Icicle: Open-Source Hardware Support for
Top-Down Microarchitectural Analysis on RISC-V

Matthew Edwin Weingarten, Michael Grieco, Stephen A. Edwards, Tanvir Ahmed Khan
Columbia University, New York, USA
matthew.weingarten@columbia.edu, michael.grieco@columbia.edu, sedwards@cs.columbia.edu, tk3070@columbia.edu

Abstract—Performance characterization enables software
to efficiently utilize the underlying hardware by pinpointing
key performance bottlenecks. The need for specialization and
hardware/software co-design continues to drive up the pace of
hardware development, especially noticeable in open-source
platforms. Unfortunately, performance characterization on
these platforms remains challenging, as RISC-V processors do
not support the industry standard characterization methodol-
ogy, Top-Down Microarchitectural Analysis (TMA). This lack
of support inhibits practitioners who rely on open-source
tooling to understand workload bottlenecks and researchers
proposing novel characterization methods.

In this paper, we introduce IcicleP_-] the first full system-stack
TMA implementation on widely-used open-source processors,
Rocket and BOOM. Icicle enables TMA by adding three
and seven new performance events to Rocket and BOOM
respectively, while also revising the physical implementation
of performance counters to support monitoring concurrent
events. Icicle also includes a perf-like software tool and
a trace-based validation infrastructure. We evaluate Icicle’s
efficacy with three case studies, accuracy against trace-based
ground truth, and overhead of adding new events and counter
architecture, measured in terms of post-synthesis power and
timing analysis.

Index Terms—Computer architecture, Computer perfor-
mance, Performance evaluation, Microarchitecture, RISC-V
instruction set architecture

I. INTRODUCTION

Characterization is essential in the post-Moore era to
identify and remedy performance bottlenecks [37], [68],
[98]. Accurate pinpointing of these bottlenecks enables
optimizations such as manual tuning of workloads [36], [62],
[104], [116], automated compiler techniques including Profile-
Guided Optimizations [32]], [77], [78]], [89], or modifications
to the hardware itself [57]], [60], [61], [63], [64], [66], [91].
However, characterizing modern hardware is challenging due
to the growing design complexity [50], [81]-[83]]. Successfully
locating performance bottlenecks often requires a detailed
understanding of the underlying hardware [28]], [51], [53].

To enable finding performance bottlenecks without know-
ing hardware details, hardware vendors [5]], [55], [75] and
software profilers [7], [38] adopt the industry-standard
characterization methodology, Top-Down Microarchitectural
Analysis (TMA) [107]. TMA feeds values of hardware perfor-
mance events [40]], [84] to predefined models [6] and classifies
pipeline slots into high-level categories. Drilling down these

'We open source all of our work at https://github.com/ice-rlab/Icicle

categories further to pinpoint specific sources of pipeline stalls
(e.g., cache misses or execution unit contentions), TMA helps
users and automated tools find effective optimizations [16],
(23], [124]), {691, 1851, [92l], 1930, [95], [111]], [112]), [115]. Alas,
while TMA is readily available on Intel [5]-[7], AMD [55],
and ARM [75] processors, open-source RISC-V processors
provide limited TMA support [15]], [74], [96].

RISC-V has a robust and growing toolchain ecosystem [?2]].
Platforms such as Chipyard [18] enable rapid prototyping of
processors and system on chips (SoCs), facilitating research
into microarchitectural improvements [51]], [53], custom
processor designs [22], [114], and hardware accelerators [57],
[eol, [71], [72], [79]], [86]]. However, support for performance
characterization remains limited. Currently, conducting a TMA
performance characterization is infeasible on open-source RISC-V
cores due to insufficient hardware performance events. Even for
an in-order core like Rocket [22]], existing performance events
cannot pinpoint stalls, as we show in resulting in an
incomplete analysis. This challenge intensifies for superscalar
and out-of-order designs such as BOOM [114].

The insufficiency of Performance Monitoring Units (PMUs)
impedes both research and development efforts across open-
source RISC-V platforms. Since industry drove most prior
work in this field [3], [6], [74], [[75], [107], the open-source
RISC-V environment presents a unique opportunity to develop
PMU architectures and performance characterization tools.
Many researchers rely on this ecosystem to experiment
with microarchitectural improvements [19]], [46], [97]], [113],
hardware/software co-design [[19]], [27], [41], [88], [94], [108],
or design space exploration [25[], [56], [110]]. These research
efforts would benefit from reliable characterization as it
provides insights during the design process [106], while also
increasing confidence in the evaluation of workloads [111].
Additionally, despite the trend towards offloading an ever-
increasing fraction of workloads to accelerators [49]], CPU
performance remains critical as the sequential code running
on the CPU remains the dominating factor in runtime [21],
[53]. Finally, monitoring hardware on heterogeneous systems
remains an open research area [29], [54], [67], which is
much harder to pursue without solid foundations of CPU
characterization methods [83]], [92]], [[117].

Missing performance events to capture and detect patholo-
gies in the pipeline at run time is the main contributor to the
insufficiency of characterization on open-source platforms. As
we demonstrate a motivating example in the insufficiency

https://github.com/ice-rlab/Icicle

results in an incomplete understanding of how well software
is utilizing the underlying hardware, harming the ability to
build characterization tools. However, choosing which metrics
to track on modern hardware is challenging as bottom-up
events (e.g., cache-miss events [1f], [4], [8], [39]) provide an
inaccurate performance picture on modern hardware [107].
Monitoring pipeline events for performance issues also
requires careful consideration, as stringent requirements on
physical design overhead drive the number of PMU counter
registers down [70]], [73]]. Proprietary processors amortize the
cost of monitoring by employing sampling and approximation
techniques, ignoring non-determinism [26], [100]], [[101], [[109].
Unfortunately, existing literature fails to quantify the physical
overhead of performance events and counters in terms of
post-logic synthesis metrics for power, area, and timing.
Finally, performance events and counter values provide
only a snapshot of the processor pipeline across many cycles.
Consequently, exhaustively identifying the root causes of
pipeline stalls requires performance events that are too
invasive [50], incurring an unreasonable overhead. Similarly,
root causes of stalls also overlap in time in a way that is not
always possible to capture with performance events, yet there
is no way to quantify the inaccuracy [52].
Contributions. In this paper, we develop Icicle to address these
issues, and make the following contributions:

- Top-down microarchitectural analysis support for
both Rocket [22] and BOOM [114], by introducing 3
and 7 new performance events in Rocket and BOOM
respectively, and an accompanying software toolchain
to read counters and compute TMA metrics (§[V-A).

- Superscalar counter implementations with low phys-
ical overheads (post-placement increase of 4.15% in
power, 1.54% in area, 9.93% in wirelength, at 200MHz)
that allow tracking of multiple performance events per
cycle, a key requirement for characterization on wide-
issue designs (§IV-B).

