Compiling Parallel Algorithms to
Memory Systems

Stephen A. Edwards

Columbia University

ENS DI Group, June 26th, 2012

(Ax.?)f =FPGA

Functional Programs to FPGAs

Functional Programs to FPGAs

Functional Programs to FPGAs

Functional Programs to FPGAs

Functional Programs to FPGAs

Functional Programs to FPGAs

Functional Programs to FPGAs

Moore’s Law: Lots of Cheap Transistors...

LOG2 OF THE

16
154 e
=z 14r e
22 Ig - e
=25 12¢ / .
%% - S “The complexity for
b= ' . .
= 'g C ol minimum component
Q .
oW g /’ costs has increased at a
wg 7
°x gl 4 rate of roughly a factor of
L
we Or two per year.”
== 4r
Sa 3r
Zuw 5L
-1 Closer to every 24 months
0

Gordon Moore, Cramming More Components onto Integrated Circuits,
Electronics, 38(8) April 19, 1965.

Pollack’s Rule: ...Give Diminishing Returns for Processors

10 ¢

< C
g Performance ~ Sqrt(Area)
3
po
::’) ’Slope =~0.5
€ 3

1 ®

1.00 10.00

Area (X)

Single-core processor performance follows the square root of area.

It takes 4 x the transistors to give 2x the performance.

Fred J. Pollack, MICRO 1999 keynote. Graph from Borkar, DAC 2007

Dally: Calculation is Cheap; Communication is Costly

64b FPU
0.1mn?
50p) /op
1.5GHz

“Chips are power limited
and most power is spent
moving data

64b Imm
Channel
25p) /word

10mm 250pJ, 4 cycles

Performance = Parallelism

64b Off-Chip
Channel
1nJ/word

Efficiency = Locality

Bill Dally’s 2009 DAC Keynote, The End of Denial Architecture

Parallelism for Performance and Locality for Efficiency

Dally: “Single-thread processors are in
denial about these two facts”

We need

different programming paradigms
and

different architectures

on which to run them.

Bacon et al.’s Liquid Metal

plain text . . ;
public static Unsigned64 DEScoder (KeySchedule keys,

(64 bits) Unsigned64 text)
{
1P Unsigned64 block = text.permute (IP.Permutation);

Unsigned32 R = block.extractBits (sixtyfour.b0 ,
sixtyfour.b31);

Unsigned32 L = block.extractBits (sixtyfour.b32,
sixtyfour.b63);

for (sixteen round) {

1k

Unsigned32 F = Fiestel (keys, round, R);

Unsigned32 X = F ~ L;

L = R,

R = X;

13 more rounds }

Unsigned64 LR = makeUnsigned64 (R, L);

return LR.permute (FP.Permutation);

«—
-«
«—

cipher text
(64 bits)

Fig. 2. Block level diagram of DES and Lime code snippet

JITting Lime (Java-like, side-effect-free, streaming) to FPGAs
Huang, Hormati, Bacon, and Rabbah, Liquid Metal, ECOOP 2008.

Goldstein et al.’s Phoenix

int squares()

Synthesized by CAB

pipeline
stages

for (;i<10;i++)
sum 4= i*i;
return sum;

} loaded
value
use
memory access network
Figure 8: Memory access network and implementation of the value
and token forwarding network. The LOAD produces a data value
Figure 3: C program and its representation comprising three hy- consumed by the oval node. The STORE node may depend on the
perblocks; each hyperblock is shown as a numbered rectangle. The load (i.e., we have a token edge between the LOAD and the STORE,
dotted lines represent predicate values. (This figure omits the token shown as a dashed line). The token travels to the root of the tree,
edges used for memory synchronization.) which is a load-store queue (LSQ).

C to asynchronous logic, monolithic memory

Budiu, Venkataramani, Chelcea and Goldstein, Spatial Computation, ASPLOS 2004.

Ghica et al.'s Geometry of Synthesis

Figure 1. In-place map schematic and implementation

Algol-like imperative language to handshake circuits
Ghica, Smith, and Singh. Geometry of Synthesis IV, ICFP 2011

Greaves and Singh'’s Kiwi

public static void SendDevicelD()
{ int devicelD = 0x76;
for (inti=7,i>0;i——)
{ scl = false;
sda_out = (devicelD & 64) = 0;
Kiwi.Pause(); // Set it i—th bit of the device ID
scl = true; Kiwi.Pause(); // Pulse SCL
scl = false; devicelD = devicelD << 1;
Kiwi.Pause();

C# with a concurrency library to FPGAs

Greaves and Singh. Kiwi, FCCM 2008

Arvind, Hoe et al.’s Bluespec

GCD Mod Rule

Gcd(a, b) if (a>b)A(b#£ 0) — Ged(a—b, b)
GCD Flip Rule

Gcd(a, b) if a<b — Ged(b, a)

T T
Flip+"" Mod
T Mod

Figure 1.3 Circuit for computing Ged(a, b) from Example 1.

