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Moore’s Law: Lots of Cheap Transistors...
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Gordon Moore, Cramming More Components onto Integrated Circuits,
Electronics, 38(8) April 19, 1965.



Pollack’s Rule: ...Give Diminishing Returns for Processors
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Single-core processor performance follows the square root of area.

It takes 4 x the transistors to give 2x the performance.

Fred J. Pollack, MICRO 1999 keynote. Graph from Borkar, DAC 2007



Dally: Calculation is Cheap; Communication is Costly

64b FPU
0.1mn?
50p) /op
1.5GHz

“Chips are power limited
and most power is spent
moving data

64b Imm
Channel
25p) /word

10mm 250pJ, 4 cycles

Performance = Parallelism

64b Off-Chip
Channel
1nJ/word

Efficiency = Locality

Bill Dally’s 2009 DAC Keynote, The End of Denial Architecture



Parallelism for Performance and Locality for Efficiency

Dally: “Single-thread processors are in
denial about these two facts”

We need

different programming paradigms
and

different architectures

on which to run them.




Bacon et al.’s Liquid Metal

plain text . . ;
public static Unsigned64 DEScoder (KeySchedule keys,

(64 bits) Unsigned64 text)
{
1P Unsigned64 block = text.permute (IP.Permutation);

Unsigned32 R = block.extractBits (sixtyfour.b0 ,
sixtyfour.b31);

Unsigned32 L = block.extractBits (sixtyfour.b32,
sixtyfour.b63);

for ( sixteen round ) {

1k

Unsigned32 F = Fiestel (keys, round, R);

Unsigned32 X = F ~ L;

L = R,

R = X;

13 more rounds }

Unsigned64 LR = makeUnsigned64 (R, L);

return LR.permute (FP.Permutation);

«—
-«
«—

cipher text
(64 bits)

Fig. 2. Block level diagram of DES and Lime code snippet

JITting Lime (Java-like, side-effect-free, streaming) to FPGAs
Huang, Hormati, Bacon, and Rabbah, Liquid Metal, ECOOP 2008.



Goldstein et al.’s Phoenix

int squares()

Synthesized by CAB

pipeline
stages

for (;i<10;i++)
sum 4= i*i;
return sum;

} loaded
value
use
memory access network
Figure 8: Memory access network and implementation of the value
and token forwarding network. The LOAD produces a data value
Figure 3: C program and its representation comprising three hy- consumed by the oval node. The STORE node may depend on the
perblocks; each hyperblock is shown as a numbered rectangle. The load (i.e., we have a token edge between the LOAD and the STORE,
dotted lines represent predicate values. (This figure omits the token shown as a dashed line). The token travels to the root of the tree,
edges used for memory synchronization.) which is a load-store queue (LSQ).

C to asynchronous logic, monolithic memory

Budiu, Venkataramani, Chelcea and Goldstein, Spatial Computation, ASPLOS 2004.



Ghica et al.'s Geometry of Synthesis

Figure 1. In-place map schematic and implementation

Algol-like imperative language to handshake circuits
Ghica, Smith, and Singh. Geometry of Synthesis IV, ICFP 2011



Greaves and Singh'’s Kiwi

public static void SendDevicelD()
{ int devicelD = 0x76;
for (inti=7,i>0;i——)
{ scl = false;
sda_out = (devicelD & 64) = 0;
Kiwi.Pause(); // Set it i—th bit of the device ID
scl = true; Kiwi.Pause(); // Pulse SCL
scl = false; devicelD = devicelD << 1;
Kiwi.Pause();

C# with a concurrency library to FPGAs

Greaves and Singh. Kiwi, FCCM 2008



Arvind, Hoe et al.’s Bluespec

GCD Mod Rule

Gcd(a, b) if (a>b)A(b#£ 0) — Ged(a—b, b)
GCD Flip Rule

Gcd(a, b) if a<b — Ged(b, a)

T T
Flip+"" Mod
T Mod

Figure 1.3 Circuit for computing Ged(a, b) from Example 1.