- Trace-based validation to help design and evaluate the
accuracy of our TMA implementation (§IV-C).

- Comprehensive evaluation of our TMA implementa-
tion on SPEC CPU2017 [31] and CoreMark [47] (§V-A),
multiple case studies, trace-based validation (§V-B), and
a detailed efficiency analysis of the new performance
events and counters’ physical implementations in terms
of power, area, and timing (§V-C).

II. BACKGROUND
To understand the motivating example in we first cover
the PMU events and counters architecture (§II-A), followed
by the TMA methodology (§II-B), and finally an overview of
the Rocket and BOOM microarchitectures as they relate to
performance monitoring (§I-C).

A. PMU Counters Architecture

Chipyard has a single performance event interface shipped
with Rocket and reused across all hardware. The principal
component of the Performance Monitoring Unit (PMU) or

Event set 0 Event set 1

Fig. 1: Counter Cy and event e;;, where ¢;; is event j in event set i.

Hardware Performance Monitor (HPME] is a counter — the
piece of hardware that increments and retains the value of
the number of times the counter is triggered.

While BOOM and Rocket use the same interface, they do
not track the same events. We call the signal that triggers
this counter an event, such as a cache miss or an instruction
retirement signal. Events are grouped into event sets. Each
event can be mapped to one or many counters as long as
every event mapped to the same counter belongs to the same
event set. Fig. [1] shows that ¢(increments whenever events
€00 or ep signal high. Events can be mapped to multiple
counters; ey ; maps to both ¢y and ¢;. However, ep | could
not map to ¢ as e does not belong to the same event
set [1], [2]], [8]. Importantly, if two events are mapped to the
same counter signal high in the same cycle, the counter only
increments by one.

B. Top-Down Microarchitectural Analysis

TMA provides a methodology to interpret values collected
from PMUs to pinpoint bottlenecks. Slots are the primary
unit of abstraction. Intuitively, the number of slots represents
the “work” required to process a specific workload. Each slot
corresponds to one cycle spent at each stage of each lane in
the pipeline. On a high level, TMA boils down to classifying
every slot into a collection of hierarchical classes.

Drilling down into the class hierarchy helps to pinpoint the
root cause of stalls. The top-level classes on any CPU typically
include Backend Bound, Frontend Bound, Bad Speculation,
and Retiring. The Retiring category constitutes the only
category that represents useful work and is typically calculated
by the number of micro—opsE] (u-ops) retired. A workload
that is Frontend and I-cache Bound may see the highest
impact from code size reductions or prefetching [24], [63],
[77], 891, [[111f], a Bad Speculation Bound workload might
benefit from improvements to branch prediction [65]], [90],
while Backend Bound workloads can be improved with
strength reduction [34]], instruction scheduling [48]], or data
prefetching [99] based on being Core or Memory Bound.

TMA outperforms traditional “bottom-up” approaches, that
assign a static cost to each event. Bottom-up approaches fail to
account for latency-hiding techniques in modern processors —
for example, not every cache miss results in the same number
of stalled cycles.

C. Performance Events in Rocket and BOOM
Performance characterization in TMA fashion entails iden-

tifying stalls and attributing each stall to a root cause.

2From now on we will refer to the counter architecture as PMUs.
3We use the term p-ops exclusively without loss of generality, even though
Rocket does not use p-ops.

Fetch Decode Execute Mem WB Fetch Decode/Rename Dispatch Issue Execute Memory
O 7 he & © Fetch buffer
-cache 0) D 6
ITLB ol -cache & 1
2
o D
-S .5 T g 2 Branch Imem resp buffer)
273 + _ IO —
ST Prediction| .
[w] redIc
5% —mmm | wF g el [--.
buffer |

Frontend Backend

(a) Simplifed Rocket Core pipeline

Frontend

L2 Cache + L2 TLB Backend

(b) Slmphfled BOOM Core pipeline

Fig. 2: Core pipelines with marked performance event sources.

Characterization tools collect or sample strategically chosen
performance events by interacting with PMU hardware. Fig.
shows a simplified diagram of the 5-stage in-order Rocket
pipeline and 10-stage superscalar OoO BOOM pipeline. Tab. [[
lists all performance events. There are three existing event sets:
Basic, Microarchitectural, and Memory. The TMA category
contains the events added in this work. A stall may occur in
the issue/execute stages due to structural- and data-hazards
O or 9) a branch misprediction (O or @) that may
cause an already issued p-op to be flushed, or a miss in the
instruction cache (I-cache) ((()) or 0) to name a few examples.
Dedicated events, like I$-blocked event, intend to capture the
number of cycles lost due to a miss in the I-cache. Notice
that the BOOM pipeline does not provide a comparable event
to diagnose I-cache stalls, as it is challenging to implement
such an event in an OoO pipeline.

III. MoTIVATION: WHY IS EVENT CHOICE CRITICAL?

The primary motivation for our work is that an incorrect
or incomplete set of performance events leads to poor perfor-
mance characterization and ultimately inaccurate conclusions.
To illustrate, we consider a scenario in which we aim to
precisely identify how many cycles are lost in the Frontend
of Rocket for a small bare-metal mergesort workload. Notice
that the only existing performance events on Rocket related
to the Frontend are I$-miss and I$-blocked O To diagnose
Frontend pathologies on mergesort, an intuitive first approach

TABLE I List of Rocket (above) and BOOM PMU (below) events. /@ =
event origin, * = new event, T = Top-level TMA, I = lower-level TMA.

Basic Microarchitect. Memory TMA Events”
Cycles Load-Use-inter. I$ miss O Instr. issued” O
Instr.R. Long-latency inter. ~ D$ miss Fetch bubbles* O
Load Csr-inter. D$-release Recovering”
Store I$-blocked O ITLB-miss O
Atomic D$-blocked @ DTLB-miss (1)
System Br—mispred.i OO L2-TLB-miss
Arith CF-targ.mis.
Branch Flush O
Fence® Replay O
Mul/Div-interlock O
FP inter. O
Cycles Br-mispred.‘\ 1$-miss o Uops-issued*Te
Instr. R. CF-target-mispred. ~ D$-miss @ Fetch-bubbles*fm
Exception Flush® D$-release @ Recovering*Tw
Branch resolved I-TLB$ miss c Uops-retired*fe
D-TLB$ miss @ I$-blocked*ioe
L2-TLB$ miss @ D$-blocked*iw

might consider defining a model that uses these two events
to gain insight into the number of Frontend stalls. Counting
these two events is the only feasible approach to measure
Frontend stalls. Alas, this approach is insufficient as Frontend
stalls also originate from sources other than I$-miss and
I$-blocked!