Guarded commands and functions to synchronous logic

Hoe and Arvind, Term Rewriting, VLSI 1999

Sheeran et al.’s Lava

X x+ty
bfly :: CmplxArithmetic m
=> [CmplxSig] -> m [CmplxSig]
bfly [i1, i2] =
do ol <- csubtract (i1, i2) y X-y
02 <- cplus (i1, i2) -1
return [ol, 02] Figure 9: A butterfly

bflys :: CmplxArithmetic m
=> Int -> [CmplxSigl -> m [CmplxSig]
bflys n =

riffle >-> raised n two bfly >-> unriffle
Figure 10: A butterfly stage of size 8 expressed with riffling

Functional specifications of regular structures

Bjesse, Claessen, Sheeran, and Singh. Lava, ICFP 1998

Kuper et al.’s CAaSH

fir (State (zs, hs)) ¢ =
(State (shiftInto x xs, hs), (z > xs) e hs)

Fig. 6. 4-taps FIR Filter

More operational Haskell specifications of regular structures

Baaij, Kooijman, Kuper, Boeijink, and Gerards. CAash, DSD 2010

AutoESL (Xilinx, was Cong’s xPilot)

¢ SSDM (System-level Synthesis Data Model)

= Hierarchical netlist of concurrent processes and communication
channels

)
n:“- lt Channel(s) l' hv.nsl
mmb Lo "ﬂ“‘)

Module |} Module

.........

= Each leaf process contains a sequential program which is represented
by an extended LLVM IR with hardware-specific semantics
* Port /10 interfaces, bit-vector manipulations, cycle-level notations
SystemC input; classical high-level synthesis for processes

Jason Cong, presentation at ISARS 2005

Optimization of Parallel “Programs” Enables Chip Design

L2 Data
Banko

1280 | ‘s = = . Sun’S Ultl‘aSPARC T2

| b sl Ml £ | The “Niagara 2”

i 8 cores; 64 threads
Built 2007, 1.6 GHz, 65 nm

Released open-source as
the OpenSPARC T2

-
I
b
=
&
ba
-
=
b
B

www.opensparc.net

]

454000 lines of synthesizable Verilog — 503 000 000 transistors
A mix of Boolean logic and structure

u]
o)
I
"
it

The Lesson of Logic Synthesis: the Enabling Technology

How do you compile and optimize a digital logic circuit?

fi = abcd + abce + abed + abcd +ac + cd f + abcde + abed f
fr=bdg+bdfg+bdg+bdeg

fi=clx+a)+acx
f2=8x L
x=db+f)+db+e)

After Brayton et al.’s class on Multi-Level Logic Synthesis

The Lesson of Logic Synthesis: the Enabling Technology

How do you compile and optimize a digital logic circuit?
Use a simple, formal model and automate it.

fi = abcd + abce + abed + abcd +ac + cd f + abcde + abed f
fr=bdg+bdfg+bdg+bdeg
Minimize
fi = bed + bee+ bd +ac+ cd f + abede + abed f
= bdg+dfg+ﬁg+aeg
Factor
fi = c(b(d+e)+b(d+ f)+a) +ac(bde + bd f)
f=g(db+f)+db+e)
Decompose
fi=clx+a)+acx
fo=gx L
x=db+f)+db+e)

After Brayton et al.’s class on Multi-Level Logic Synthesis

High-Level Synthesis: Adding Time Meant Scheduling

(@)

Eatity bde is

port (clock: in bie;

outl,out2,out3,outd: integer range 0 to 3);

end bde;

Architacturs behavior of bde is

Begin

Variable A, B : integer range 0 to 3;

Begin

Wait until not clock’atable and clock='1’;

5 im0
case (m1) is
when 0

end process;

end behavior;

Figure 2: (a) VHDL description; (b) Separate control and

data-flow graphs

(b) CFG

@ State] Operation NodfCondition
) ol o |
h
61
son0 |miti2n
IS5 | =230 m2-1)
205 | @i23hme0)
si S
| s
Hsist | mt
i [meo
s | s |

“Transition Conditions |
Cor- i)
0=l | 0=

Figure 3: (a) FSM for scheduled CFG in Figure 2(b),
(b) Hardware implementation of FSM using one-hot encod-
ing

Bergamaschi, Behavioral Network Graph, DAC 1999.