Guarded commands and functions to synchronous logic

Hoe and Arvind, Term Rewriting, VLSI 1999



Sheeran et al.’s Lava

X x+ty
bfly :: CmplxArithmetic m
=> [CmplxSig] -> m [CmplxSig]
bfly [i1, i2] =
do ol <- csubtract (i1, i2) y X-y
02 <- cplus (i1, i2) -1
return [ol, 02] Figure 9: A butterfly

bflys :: CmplxArithmetic m
=> Int -> [CmplxSigl -> m [CmplxSig]
bflys n =

riffle >-> raised n two bfly >-> unriffle
Figure 10: A butterfly stage of size 8 expressed with riffling

Functional specifications of regular structures

Bjesse, Claessen, Sheeran, and Singh. Lava, ICFP 1998



Kuper et al.’s CAaSH

fir (State (zs, hs)) ¢ =
(State (shiftInto x xs, hs), (z > xs) e hs)

Fig. 6. 4-taps FIR Filter

More operational Haskell specifications of regular structures

Baaij, Kooijman, Kuper, Boeijink, and Gerards. CAash, DSD 2010



AutoESL (Xilinx, was Cong’s xPilot)

¢ SSDM (System-level Synthesis Data Model)

= Hierarchical netlist of concurrent processes and communication
channels

)
n:“- lt Channel(s) l' hv.nsl
mmb Lo "ﬂ“‘)

Module |} Module

.........

= Each leaf process contains a sequential program which is represented
by an extended LLVM IR with hardware-specific semantics
* Port /10 interfaces, bit-vector manipulations, cycle-level notations
SystemC input; classical high-level synthesis for processes

Jason Cong, presentation at ISARS 2005



Optimization of Parallel “Programs” Enables Chip Design
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The Lesson of Logic Synthesis: the Enabling Technology

How do you compile and optimize a digital logic circuit?

fi = abcd + abce + abed + abcd +ac + cd f + abcde + abed f
fr=bdg+bdfg+bdg+bdeg

fi=clx+a)+acx
f2=8x L
x=db+f)+db+e)

After Brayton et al.’s class on Multi-Level Logic Synthesis



The Lesson of Logic Synthesis: the Enabling Technology

How do you compile and optimize a digital logic circuit?
Use a simple, formal model and automate it.

fi = abcd + abce + abed + abcd +ac + cd f + abcde + abed f
fr=bdg+bdfg+bdg+bdeg
Minimize
fi = bed + bee+ bd +ac+ cd f + abede + abed f
= bdg+dfg+ﬁg+aeg
Factor
fi = c(b(d+e)+b(d+ f)+a) +ac(bde + bd f)
f=g(db+f)+db+e)
Decompose
fi=clx+a)+acx
fo=gx L
x=db+f)+db+e)

After Brayton et al.’s class on Multi-Level Logic Synthesis



High-Level Synthesis: Adding Time Meant Scheduling

(@)

Eatity bde is

port ( clock: in bie;

outl,out2,out3,outd: integer range 0 to 3);

end bde;

Architacturs behavior of bde is

Begin

Variable A, B : integer range 0 to 3;

Begin

Wait until not clock’atable and clock='1’;

5 im0
case (m1) is
when 0

end process;

end behavior;

Figure 2: (a) VHDL description; (b) Separate control and

data-flow graphs

(b) CFG
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Figure 3: (a) FSM for scheduled CFG in Figure 2(b),
(b) Hardware implementation of FSM using one-hot encod-
ing

Bergamaschi, Behavioral Network Graph, DAC 1999.



The High-Level Synthesis Lessons

Don’t Start From C

“The so-called high-level specifications in reality grew out of
the need for simulation and were often little more than an
input language to make a discrete event simulator
reproduce a specific behavior.”

Gupta and Brewer, High-Level Synthesis: A Retrospective, 2008.
Don’t Forget Memory

Goldstein et al.’s Phoenix synthesized asychronous hardware from
ANSI C. Required heroic work [CGO 2003] to recover any
parallelism.



Our Approach

abstraction

Cetal
gcc et al.

x86 et al.®

today

time
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Our Approach

Higher-level languages

abstraction

Cetal
gcc et al.

x86 et al.

More hardware reality
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time



Why Functional Specifications?