To demonstrate this insufficiency, we traced (§IV-C) a
mergesort microbenchmark in simulation to collect the cycle-
accurate state of 6 performance-critical Frontend events,
visualized in Fig. |3} Focus on subfigure (a), where the trace
is zoomed into a single I-cache miss event, highlighting the
I$-blocked and I$-miss events. Each dot represents a signal
being high at a specific clock cycle. Early in the runtime,
instructions are loaded into the processor, triggering an
I$-miss event. The miss is followed by around 40 cycles
of the I$-blocked event.

Now, zooming out again, we add events to the trace, not
part of the performance events supported by Rocket. The
decode stage and instruction buffer operate a ready-valid
handshake [80] at O We add both of these signals to the
trace as IBuf-valid and IBuf-ready. We can determine if there
is a stall that is caused by the Frontend if the decode stage
is ready for a new p-op , but the instruction buffer does
not contain any valid instructions. One additional caveat is
that the Frontend must not be Recovering from a branch
misprediction O We define:

FetchBubble = —Recovering A (ﬁIBuf—valid A IBuf—ready)

Focusing on the early parts of the trace below Fig. [3| (a),
the I$-blocked appears to accurately track the FetchBubble
signal. However, if we zoom into Fig. [3| (b), the I-cache is no
longer cold and there are no I$-miss signals in sight, yet the
Frontend of the pipeline is unable to supply instructions at
every cycle, although the decode stage is ready. These fetch
bubbles are also not due to branch misses or resteering, as
the core is not in a recovery state. Most importantly, this

[1$ miss

[1$ blocked

IBuf valid*

IBuf ready*

Recovering*

[FetchBubble*

30’00 40’00
Cycle
Fig. 3: Cycle-accurate trace of Frontend events for mergesort.

T T T
0 1000 2000 5000 Events

out-of-band validation in-band characterization

Temporal TMA validate
= TMA Model
inform

[Trace Decoder |i[

Perf Tool |

Software [TraceDriver _ |i[__PMUHamess |
I
Hardware ‘i Trace Bridge |

E':;ﬁ(@?é?.ﬁ' —1 Physical Counters

Rocket/BOOM

MOI4-ISTA

Fig. 4: Icicle overview.

phenomenon is not an isolated incident. Indeed, most Frontend
stalls are not related to the I-cache for this workload, as its
instruction footprint comfortably fits in L1 I-cache.

To summarize, existing performance events of Rocket fail to
detect the Frontend stall. This makes it extremely challenging
to properly characterize the performance of any workload
on Rocket without understanding the implementation details
of the pipeline. The same argument holds for BOOM, as
BOOM has both a more complex microarchitecture, while
simultaneously providing fewer performance events.

IV. IcicLE’S IMPLEMENTATION

We present Icicle, the first implementation of TMA on the
Chipyard ecosystem to enable researchers and practitioners
to seamlessly characterize workloads on open-source designs.
This comprises the full system-stack, from the addition of
new performance events to the processor pipelines, the PMU
counters architecture, all the way to the software stack that
includes a PMU harness and perf-tool to read counter values
and a performance and characterization tool to apply the
TMA model.

In particular, Icicle includes two types of components: (1)
in-band and (2) out-of-band components. In-band components
are all components native to the processor. This includes
the performance events (, counters implementation
(§IV-B), and collecting and interpreting performance data
inside the processor core (§IV-D). The in-band components
target users that wish to characterize workloads using TMA
both in and out of simulation. Out-of-band components help
design and validate functionality and evaluate area and timing
overhead. In particular, Icicle enables functional validation
with a Chipyard extension to collect execution traces (§[V-C),
while estimating area and timing overhead by integrating
with various VLSI flows (§V-C). The out-of-band components
target users that wish to evaluate characterization hardware
itself. We show how all components of Icicle work together

in Fig.
A. Adding Events for TMA

The primary limitation preventing effective TMA on Rocket
and BOOM cores is the lack of sufficient performance events.
To support TMA, we introduce three new events to Rocket
and seven events to BOOM (Tab. [I). Fig. 5] visualizes first-
and second-level TMA classes. The formulas of TMA used
for each class is presented in Tab.

Frontend Bad Speculation Backend Retiring
enoioh | 7 Resoution BrMispr | Machine Clears CoreBound | MemBound)s; 2 ol
@ |
a

Fig. 5: TMA classes for BOOM and Rocket.

In this section, we detail the rationale for each event added
to the BOOM pipeline. For each added event, we ensure it
satisfies two Design Principles (DP):

DP 1: New events should capture a performance pathology that
is not observable by any of the existing events.

An added event must be indispensable to categorize a slot
into Top-down category. Each added event comes at cost in
physical design that we aim to minimize. We discuss some
further approximation possibilities in

DP 2: New events should be minimally invasive, requiring little
to no additional state or complex logic to implement.

We define minimally-invasive events as single-cycle events
that do not require complex computing logic or finite-state ma-
chines with more than two states. Furthermore, the overhead
should only scale with the pipeline width. For example, while
it might be useful to track the runtime occupancy of the Fetch
Buffer @, doing so would introduce significant hardware
overhead. Instead, we opt for a lightweight approximation
using existing control signals, such as valid and ready.

1) Top-level Events: We begin with top-level categorization
organized by category. The Retiring category is the simplest to
capture and only requires counting retired z-ops. Since BOOM
provides only an instruction-retired counter by default, we
add a Uops-retired event using the ROB commit signals e
No events are added for the top-level Backend category, as

TABLE II: TMA model for BOOM with new performance events.

Derived Metrics

Miotal Ceyete X We

My (All flushes) Chiush + Com + Cpopee
My me (Br miss rate) Com/Mye

M, » (Non-fence flush) (Com + Clpee /Mg
Mg, (Machine-flush) Chush/Myg

M, (Recover-length) 4 (Cycles from Decode stage e to being issued 9)

Top-level TMA

Retiring Cret/Miotal
BadSpec (Citoued = Cret) Mg v + (Crec + Mn Cy) We
Motal

Frontend CeoienMiotal

Backend 1 — Frontend — BadSpec — Retiring
Lower-level TMA

MachCL (Cissued — Cret) M_c/Mioral

BrMispr. ((Cssued = Cret) Mir_mr + Cre) Miotal

Resteer. (Cissued = Cret) My me/Miotal

RecovBub Cro/Migtal

FetchLat. Ciie WelMiota

PCRes. Frontend — FetchLat

CoreBound Backend — C}j /Mol

MemBound Cip/Miotal

this is the most complicated to diagnose and can be inferred
based on the values of the other three classes.

Frontend. To capture Frontend-bound stalls, we implement
Fetch-bubbles. These occur when the Frontend fails to supply
enough p-ops for the Backend to operate at full capacity. The
Fetch-bubble event is equivalent to the one introduced in the
motivating example in Fig.