The High-Level Synthesis Lessons

Don’t Start From C

“The so-called high-level specifications in reality grew out of
the need for simulation and were often little more than an
input language to make a discrete event simulator
reproduce a specific behavior.”

Gupta and Brewer, High-Level Synthesis: A Retrospective, 2008.
Don’t Forget Memory

Goldstein et al.’s Phoenix synthesized asychronous hardware from
ANSI C. Required heroic work [CGO 2003] to recover any
parallelism.

Our Approach

abstraction

Cetal
gcc et al.

x86 et al.®

today

time

Our Approach

abstraction

Higher-level languages

Cetal.
gcc et al.
x86 et al. Futype IS4
s
More hardware reality

| .
ey time

Our Approach

Higher-level languages

abstraction

Cetal
gcc et al.

x86 et al.

More hardware reality

I o
time

Why Functional Specifications?

» Referential transparency/side-effect
freedom make formal reasoning about
programs vastly easier

» Inherently concurrent and race-free
(Thank Church and Rosser). If you
want races and deadlocks, you need to
add constructs.

» Immutable data structures makes it
vastly easier to reason about memory
in the presence of concurrency

Why FPGAs?

» We do not know the structure of future
memory systems
Homogeneous/Heterogeneous?
Levels of Hierarchy?

Communication Mechanisms?

» We do not know the architecture of
future multi-cores
Programmable in Assembly/C?
Single- or multi-threaded?

Use FPGAs as a surrogate. Ultimately too flexible, but
representative of the long-term solution.

A Modern High-End FPGA: Altera’s Stratix V

2500 dual-ported 2.5KB 600 MHz memory blocks; 6 Mb total
350 36-bit 500 MHz DSP blocks (MAC-oriented datapaths)
300000 6-input LUTs; 28 nm feature size

General-Purpose 1/0s (LVDS, Memory Interfaces)
|| MW ———————— core Logic Fabric

a 1] Variable-Precision
] BS&———————— DSPBlocks

M20K Internal
Memery Blocks

Fractional PLLs

Embedded HardCopy Block:
PCI Express Gen3, Gen2, Gen1

Hard |P Per Transceiver:
3G/6G PCS, 10G Ethernet PCS,
| || [Interlaken PCS

| || | || ma
— High-Speed
General-Purpose I10s (LVDS, Memory Interfaces) B ceivers

Let’s Talk Details

Let’s Talk Details

N
]

i

s Talk Deta

)

Let

Our Starting Point: A Functional IR

Inspired by the Glasgow Haskell Compiler’s “Core” representation

expr ::i= name var* Function call

Includes primitive arithmetic operators and type constructors

Non-tail-recursive calls generally inlined to improve parallelism;
Mycroft and Sharp’s [[IWLS 2000] propose sharing policies

True recursion transformed to tail recursion with a stack

Our Starting Point: A Functional IR

Inspired by the Glasgow Haskell Compiler’s “Core” representation

expr ::i= name var* Function call
| let (var = expr)™ in expr Parallel evaluation

Parallelism and sequencing:

let vy =¢e; el
Uy =es e» pevaluated in parallel, then e
v3=egine es3

Our Starting Point: A Functional IR

Inspired by the Glasgow Haskell Compiler’s “Core” representation

expr ::i= name var* Function call
| let (var = expr)™ in expr Parallel evaluation
| case var of (pat -> expr)* Multiway conditional
pat ::= literal Exact match
| _ Default
| Constr. (var| literal |)* Match a tagged union

Evaluate and return one of the expressions based on the pattern

Our Starting Point: A Functional IR

Inspired by the Glasgow Haskell Compiler’s “Core” representation

expr ::i= name var* Function call
| let (var = expr)™ in expr Parallel evaluation
| case var of (pat -> expr)* Multiway conditional
| var Variable reference
| literal Literal value
pat ::= literal Exact match
| _ Default

| Constr. (var| literal |)* Match a tagged union

The Type System: Tagged Unions

Types are primitive (Boolean, Integer, etc.) or tagged unions:

type ::= Type Named type/primitive
| Constr Type* | --- | Constr Type* Tagged union

Subsume C structs, unions, and enums
Comparable power to C++ objects with virtual methods

Sometimes called “algebraic data types”: sums of products

The Type System: Tagged Unions

Types are primitive (Boolean, Integer, etc.) or tagged unions:

type ::= Type Named type/primitive
| Constr Type* | --- | Constr Type* Tagged union
Examples:
data Intlist = Nil —— Linked list of integers

| ConsInt Intlist

data Bintree = Leaf Int —— Binary tree w/ integer leaves
| Branch BinTree Bintree

data Expr = Literal Int —— Arithmetic expression
| VarString
| Binop Expr Op Expr

data Op = Add | Sub | Mult| Div

Syntax-Directed Translation of Expressions to Hardware

80 —

inputs =

— ready

— result

Combinational functions:

go [L
inputs EC_ 0
ready [|
result

Sequential functions:

ck L _ruu

go I
inputs EX =
ready [L_

result TN EEC

Translating Let and Case

- — ready
e
n 3 ¢ | resuit

Let makes all new variables available to its body.