» Referential transparency/side-effect
freedom make formal reasoning about
programs vastly easier

» Inherently concurrent and race-free
(Thank Church and Rosser). If you
want races and deadlocks, you need to
add constructs.

» Immutable data structures makes it
vastly easier to reason about memory
in the presence of concurrency




Why FPGAs?

» We do not know the structure of future
memory systems
Homogeneous/Heterogeneous?
Levels of Hierarchy?

Communication Mechanisms?

» We do not know the architecture of
future multi-cores
Programmable in Assembly/C?
Single- or multi-threaded?

Use FPGAs as a surrogate. Ultimately too flexible, but
representative of the long-term solution.



A Modern High-End FPGA: Altera’s Stratix V

2500 dual-ported 2.5KB 600 MHz memory blocks; 6 Mb total
350 36-bit 500 MHz DSP blocks (MAC-oriented datapaths)
300000 6-input LUTs; 28 nm feature size

General-Purpose 1/0s (LVDS, Memory Interfaces)
|| MW ———————— core Logic Fabric

a 1] Variable-Precision
] BS&———————— DSPBlocks

M20K Internal
Memery Blocks

Fractional PLLs

Embedded HardCopy Block:
PCI Express Gen3, Gen2, Gen1

Hard |P Per Transceiver:
3G/6G PCS, 10G Ethernet PCS,
| || [ Interlaken PCS

| || | || ma
— High-Speed
General-Purpose I10s (LVDS, Memory Interfaces) B ceivers
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Our Starting Point: A Functional IR

Inspired by the Glasgow Haskell Compiler’s “Core” representation

expr ::i= name var* Function call

Includes primitive arithmetic operators and type constructors

Non-tail-recursive calls generally inlined to improve parallelism;
Mycroft and Sharp’s [[IWLS 2000] propose sharing policies

True recursion transformed to tail recursion with a stack



Our Starting Point: A Functional IR

Inspired by the Glasgow Haskell Compiler’s “Core” representation

expr ::i= name var* Function call
| let (var = expr)™ in expr Parallel evaluation

Parallelism and sequencing:

let vy =¢e; el
Uy =es e» pevaluated in parallel, then e
v3=egine es3



Our Starting Point: A Functional IR

Inspired by the Glasgow Haskell Compiler’s “Core” representation

expr ::i= name var* Function call
| let (var = expr)™ in expr Parallel evaluation
| case var of (pat -> expr)* Multiway conditional
pat ::= literal Exact match
| _ Default
| Constr. (var| literal | )* Match a tagged union

Evaluate and return one of the expressions based on the pattern



Our Starting Point: A Functional IR

Inspired by the Glasgow Haskell Compiler’s “Core” representation

expr ::i= name var* Function call
| let (var = expr)™ in expr Parallel evaluation
| case var of (pat -> expr)* Multiway conditional
| var Variable reference
| literal Literal value
pat ::= literal Exact match
| _ Default

| Constr. (var| literal | )* Match a tagged union



The Type System: Tagged Unions

Types are primitive (Boolean, Integer, etc.) or tagged unions:

type ::= Type Named type/primitive
| Constr Type* | --- | Constr Type* Tagged union

Subsume C structs, unions, and enums
Comparable power to C++ objects with virtual methods

Sometimes called “algebraic data types”: sums of products



The Type System: Tagged Unions

Types are primitive (Boolean, Integer, etc.) or tagged unions:

type ::= Type Named type/primitive
| Constr Type* | --- | Constr Type* Tagged union
Examples:
data Intlist = Nil —— Linked list of integers

| ConsInt Intlist

data Bintree = Leaf Int —— Binary tree w/ integer leaves
| Branch BinTree Bintree

data Expr = Literal Int —— Arithmetic expression
| VarString
| Binop Expr Op Expr

data Op = Add | Sub | Mult| Div



Syntax-Directed Translation of Expressions to Hardware

80 —

inputs =

— ready

— result

Combinational functions:

go [ L
inputs EC_ 0
ready [ |
result

Sequential functions:

ck L _ruu

go I
inputs EX =
ready [ L_

result TN EEC



Translating Let and Case

- — ready
e
n 3 ¢ | resuit

Let makes all new variables available to its body.