The Fetch Buffer supplies raw instruction data to the
decoders and can deliver up to W¢ instructions per cycle,
where W is the core width. We model Fetch-bubbles as W¢
per-lane events, where event i is asserted if the fetch packet is
valid, but decoder lane D; @ does not successfully handshake.
The decode stage itself never acts as a stall source, but can
put backpressure on the Frontend.

A challenge arises in avoiding misclassification during

pipeline flushes. For example, a mispredicted branch may
trigger a Frontend flush, resulting in fetch-bubbles that
are not attributable to the Frontend itself but rather to
Bad Speculation. To prevent this, fetch bubble events are
suppressed when the pipeline is in a recovery state. This is
tightly connected to the Bad Speculation category, which we
discuss subsequently.
Bad Speculation. To account for lost slots due to incorrect
speculation, we implement two new events: Uops-issued and
Recovering. The Bad Speculation category encompasses both
slots lost to pipeline flushes caused by incorrect speculation
along with the subsequent recovery phase. Common sources
of Bad Speculation include branch mispredictions and machine
clears, a “catch-all” for events such as memory disambiguation
failures [87]], [107]. Conceptually, the number of lost slots
due to flushes must be computed by taking a start point in
the pipeline, in our case Uops-issued &), and an end-point,
in our case Uops-retiring e - the difference in these gives
us the flush count. The flush count is unreliable if buffers
sit between start and end-point. This also informs the choice
to take Uops-issued instead of Uops-dispatched 0; issue-
queues may overinflate the number of lost slots due to
Bad Speculation. BOOM’s issue queues follow a valid only
protocol to their respective execution units, each of which
may contain multiple functional units. All stalling logic is
internal to the issue queue itself. BOOM typically includes
one issue queue for integer operations, one for memory, and
one for floating-point. The total issue width W; often exceeds
the commit width W¢; we use Wy valid signals to implement
this event.

While Uops-issued tracks the Backend of pipeline, flushes
will also affect the Frontend to recover the PC from a mis-
speculation. The Recovering event captures this phenomenon.
Furthermore, it is relevant to the Frontend, allowing us to
distinguish between fetch bubbles and recovery bubbles. This
event works as follows: This counter begins incrementing at
a flush event (9, 0, @) and continues incrementing until
a fetch packet is valid (4]

It is important to note that if a branch target misprediction
results in an I-cache miss of the new PC, the recovery
implementation attribute the lost slots to the Bad Speculation

category. To distinguish the two, one would have to decide
whether or not the miss would have happened if the target
was predicted correctly, which could depend on the prefetcher
implementation and we deem this approach to break DP 2.

Finally, strictly speaking, we want to avoid considering slots
lost by intended pipeline flushes by fence instructions, which
should not be considered performance pathology. Hence, we
add a Fence-retired instruction counter, since BOOM does
not have counters for each instruction type.

2) Low-level Events: In this section we discuss the events

necessary for second- and third-level TMA classes.
Low-level Frontend. To diagnose Frontend stalls, we intro-
duce the I$-blocked event. This event quantifies slots lost
specifically to I-cache misses, as opposed to stalls caused by
unresolved program counters (e.g., during indirect calls) or
any other Frontend issue. The main challenge in capturing
this event stems from the presence of multiple pipeline stages
and two buffers between the I-cache and decode: the I-mem
response Buffer e and the Fetch Buffer e The Fetch Buffer
typically holds two cycles of instruction data, while the I-
mem response buffer holds a single fetch width. Due to
this buffering, the visibility of an I-cache miss can vary
depending on the PC timing and buffer occupancy, making
stall attribution non-trivial. Furthermore, a prefetcher could
make an I-cache request well before the instruction is used.
We therefore adopt a simple heuristic which incurs a low
cost: the I$-blocked event is asserted whenever a refill is in
progress and the Fetch Buffer is empty.
Low-level Bad speculation. To refine the Bad Speculation
category, we distinguish between lost slots from branch
mispredictions and machine clears. Branch mispredictions
are prioritized, as they are a frequent optimization target.
We leverage existing events (Flush and Br-mispredict) and
assume each flush type results in a fixed number of lost slots.
More precise tracking would require attributing each flushed
p-op to its cause, which would violate DP 2.

At a third level, we use Uops-issued and Recovering to

separate flushed p-ops from Frontend recovery stalls. We
conservatively assume that branch mispredictions (9) cause
full pipeline flushes, while Backend-originating flushes (@)
are limited to the Backend. Our model therefore assumes every
recovery bubble is incurred only by a branch mispredict; thus
overestimating its impact.
Low-level Backend. The low-level Backend categorization dis-
tinguishes between Core Bound stalls, caused by structural or
data hazards, and Memory Bound stalls, where p-ops are stuck
in the issue queues waiting on cache misses. This distinction is
notoriously difficult to make in out-of-order processors, where
speculative execution is designed specifically to hide cache-
miss latency. However, even an approximate classification
between these two categories provides significant insight into
workload behavior.

To address this, we introduce the D$-blocked event to cap-
ture stalls attributable to the memory system. Implementing
this event is challenging due to the nature of modern issue
queues. These queues rely on a wake up mechanism [76],

selection
mask

[0] [11\---

Cj

Register

>

[log2(N)1

(a) Add wires. (b) Distributed counters.

Fig. 6: Counter implementations.

where a p-op remains in the queue until all its source operands
are ready, at which point it is “woken up.” Wake-up signals
may originate from either the bypass network or the register
file [14]. The key difficulty is that the wake-up signals abstract
away the cause of the stall, or the source of the wake-up signal.
Whether the p-op is stalled on a long-latency cache miss or
waiting for another ALU p-op due to a data dependency, the
wake-up mechanism is the same. Disentangling these cases
would require intrusive logic into the register file or bypass
network, once more violating our minimal-invasiveness design
principle (DP 2). Additionally, BOOM includes multiple types
of issue unit implementations [[14]], which would potentially
require specialized implementations for each.

To overcome this challenge we propose a simple heuristic.

In most cases if an the issue queues contain valid p-ops,
their operands are not ready, and there is a D-cache refill
in-flight, it is very likely that p-ops are stuck waiting for
the memory response. Matching this logic, for each commit
width slot W¢, we define a corresponding D$-blocked event
that is high if: (1) the issue queue failed to produce a valid
instruction, (2) the queue was not empty, and (3) at least one
MSHR is currently handling a cache miss. This heuristic may
occasionally misattribute a stall to the Mem Bound category
that is stalling for another reason. For example, if the stall is
actually due to a long-latency functional unit like a pipelined
multiplier, and an unrelated MSHR is active.
Rocket Events. Most of the proposed event categories apply
directly to Rocket, though implementation is considerably
simpler due to its in-order, non-speculative design. Notably,
Rocket already includes I$-blocked and D$-blocked counters.
Limitations. This work focuses on top-level and second-level
TMA categories and does not yet consider the impact of TLB
behavior, we leave for future work. Similarly, deeper levels
of the TMA hierarchy, while potentially insightful, require
more dedicated analysis implementation.