— el
g0 ready

result

v — *}en*)

Case invokes one of its sub-expressions, then synchronizes.

Representing Recursive Algebraic Data Types

Consider a list of integers:

data Intlist = Nil
| ConsInt Intlist

An obvious representation:

0 Nil

1| Integer Pointer Cons Int Intlist

» Usual byte-alignment unnecessary & wasteful in hardware
» Naturally stored & managed in a custom integer-list memory

» Width of pointer can depend on integer-list memory size

Removing Recursion: Recursive Fibonacci Example

Starting point: a dumb way to compute Fibonacci numbers
fib1=1

fib2=1

fib n= fib (n-1) + fib (n-2)

Removing Recursion: Recursive Fibonacci

Reformatting
fib 1

fib 2
fib n

1

1
fib (n—-1)+
fib (n-2)

Removing Recursion: Continuation-Passing Style

In continuation-passing style (the “and then?” transformation):

fibl'1 ¢ = cl

fibl1 2 ¢ = cl

fibl n ¢ = fibl (n-1) —— Calls made sequential
(\nl—> fibl (n-2) —— Intermediates named
(\n2-—> ¢ (nl+n2)) —— Add scheduled last

fib n = fibl n(\x—>x —— Wrapper

Removing Recursion: Naming Functions

Naming functions; converting unbound variables to arguments:

fibl'1 ¢ = cl

fibl1 2 ¢ = cl

fibl n ¢ = fibl (n-1) (fib2n ¢) —— Unbound variables passed
fib2 n cnl = fibl (n-2) (fib3 nl ¢) —— Lambdas named

fib3 nlcn2 = c (nl1+n2

fib n = fibl n fib0o

fib0 n =n —— Identity function named

Removing Recursion: True Recursion to Tail Recursion

Introducing a stack; merging functions

f (Fibl11 o) = f (Contcl) —— Single function
f (Fibl12 ¢) =f (Contcl) —— Continuation the stack
f (Fibl n ¢ = f (Fibl (n—1) (Fib2nc))

f (Cont (Fib2n c) nl) = f (Fibl (n-2) (Fib3 nl c))
f (Cont (Fib3 nl c) n2) = f (Contc (nl + n2))

f (Fib n) = f (Fibl n Fib0)

f (Cont Fib0 n) =n

—— Continuations (references to the lambda expressions)
data Stack = Fib2 Int Stack ——fib2nc
| Fib3 Int Stack ——fib3nlc
| Fib0o —— identity function (bottom of stack)

—— Invoke a named function or a continuation
data Action = Fib Int —— fib n (outside call)
| FiblInt Stack —— fibl n c (recursive call)
| ContStackInt ——c (...) (invoke continuation)

Fibonacci Datapath

go L’\F_ 8 i {
|

: arg
n _@ 2 ready |— ready
action tos—{tos result —— result
go resultf—|stack
stack { £
Int — |_ arg arg
Action —
Stack — stack f
f (Fibl11 o) = f (Contcl) data Stack = Fib2 Int Stack
f (Fib12 c¢) = f (Contcl) | Fib3Int Stack
f (Fibln o©) = f (Fibl (n—1) (Fib2 nc)) | Fibo
f (Cont (Fib2n ¢) nl) = f (Fibl (n-2) (Fib3 nl c))
f (Cont (Fib3 nl c¢) n2) = f (Contc (nl + n2)) data Action = Fib Int
f (Fib n) = f (Fibl n Fib0) | FiblIInt Stack
f (Cont Fib0 n) =n | Cont Stack Int

Implementing the Stack in Hardware

This uses a list-like stack data type:

data Stack = Fib2 Int Stack
| Fib3 Int Stack

| Fibo

A naive, but correct, way to implement it in hardware:

00
01| Integer Pointer
10| Integer Pointer

k—i
Encoded return address

1 1
Function activation record

Fib0

Fib2 Int Stack

Fib3 Int Stack

Specializing Data Types: Recovering a Classical Stack

Fib3 42 (Fib217 (Fib3 8 (Fib3 2 Fib0)))

