
fib2 n c n1 = fib1 (n−2) (fib3 n1 c) −− Lambdas named
fib3 n1 c n2 = c (n1 + n2)
fib n = fib1 n fib0
fib0 n = n −− Identity function named



Removing Recursion: True Recursion to Tail Recursion

Introducing a stack; merging functions

f (Fib1 1 c) = f (Cont c 1) −− Single function
f (Fib1 2 c) = f (Cont c 1) −− Continuation the stack
f (Fib1 n c) = f (Fib1 (n−1) (Fib2 n c))
f (Cont (Fib2 n c) n1) = f (Fib1 (n−2) (Fib3 n1 c))
f (Cont (Fib3 n1 c) n2) = f (Cont c (n1 + n2))
f (Fib n) = f (Fib1 n Fib0)
f (Cont Fib0 n) = n

−− Continuations (references to the lambda expressions)
data Stack = Fib2 Int Stack −− fib2 n c

| Fib3 Int Stack −− fib3 n1 c
| Fib0 −− identity function (bottom of stack)

−− Invoke a named function or a continuation
data Action = Fib Int −− fib n (outside call)

| Fib1 Int Stack −− fib1 n c (recursive call)
| Cont Stack Int −− c (...) (invoke continuation)



Fibonacci Datapath

f

go

arg

tos
stack

go
arg

ready
result

go
arg

tail
{

stack
{

stack

action
go

arg

tos
result

ready
result

go

Fib nn

Int
Action

Stack

f (Fib1 1 c) = f (Cont c 1)
f (Fib1 2 c) = f (Cont c 1)
f (Fib1 n c) = f (Fib1 (n−1) (Fib2 n c))
f (Cont (Fib2 n c) n1) = f (Fib1 (n−2) (Fib3 n1 c))
f (Cont (Fib3 n1 c) n2) = f (Cont c (n1 + n2))
f (Fib n) = f (Fib1 n Fib0)
f (Cont Fib0 n) = n

data Stack = Fib2 Int Stack
| Fib3 Int Stack
| Fib0

data Action = Fib Int
| Fib1 Int Stack
| Cont Stack Int



Implementing the Stack in Hardware

This uses a list-like stack data type:

data Stack = Fib2 Int Stack
| Fib3 Int Stack
| Fib0

A naïve, but correct, way to implement it in hardware:

00 Fib0

01 Integer Pointer Fib2 Int Stack

10 Integer Pointer Fib3 Int Stack

Encoded return address

Function activation record



Specializing Data Types: Recovering a Classical Stack

Fib3 42 (Fib2 17 (Fib3 8 (Fib3 2 Fib0)))

10 42

01 17

10 8

10 2

00



Specializing Data Types: Recovering a Classical Stack

Fib3 42 (Fib2 17 (Fib3 8 (Fib3 2 Fib0)))

10 42

01 17

10 8

10 2

00

The only “pop” operation discards the previous top-of-stack
f (Cont (Fib3 n1 c) n2) = f (Cont c (n1 + n2))

so this code will never generate a tree.
Sequential memory allocation is safe.



Specializing Data Types: Recovering a Classical Stack

Fib3 42 (Fib2 17 (Fib3 8 (Fib3 2 Fib0)))

4:

3:

2:

1:

0:

10 42 3

01 17 2

10 8 1

10 2 0

00

Sequential memory allocation makes “next” pointers predictable...



Specializing Data Types: Recovering a Classical Stack

Fib3 42 (Fib2 17 (Fib3 8 (Fib3 2 Fib0)))

4:

3:

2:

1:

0:

10 42

01 17

10 8

10 2

00

...so there is no need to store them.

Constructor (Fib0) always returns 0.

Constructors (Fib2/3 n s) writes (Fib2/3 n) at s +1 and returns s +1.

Reading 0 returns Fib0; reading s returns (Fib2/3 n s −1).



Specializing Data Types

Stacks are the tip of the iceberg

Synthesizing custom memory systems
for specific types is a key goal of this
project

Shape Analysis relevant here

This is a simple case; a simple,
mathematical IR enables such clever
optimizations.

Imagine trying to do this in C.



Unrolling Code for Better Parallelism

fib 0 = 0
fib 1 = 1
fib n = fib (n−1) + fib (n−2)

fib (n−1) and fib (n−2) are
functionally independent.

Yet because they share fib, they
are performed sequentially.



Unrolling Code for Better Parallelism

fib 0 = 0
fib 1 = 1
fib n = fib ’ (n−1) + fib ’’ (n−2)

fib ’ 0 = 0
fib ’ 1 = 1
fib ’ n = fib ’ (n−1) + fib’ (n−2)

fib ’’ 0 = 0
fib ’’ 1 = 1
fib ’’ n = fib ’’ (n−1) + fib ’’ (n−2)

By unrolling the recursion once,
fib ’ and fib ’’ run in parallel.

A further improvement: balance
the work done by fib ’ and fib ’’



Unrolling Types for Better Locality

data Stack = Fib2 Int Stack
| Fib3 Int Stack
| Fib0

Each Stack object naturally
represents a single activation
record



Unrolling Types for Better Locality

data Stack = Fib2 Int Stack’
| Fib3 Int Stack’
| Fib0

data Stack’ = Fib2 Int Stack’’
| Fib3 Int Stack’’
| Fib0

data Stack’’ = Fib2 Int Stack ’’’
| Fib3 Int Stack ’’’
| Fib0

data Stack’’’ = Fib2 Int Stack
| Fib3 Int Stack
| Fib0

A similar unrolling amounts to
packing records that can be
processed in parallel

Abstract data types enables this

Imagine trying to do this safely in
a C compiler



Example: Huffman Decoder in Haskell

data HTree = Branch HTree HTree
| Leaf Char

decode :: HTree −> [Bool] −> [Char] −− Huffman tree & bitstream to symbols

decode table str = decoder table str
where

decoder (Leaf s) i = s : (decoder table i) −− Identified symbol; start again
decoder _ [] = []
decoder (Branch f _) (False:xs) = decoder f xs −− 0: follow left branch
decoder (Branch _ t) (True:xs) = decoder t xs −− 1: follow right branch

Three data types: Input bitstream, output character stream, and
Huffman tree



Optimizations

Memory

Input Output

HTree

In FIFO

Mem

Out FIFO

MemHTree

In FIFO

Mem

Out FIFO

Mem
HTree

In FIFO

Mem

Out FIFO

Mem

HTree Mem

Split
Memories

Use Streams

Unroll for locality

Speculate



Target Applications

Ï “Data-parallel irregular applications [that] manipulate large
pointer-based data structures like graphs”

[Pingali et al.’s Galois project]

Ï Datatype accelerators

Hash tables, Balanced trees, Heaps

Ï Application-domain accelerators

Relational databases, Crypography, Data compression

Ï Non-scientific computing: the stuff that’s hard for vector units
and GPGPUs
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