B. Counters Architecture

There is a lack of hardware support for efficiently monitor-
ing concurrent events, which has contributed to an overall lack
of robust performance monitoring infrastructure in Chipyard.
A naive approach monitors each concurrent event with a
separate counter. The advantage is that designers can easily
map new events to counters (Fig. [I). In our fetch bubbles
example at the top level of TMA (Fig. [2), each lane’s valid

signal would map to a separate counter. We denote this
approach as the scalar counters implementation. However, this
not always feasible as it exerts pressure on the already limited
number of counters [[70], [73]]. Hence, we design approaches
to combine information into the same counter mapping to
reduce the pressure on a limited set counters.

Additionally, there are implications in the physical design
process as tools must route wires from an event source to a
distant counter. This challenge is not immediately apparent
to an RTL designer. As we will see, the place and route tools
tend to place the counters in the middle of the die. These
tools find this to be optimal because the counters monitor
pieces of the entire design. The placement in the middle finds
the cheapest aggregate routing from event to counter. With
TMA, designs need many more events. Routing these event
signals on new wires to the counters can introduce a new
critical path, which would be a non-critical function limiting
performance. We address these challenges by implementing
new increment logic in the RTL design that reduces pressure
on the place and route process by simplifying the path from
event to the counter. Namely, we design two novel approaches
with awareness of wire length and combinational delay as
shown in Fig. [6]

Add wires. The first, more straightforward option is to
aggregate the number of sources that experienced the same
event in a cycle with a multi-bit increment signal routed to
a single counter. Fig. [6a] depicts the incremental aggregation,
in which the adders are placed locally before the main
counter, thus reducing the amount of wires going between
events and the counter registers. However, the partial sums
must reach the next adder over longer wires. Additionally,
as the number of event sources increases, there are more
combinational adders in between each event and the counter
register. Those two factors may sum to create a new critical
path that compromises the entire design. Implementing an
adder network lacks modularity as the adder architecture
highly depends on the number of events and sources. While
adder trees would be more optimal, we prioritized simplifying
the Chisel-based implementation in Chipyard that compiled
into a sequential chain to aggregate events. Regardless of the
adder network optimality, the multi-bit increment signals lead
to complications when using event sets such as in BOOM.
This is because the counters can multiplex the sources as
discussed in In the case where the increment signals
have different widths (i.e. if the events have a different number
of sources), the logic must pad the smaller increment signal
with extra bits to match the larger increment width.

Distributed counters. Our final strategy attempts to completely
remove the PMU logic from a potential critical path. Fig. [6b]
depicts our implementation of local counters that count local
instances of an event near each source. Each local counter
sets a register bit once it overflows. The global counter (as
read by software) arbitrates the set of these registers using a
rotating one-hot mask to select one overflow signal in each
cycle. If that selected signal is high, the principal counter
increments by one. Each local counter’s overflow register

also clears when it sees its select signal, like a clear-on-read
register, to prevent double counting. The advantage is that
all counters can still use a one-bit increment signal. This,
along with the locality of smaller counters contributes to the
improved modularity of this design because the source of the
event only needs to route signals to a nearby counter register,
thus taking the increment logic off a potential critical path
as in the adders approach.

In this approach, we count concurrent events by increment-
ing based on the counter overflow bit, which represents the
event that has occurred by 2N times, with N as the width
of the counter. Since only one counter passes its overflow
per cycle, each counter waits for a maximum number of
cycles corresponding to the number of event sources. One
drawback is that at the end of execution if the counter has not
overflowed, the final count will not reflect the leftover events
in each local counter. The principal counter undercounts
at most by the product of the number of event sources
multiplied and the maximum value of the counter. When
considering BOOM with a fetch width of four, there are
four corresponding fetch bubble event sources. Each slot
implements a local counter that waits for four cycles between
selections, so each counter must be able to count up to three
before signaling overflow. At the end of execution, the worst
case is that each counter holds the value of four, leading
to a total undercount of twelve. This number is negligible
when running longer benchmarks. In our smallest benchmark,
the fetch bubbles count was 929, hence the worst case error
would be % =1.28%.

C. Microarchitectural Event Trace

In this section, we describe Icicle’s custom extension to
FirePerf that enables collecting traces of custom microarchi-
tectural events at the finest granularity (ie., every cycle).
As we show in fine-grained traces of microarchitectural
events also help identify critical events to detect performance
issues such as Frontend stalls. FireSim supports out-of-band
instruction tracing with TracerRV [58]] using a Target-to-Host
bridge [13]. In particular, FireSim streams TracerRV data over
PCle from the target FPGA simulating the design to the host
processor. Unfortunately, TracerRV produces a large amount
of data, slowing the simulation speed. For example, tracing
a single SPEC CPU2017 benchmark with TracerRV produces
hundreds of terabytes of data [52]. Other alternatives (e.g.,
waveform debugging) are not feasible as FireSim does not
support them in FPGA-accelerated simulation.

To solve this, we customize the TraceRV implementation
to optionally trace performance events and send dynamic
signals over the bridge and PCle to the host machine for every
simulated cycle (Fig. [4), as opposed to instruction data. The
extension includes a custom DMA driver to read trace data,
interpreted as raw binary data. Each event must be chosen
manually in the BOOM core. A trace analyzer is needed to
parse and interpret the trace, and contains a matching type
definition for each bit in the trace to the TraceBundle. The
trace analyzer can apply the TMA model on raw trace data.

TABLE III: Simulation & Benchmark Configuration

Part Configuration
Simulator ~ Firesim@141bff7 on Xilinx VCU118
Compiler riscv64-gee 13.2.0 (-02)

Benchmarks Coremark [47]; Dhrystone [103]; riscv-tests [11]];
SPEC CPU2017 [31)] -03, Intrate, Threads=1, BOOM:ref, Rocket:test

OS / FW Buildroot + Linux 6.6.0; OpenSBI v1.2

We refer to trace-based TMA as temporal TMA, which can
look for performance event windows.

D. Perf Software Harness

Our software harness supports both baremetal and Linux
simulations. We first describe how our harness supports
baremetal simulations. Then, we explain the extensions to
support Linux simulations.

The harness configures different counters to track a group
of performance events using Control and Status Register (CSR)
instructions. In particular, our harness sets up the counters in
four steps: (1) enabling the CSR registers, (2) writing an 8-bit
event ID into the control register of each counter (3) setting
a 56 event-bit mask to choose the tracked events in the event
set, and (4) clearing the inhibit bit to let the counters begin
incrementing.