— el
g0 ready

result

v — *}en*)

Case invokes one of its sub-expressions, then synchronizes.



Representing Recursive Algebraic Data Types

Consider a list of integers:

data Intlist = Nil
| ConsInt Intlist

An obvious representation:

0 Nil

1| Integer Pointer Cons Int Intlist

» Usual byte-alignment unnecessary & wasteful in hardware
» Naturally stored & managed in a custom integer-list memory

» Width of pointer can depend on integer-list memory size



Removing Recursion: Recursive Fibonacci Example

Starting point: a dumb way to compute Fibonacci numbers
fib1=1

fib2=1

fib n= fib (n-1) + fib (n-2)



Removing Recursion: Recursive Fibonacci

Reformatting
fib 1

fib 2
fib n

1

1
fib (n—-1)+
fib (n-2)



Removing Recursion: Continuation-Passing Style

In continuation-passing style (the “and then?” transformation):

fibl'1 ¢ = cl

fibl1 2 ¢ = cl

fibl n ¢ = fibl (n-1) —— Calls made sequential
(\nl—>  fibl (n-2) —— Intermediates named
(\n2-—> ¢ (nl+n2)) —— Add scheduled last

fib n = fibl n(\x—>x —— Wrapper



Removing Recursion: Naming Functions

Naming functions; converting unbound variables to arguments:

fibl'1 ¢ = cl

fibl1 2 ¢ = cl

fibl n ¢ = fibl (n-1) (fib2n ¢) —— Unbound variables passed
fib2 n cnl = fibl (n-2) (fib3 nl ¢) —— Lambdas named

fib3 nlcn2 = c (nl1+n2

fib n = fibl n fib0o

fib0 n =n —— Identity function named



Removing Recursion: True Recursion to Tail Recursion

Introducing a stack; merging functions

f (Fibl11 o) = f (Contcl) —— Single function
f (Fibl12 ¢) =f (Contcl) —— Continuation the stack
f (Fibl n ¢ = f (Fibl (n—1) (Fib2nc))

f (Cont (Fib2n c) nl) = f (Fibl (n-2) (Fib3 nl c))
f (Cont (Fib3 nl c) n2) = f (Contc (nl + n2))

f (Fib n) = f (Fibl n Fib0)

f (Cont Fib0 n) =n

—— Continuations (references to the lambda expressions)
data Stack = Fib2 Int Stack ——fib2nc
| Fib3 Int Stack ——fib3nlc
| Fib0o —— identity function (bottom of stack)

—— Invoke a named function or a continuation
data Action = Fib Int —— fib n (outside call)
| FiblInt Stack —— fibl n c (recursive call)
| ContStackInt ——c (...) (invoke continuation)



Fibonacci Datapath

go L’\F_ 8 i {
|

: arg
n _@ 2 ready |— ready
action tos—{tos  result —— result
go resultf—|stack
stack { £
Int — |_ arg arg
Action —
Stack — stack f
f (Fibl11 o) = f (Contcl) data Stack = Fib2 Int Stack
f (Fib12 c¢) = f (Contcl) | Fib3Int Stack
f (Fibln o©) = f (Fibl (n—1) (Fib2 nc)) | Fibo
f (Cont (Fib2n ¢) nl) = f (Fibl (n-2) (Fib3 nl c))
f (Cont (Fib3 nl c¢) n2) = f (Contc (nl + n2)) data Action = Fib Int
f (Fib n) = f (Fibl n Fib0) | FiblIInt Stack
f (Cont Fib0 n) =n | Cont Stack Int



Implementing the Stack in Hardware

This uses a list-like stack data type:

data Stack = Fib2 Int Stack
| Fib3 Int Stack

| Fibo

A naive, but correct, way to implement it in hardware:

00
01| Integer Pointer
10| Integer Pointer

k—i
Encoded return address

1 1
Function activation record

Fib0

Fib2 Int Stack

Fib3 Int Stack



Specializing Data Types: Recovering a Classical Stack

Fib3 42 (Fib217 (Fib3 8 (Fib3 2 Fib0)))

10 42 ®
L 01 17 ;
L 10 8 ;
L 10 2 ;
L 00 I




Specializing Data Types: Recovering a Classical Stack

Fib3 42 (Fib217 (Fib3 8 (Fib3 2 Fib0)))

10 42 ®
L 01 17 ;
L 10 8 ;
L 10 2 ;
L 00 I

The only “pop” operation discards the previous top-of-stack
f (Cont (Fib3 nl ¢) n2) = f (Contc (nl + n2))

so this code will never generate a tree.
Sequential memory allocation is safe.