10 42 ®
L 01 17 ;
L 10 8 ;
L 10 2 ;
L 00 I

Specializing Data Types: Recovering a Classical Stack

Fib3 42 (Fib217 (Fib3 8 (Fib3 2 Fib0)))

10 42 ®
L 01 17 ;
L 10 8 ;
L 10 2 ;
L 00 I

The only “pop” operation discards the previous top-of-stack
f (Cont (Fib3 nl ¢) n2) = f (Contc (nl + n2))

so this code will never generate a tree.
Sequential memory allocation is safe.

Specializing Data Types: Recovering a Classical Stack

Fib3 42 (Fib217 (Fib3 8 (Fib3 2 Fib0)))

4: 10 42 3
3: 01 17 2
2: 10 8 1
1: 10 2 0
0: 00

Sequential memory allocation makes “next” pointers predictable...

Specializing Data Types: Recovering a Classical Stack

Fib3 42 (Fib217 (Fib3 8 (Fib3 2 Fib0)))

4: 10 42
3: 01 17
2: 10 8
1: 10 2
0: 00

...so there is no need to store them.
Constructor (Fib0) always returns 0.
Constructors (Fib2/3 n s) writes (Fib2/3 n) at s+ 1 and returns s+ 1.

Reading 0 returns Fib0; reading s returns (Fib2/3 n s —1).

Specializing Data Types

Stacks are the tip of the iceberg

Synthesizing custom memory systems
for specific types is a key goal of this
project

Shape Analysis relevant here
This is a simple case; a simple,
mathematical IR enables such clever

optimizations.

Imagine trying to do this in C.

Unrolling Code for Better Parallelism

fib0=0
fib1=1 fib (n-1) and fib (n-2) are
fib n=fib (n-1)+fib (n-2) functionally independent.

Yet because they share fib, they
are performed sequentially.

Unrolling Code for Better Parallelism

fib0=0

fib1=1

fib n= fib’ (n—-1) +fib” (n-2)
fib’ 0=0

fib’ 1=1

fib’ n=fib’ (n-1) +fib' (n-2)
fib” 0=0

fib” 1=1

fib” n=fib” (n-1)+fib” (n-2)

By unrolling the recursion once,
fib’ and fib” run in parallel.

A further improvement: balance
the work done by fib’ and fib”’

Unrolling Types for Better Locality

data Stack = Fib2 Int Stack .
| Fib3 Int Stack Each Stack object naturally

| Fibo represents a single activation
record

Unrolling Types for Better Locality

data Stack = Fib2 Int Stack’
| Fib3 Int Stack
| Fibo

data Srack’ = Fib2 Int Stack”
| Fib3 Int Stack”
| Fib0o

data Srack” = Fib2 Int Stack’’
| Fib3 Int Stack™
| Fibo

data Stack’”’ = Fib2 Int Stack
| Fib3 Int Stack
| Fib0o

A similar unrolling amounts to
packing records that can be
processed in parallel

Abstract data types enables this

Imagine trying to do this safely in
a C compiler

Example: Huffman Decoder in Haskell

data HTree = Branch HTree HTree
| LeafChar

decode :: HTree —> [Bool] —> [Char] —— Huffman tree & bitstream to symbols

decode table str = decoder table str
where
decoder (Leaf's) i = s : (decoder table i) —— Identified symbol; start again
decoder _[] =[]
decoder (Branch f_) (False:xs) = decoder f xs —— 0: follow left branch
decoder (Branch _ f) (True:xs) = decoder t xs —— 1: follow right branch

Three data types: Input bitstream, output character stream, and
Huffman tree

Optimizations

Split
R% Memories | [Input R% Output

»

In FIFO H >+ H Out FIFO

¥ Use Streams

Mem Mem
¥ Unroll for locality

(170N +§ %3, MouFio]

MM

¥ Speculate
T

| — Out FIFO

]

In FIFO

Mem Mem

Target Applications

» “Data-parallel irregular applications [that] manipulate large
pointer-based data structures like graphs”

[Pingali et al.’s Galois project]

» Datatype accelerators

Hash tables, Balanced trees, Heaps

» Application-domain accelerators

Relational databases, Crypography, Data compression

» Non-scientific computing: the stuff that’s hard for vector units
and GPGPUs

Acknowledgements

Project started while at MSR Cambridge

Satnam Singh (now at Google)

Simon Peyton Jones (MSR)

Martha Kim (Columbia)