As all four steps require M-mode, workloads on Linux
require (1)-(4) to be done in the openSBI bootloader [9].
Every workload and hardware configuration has varying
performance event requirements, especially for performance
characterization research, making it cumbersome to manually
update openSBI for each configuration. To solve this, we
provide a wrapper around FireMarshal build commands
with optional parameters of preset CSR booting instructions
depending on the event requirements into openSBI and
triggering a rebuild. Only one command is necessary to
experiment with new event and counter setups show TMA data
from simulated benchmarks.

V. EVALUATION

Icicle implements TMA for BOOM and Rocket. We evaluate

it on SPEC CPU2017, Coremark, Dhrystone, and a collection
of microbenchmarks. We present three Case Studies (CS)
that demonstrate TMA’s sensitivity to software, compiler, and
architectural changes. We also show an example of trace-based
validation using a temporal TMA model to bound inaccuracies
of TMA our implementation. Finally, we report area, timing,
power, and wire-length overheads for the added events and
counter architecture.
Simulation methodology. All simulations use cycle-accurate
FireSim [58]]. We compile all benchmarks with gcc -02 unless
noted as -03 does not provide any substantial benefit over
-02 [35]]. We list different simulation parameters in Tab.
and parameters for different processor cores in Tab. We
show TMA only for LargeBOOMV3 and Rocket for brevity.

A. Top—Down Analysis Results

Fig. [7| shows all TMA results for Rocket (subfigures a-f).
In particular, subfigure (a) shows Rocket’s top—level TMA
breakdown, and (b) zooms into the backend.

TABLE 1V: Core & Simulation Configuration

Common RV64IMAFDCZICSR, 31 Perf Counters, 3.2 GHz, FASED@1 GHz, No LLC, 32 KiB, 8-way, 64 B block L1D/I, 512 KiB, 8-way, 64 B block L2

Component Rocket SmallBOOMV3 MediumBOOMV3 LargeBOOMV3 MegaBOOMV3 GigaBOOMV3
Pipeline 2-fe/1-de/1-iss 4-fe/1-de/3-iss 4-fe/2-de/4-iss 8-fe/3-de/5-iss 8-fe/4-de/8-iss 8-fe/5-de/9-iss
Execute - 32-entry ROB 64-entry ROB 96-entry ROB 128-entry ROB 130-entry ROB
1Q (I/M/F) - 8/8/8 12/20/16 16/32/24 24/40/32 24/40/32
LQ/STQ/nMSHR ~/-/- 8/8/2 16/16/2 24/24/4 32/32/8 32/32/8

Branch Pred. 512-entry BHT, 28-entry BTB

TAGE+BTB, (14,14,28,28,28) KiB

Rocket. We highlight the benchmarks gsort, where lost slots
are dominated by Bad Speculation. gsort exhibits bad branch
prediction accuracy due to an unpredictable branch for pivot
comparison. By contrast, rsort achieves near-ideal IPC since
its control flow is loop-centric and -02 removes expensive
operations (mul/div). Most Rocket benchmarks are small,
yielding negligible Frontend stalls. The benchmark memcpy
exhibits the largest number of backend stalls. As we show
in Fig. [7| (b), roughly half of all backend stalls are Memory
Bound stalls.

BOOM. We demonstrate the top-level TMA characterization
of BOOM for SPEC CPU2017 Intrate and microbenchmarks
in Fig. [7] (g) and Fig. [7] (k) respectively. For SPEC benchmarks,
we show all second-level TMA results in (h), (i), (j), and
only the Backend category for the microbenchmarks (1).
525.x264_r stands out with a high retire rate matching
IPC, while 505.mcf_r and 523.xalancbmk_r are almost 80%
Backend Bound. Frontend remains minimal across all bench-
marks. Bad Speculation is most considerable for 525.x264_r.
Machine Clears overall represent a small portion of the Bad
Speculation category, which is mostly due to branch misses.
Microbenchmarks follow a similar breakdown to Rocket,
where Dhrystone and Coremark have high IPCs, on BOOM
this in the range of 2. Memcpy again stands out for being
memory bound.

Rocket CS1 : L1D-cache size (c) We run 531.deepsjeng_r with
16 KiB and 32 KiB L1D caches on Rocket. Reducing cache
size causes a 7% slowdown. Fig. [7| (a) shows Backend-bound
rises from almost 0% to around 12% with a smaller cache size.
Some of the lost slots are caught by Bad Speculation category,
signifying stall overlap.

Rocket CS2: Branch inversion (d) We synthesize a branch-
heavy benchmark that executes a chain of branch instruc-
tions without a loop: brmiss (always mispredicted) versus
brmiss_inv (always predicts correct). Retiring rises from
20% to 33% while Bad-speculation falls from 17% to 6%. The
remaining discrepancy reflects a slight misattribution between
Bad Speculation and Frontend Bound.

BOOM CS1: Branch inversion (n) The same case study on
BOOM shows the opposite effect, where the inverted bench-
mark is slower than the baseline by 3%. This is because
the branch prediction implementation is different. The Bad
Speculation category (0% in the base case) explains the
slowdown as there is no branch target misprediction.
Rocket CS3: Coremark (e) and (f) Coremark is Core
Bound in the Backend. We compare two -01 builds:
one without instruction scheduling pass, one with
-fschedule-insns -fschedule-insns2. Both binaries have

identical instruction counts, only instruction ordering differs.
We observe a ~4% IPC and runtime improvement, fully
explained by a ~4% reduction in the Backend and Core Bound
categories.

BOOM CS1: Coremark (m) Similarly to the previous case study,
we can apply the same optimization on BOOM. Here the
performance increase is slim as instruction scheduling is less
effective on superscalar and OoO pipelines. Nevertheless the
runtime improves by 0.3% with the same compiler scheduling
pass, with the Backend and specifically the Core Bound
category reflecting this improvement. This demonstrates the
fidelity of the model

How important are per-lane events? In this work, we model
events per lane and argue each lane’s signals must be tracked.
We explore the impact of not supporting per-lane events. To
achieve this, we count every fetch lane individually. BOOM’s
three-wide fetch produces one Fetch-bubble event per lane,
and we report per-lane totals for selected benchmarks in
Tab. [V} For Fetch-bubble, lanes are correlated: lane 1 has the
fewest bubbles, then lane 2, then lane 3. Thus, as a lightweight
heuristic, we could approximate total fetch bubbles as 3 x
(Fetch-bubblel), yielding Frontend category errors within
about +10% across our suite compared to the full model. The
simpler evaluation also realizes gains in the physical design,
if a processor designer wanted to implement the event only
from one lane as opposed to placing circuitry to monitor all
lanes. As we implemented BOOM configurations in a physical
design flow (§V-C), we also observed that the 10% decrease in
accuracy trades with a reduction in the length of the longest
PMU-specific wire by 11.39%.