Specializing Data Types: Recovering a Classical Stack

Fib3 42 (Fib217 (Fib3 8 (Fib3 2 Fib0)))

4: 10 42 3
3: 01 17 2
2: 10 8 1
1: 10 2 0
0: 00

Sequential memory allocation makes “next” pointers predictable...



Specializing Data Types: Recovering a Classical Stack

Fib3 42 (Fib217 (Fib3 8 (Fib3 2 Fib0)))

4: 10 42
3: 01 17
2: 10 8
1: 10 2
0: 00

...so there is no need to store them.
Constructor (Fib0) always returns 0.
Constructors (Fib2/3 n s) writes (Fib2/3 n) at s+ 1 and returns s+ 1.

Reading 0 returns Fib0; reading s returns (Fib2/3 n s —1).



Specializing Data Types

Stacks are the tip of the iceberg

Synthesizing custom memory systems
for specific types is a key goal of this
project

Shape Analysis relevant here
This is a simple case; a simple,
mathematical IR enables such clever

optimizations.

Imagine trying to do this in C.



Unrolling Code for Better Parallelism

fib0=0
fib1=1 fib (n-1) and fib (n-2) are
fib n=fib (n-1)+fib (n-2) functionally independent.

Yet because they share fib, they
are performed sequentially.



Unrolling Code for Better Parallelism

fib0=0

fib1=1

fib n= fib’ (n—-1) +fib” (n-2)
fib’ 0=0

fib’ 1=1

fib’ n=fib’ (n-1) +fib' (n-2)
fib” 0=0

fib” 1=1

fib” n=fib” (n-1)+fib” (n-2)

By unrolling the recursion once,
fib’ and fib” run in parallel.

A further improvement: balance
the work done by fib’ and fib”’



Unrolling Types for Better Locality

data Stack = Fib2 Int Stack .
| Fib3 Int Stack Each Stack object naturally

| Fibo represents a single activation
record



Unrolling Types for Better Locality

data Stack = Fib2 Int Stack’
| Fib3 Int Stack
| Fibo

data Srack’ = Fib2 Int Stack”
| Fib3 Int Stack”
| Fib0o

data Srack” = Fib2 Int Stack’’
| Fib3 Int Stack™
| Fibo

data Stack’”’ = Fib2 Int Stack
| Fib3 Int Stack
| Fib0o

A similar unrolling amounts to
packing records that can be
processed in parallel

Abstract data types enables this

Imagine trying to do this safely in
a C compiler



Example: Huffman Decoder in Haskell

data HTree = Branch HTree HTree
| LeafChar

decode :: HTree —> [Bool] —> [Char] —— Huffman tree & bitstream to symbols

decode table str = decoder table str
where
decoder (Leaf's) i = s : (decoder table i) —— Identified symbol; start again
decoder _[] =[]
decoder (Branch f_) (False:xs) = decoder f xs —— 0: follow left branch
decoder (Branch _ f) (True:xs) = decoder t xs —— 1: follow right branch

Three data types: Input bitstream, output character stream, and
Huffman tree



Optimizations

Split
R% Memories | [Input R% Output

»

In FIFO H >+ H Out FIFO

¥ Use Streams

Mem Mem
¥  Unroll for locality

(170N +§ %3, MouFio]

MM

¥  Speculate
T

| — Out FIFO

]

In FIFO

Mem Mem




Target Applications

» “Data-parallel irregular applications [that] manipulate large
pointer-based data structures like graphs”

[Pingali et al.’s Galois project]

» Datatype accelerators

Hash tables, Balanced trees, Heaps

» Application-domain accelerators

Relational databases, Crypography, Data compression

» Non-scientific computing: the stuff that’s hard for vector units
and GPGPUs
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