By contrast, per-lane approximation fails for events like
Uops-issued or D$-blocked. Issue queues are not symmetric
(e.g., only the fourth queue handles floating-point p-ops), so
each lane must be tracked separately.

B. Accuracy of Icicle’s TMA Implementation

When performance bottlenecks overlap with each other,
they introduce inaccuracy in TMA results. The key challenge
of identifying such inaccuracy is the lack of ground truth,

TABLE V: Per-lane events per total cycles.

Fetch-bubble D$-blocked Uops-issued
Benchmark 0 1 2 0 1 2 0 1 2 3 4

505.mcf _r 0.03 0.05 0.09 041 0.06 0.14 0.34 0.30 0.12 0.05 0.00
523.xalancbmk_r 0.03 0.07 0.11 0.47 0.09 0.18 0.29 0.31 0.12 0.02 0.00
541.leela_r 0.04 0.07 0.12 0.04 0.08 0.10 0.44 0.09 0.38 0.20 0.00
525.x264_r 0.02 0.05 0.08 0.03 0.06 0.08 0.24 0.16 0.43 0.29 0.00
548.exchange2_r 0.02 0.04 0.06 0.00 0.00 0.00 0.84 0.61 0.26 0.13 0.00
500.perlbench r 0.04 0.07 0.11 0.05 0.08 0.10 0.02 0.13 0.14 0.05 0.00
mm 0.02 0.03 0.04 0.01 0.04 0.06 0.47 0.09 0.03 0.01 0.87
memcpy 0.03 0.04 0.05 0.13 0.67 0.74 0.69 0.13 0.06 0.00 0.00

Rocket

(a) Rocket Top-level
l:llb‘be(m"g @l BadSpeculation EEE Frontend X3

BOOM
(g) SPEC Top-level

= BadSpeculation _ENE Frontend
1% 7

(c) Casel (e) Case3 Top.

Backend == Retiring
1700 1.0

S gackend B MachineClears WNM BranchMispredictions B Retiring BN BadSpeculation R Frontend GZ3 gackend

(i) SPEC BadSpec. (k) Micro Top-level (m) Case 1

0.8{f -] ol
N
06 3 9
04

0.2

0.80
0.60
0.40
0.20

00

3.00
2.40
1.80
1.20
0.60

0.8 2.40

1.80 0.6 Ky 1.80
120 04 > S~ 2 B 120
0.60 0.2 0.60
e PC

KX XXX
N
/
/
[SIS
i
i

1PC

core_02
dhrystone
memcpy
mm
mt-matmul
asort

rsort
towers
531_16Kb
531_32Kb
core_Ol+s
core_O1

(b) Rocket Backend

= CoreBound 21 MemBound

(h) SPEC Backend

B CoreBound 21 MemBound

(d) Case2 (f) Case3 Back.

0.5

1PC

500
541
548

n o 0 £
S Q& Q
n w n E

coremark
memcpy
t-matmul
qsort
rsort
towers

4
o,
4
8

Case2

dhrystone
~ core_O1

E
(1) Micro Backend (n

= CoreBound =21 MemBound

(j) SPEC Frontend

== Fetchlatency EEE PCResolution

0.4
0.3
0.2

0.1

=

dhrystone [Ill

Slots:

mm |

qsort
rsort
towers [}

) o 0 =]
3 3 & a 3
A 3 I} & 3

core_02
memepy
t-matmul [
e~
ore_Ol+s
core_O1

£ 5 3
Fig. 7: All TMA results for Rocket and BOOM on SPEC CPU2017 Intrate, microbenchmarks,

which includes all overlapping performance bottlenecks. We
address this challenge by using Icicle’s tracing infrastructure
to record all overlapping bottlenecks. Specifically, we leverage
traces to build a temporal TMA model that helps us quantify
the upper bound of TMA inaccuracies.

How much do Bad Speculation and Frontend overlap? A full
microarchitectural trace lets us quantify overlaps. For example,
Frontend and Bad Speculation can both bottleneck and mask
each other’s lost slots; something counter values alone cannot
reveal. Fig.[8a shows one such overlap: an I-cache miss triggers
a branch misprediction before the miss completes. Even with
a detailed trace, slot classification remains challenging. We
cannot prove solely from the trace that the I-cache miss or
branch miss is responsible for the Fetch-bubbles. Most likely,
this I-cache miss is not responsible, and is only the prefetcher
missing, since Recovering perfectly overlaps them. However,
we can use the trace to provide an upper bound on the number
of overlapping slots.

Temporal TMA

Overlap Frontend,I$-miss & Bad Speculation 0.01%
Frontend 3.33% £ 0.30%
Bad Speculation 18.15% =+ 0.06%

TABLE VI: Quantifying upper-bound for TMA class overlap.

To measure this, we sampled trace sequences for a total
1.5 million cycles across all benchmarks. Our trace analyzer
scans for overlaps between I-Cache Refills and Recovering,
using a rolling window padded by 50 cycles to conservatively
bound the overlap. Any fetch bubble within that window
could count toward either category. Tab. [VI reports that about
0.01% of all total slots may be an overlapping slot. If we
assume the worst case and all of these 0.01% of slots were
to be placed the Frontend instead, the perturbation would be
% * 100 = 0.30%. The same calculation can be made for
Bad Speculation perturbation.

Can we approximate Recovering with a constant? We use
Icicle’s tracing infrastructure to explore further approxima-
tions. Specifically, we identify the Recovery sequence by
measuring the number of consecutive cycles the processor
Frontend requires to recover after a branch misprediction,

k3
A

BSESIS
X
~
8

mm
brmiss [3

S 0 o o =) £t
3 = 8 Q g < s 8
@ a & & @ & 2 g

@
z
2

brmiss_inv [I§

>
I
13
g
£

coremark
mt-matmul

2
2
c
£
S

and selected case studies.

as we show in Fig. Fig. [8B] shows the CDF of all such
Recovery sequences. Almost every sequence lasts exactly
four cycles, showing that the Frontend needs four cycles to
resume producing valid instructions after a misprediction.
However, a long tail extends beyond 30 cycles: Icicle’s trace
reveals the single longest Recovery occurs when a fence
instruction immediately follows the misprediction. Conversely,
the shortest Recovering sequences arise from two back-to-
back pipeline flushes.

C. Physical design overhead

We wanted to establish confidence in the practicality of
these designs in a synthesized design. Hence, we implemented
each of the counter implementations in the five different sizes
of the BOOM processor, small, medium, large, mega, and
giga Tab. Our closed-source Cadence-based flow passed
each configuration through logic synthesis, floorplanning,
and placement with the open-source ASAP7 physical design
kit as its technology node [33[]. Our infrastructure allowed
us to rapidly prototype different configurations. Any future
modifications, such as adding levels of TMA with new events,
would quickly realize metrics for physical overheads through
our infrastructure. Designers can then evaluate physical cost
tradeoffs.

We collect power, area, and wirelength metrics for Icicle.
Icicle incurs a maximum overhead of 4.15% in power (Fig. [9a),
1.54% in area, and 9.93% in total wirelength. Additionally,
all designs pass constraints at a 200MHz clock frequency.
This matches the desired frequency of the base processor
without TMA events or their corresponding increment logic.
Hence, we conclude that our implementation is off the existing
critical path and does not introduce a new critical path. While

Events

CDF of recovery lengths (n=11900)

icache_req_valid -« oo
1$ Miss
1$ Refill

IBuf Valid e
Recovering 0.2

Probability

QQ ,\’0 Q ,50 v%
- N N N N - a 0 5 10 15 20 25 30
L AR U A A 0 Recovery Sequence Cycles

(a) Overlap example. (b) Sequence Distribution

Fig. 8: Temporal TMA examples.

¥ Base

mmm Adders
140%

T Distributed

+10.71%

i XNGH g
Medium Large Mega Giga

g X0

Small Medium Large Mega Giga small

(a) Total core power. (b) Largest CSR combinational delay.

Fig. 9: Post-placement metrics (lower is better).

this frequency may be lower than previous taped-out BOOM
designs, we did not have access to an ASAP7 memory compiler.
Consequently, the flow unrolled all memories into register
arrays which complicated the placement and routing of the
designs. However, that frequency stability, along with the low
overhead numbers for area, demonstrate that these designs
are physically practical.

We also collected wirelength and maximum combinational
delay statistics, specifically scoped to the CSR file, as that
contains all PMU-relevant logic. Fig. [9b] shows the normalized
longest combinational delay in a path between two registers
that crosses the CSR file (thus containing our modifications
and added interfaces with the entire core). In the small and
medium configurations, we observe that the adders imple-
mentation performs equal to or better than the distributed
counters. However, the likely reason is that there are fewer
sources for the events in these smaller sizes. As a result,
the circuit overhead of distributed counters outweighs its
scalability. However, as the size increases, there are more
sources for each event. The longer adder network of the
adders approach extends the combinational delay. This metric
highlights the scalability of distributed counters.

VI. RELATED WORK

Performance characterization. Ahmad Yasin first proposed Top-
down analysis approach on Intel processors [[107] and laid the
foundations of the hierarchical structure that categorizes the
slot breakdown, later adopted by AMD [55] and ARM [75]].
TMA improves on earlier approaches that assign a static
cost to events, for instance a cache miss [17]], [20], [44].
To the best of our knowledge, SiFive is the only industry
group that has applied top-down characterization to a RISC-V
core, specifically the P470 [[12f], [74], but only at top level.
XiangShan is the only open-source out-of-order core that
currently supports TMA [96]], [105], but their implementation
is not directly transferable to Rocket and BOOM, and no
accuracy studies exist. To the best of our knowledge, their
implementation is out-of-band only and is not synthesizable. A
RISC-V working group is currently developing a specification
for a standardized set of PMU events to support TMA [10].
However, this specification only standardizes the name of the
event if such an event is implemented. Providing an open-
source implementation and evaluation infrastructure, our tool
would facilitate such standardization efforts. Closely related to
Top-down, Eyerman et al. [30], [30], [42] introduce Cycles Per
Instruction (CPI) stacks to uncover stalls to uncover sources

of stalls. More recent works improve this insight by proposing
CPI stacks per stage [43]], [45] or per instruction cycle stacks
by Gottschall et al. [51], [53].

Counters architecture. Weaver et al. [[102] diagnosed inaccura-
cies of commercial processors as issues with instruction-level
counters that stem from benchmark and operating system
design. Other works [84] have synthesized superscalar PMU
designs to FPGAs, but lack a quantitative analysis of design
choices that would not integrate well with Chipyard.
Out-of-band tools. Our out-of-band tools expand on Fireperf,
which includes TraceRV and AutoCounter [59]. AutoCounter
allows for annotating boolean signals and producing counter
values at the end of simulation, whereas Fireperf offers a suite
of pre-defined, well-evaluated events that enable accurate in-
band characterization. Our out-of-band evaluation tracing is
most comparable to TEA’s and TIP’s evaluation [51]], [53]]
that use TraceDoctor, however, TraceDoctor was built before
a major redesign of FireSim and is incompatible with new
FireSim versions.

VII. CoNcCLUSION

We have enabled TMA on Rocket and BOOM with
new performance events and shown that our model can
identify performance bottlenecks. To support BOOM, we
implemented two new counters architectures for single-
cycle, multi-increment tracking of concurrent events. We
extended TraceRV to enable microarchitectural tracing that
helps design and quantify overlaps in characterization models.
In future work, we aim to extend the TMA hierarchy to third-
and fourth levels, improve accuracy, explore performance
characterization on heterogeneous systems on Chipyard, and
expand the temporal TMA model to quantify inaccuracies for
every overlap.

VIII. ACKNOWLEDGMENTS

We thank the anonymous reviewers for their insightful
feedback. This work was supported by generous gifts from
Google. Any opinions, findings, conclusions, or recommenda-
tions expressed in this material are those of the authors and
do not necessarily reflect the views of the funding agencies.
We thank Prathmesh Patel for helping us on earlier work on
the Ibex processor.

IX. ARTIFACT APPENDIX
A. Abstract

This artifact provides all resources required to reproduce
top-down and VLSI results of Icicle. It includes raw logs
from FireSim FPGA simulations, analysis scripts, physical
design flow scripts, and Icicle’s full code base. To reproduce
microbenchmark results without FPGA hardware, we provide
a meta-simulation workflow based on Verilator. While larger
benchmarks require specialized FPGA infrastructure, the
Verilator flow enables reproduction of results at a smaller
scale.

B. Artifact check-list (meta-information)

Run-time environment: Ubuntu 22.04

L]

e Hardware: x86_64 machine with > 8 cores and > 32 GB RAM

o Output: Table 5, Figures 7(a), 7(b), 7(d), 7(k), 7(n), and 9

o Experiments: Meta-simulation (Verilator) with new perfor-
mance counters and top-down analysis

o Disk space required: 200 GB

o Time to prepare workflow: 2 hours

e Time to complete experiments: 10 hours

o Publicly available: Yes

e Code licenses: Apache 2.0

o Archived: https://doi.org/10.5281/zenodo.17059077,

https://doi.org/10.5281/zenodo.16916499

C. Description

1) How to access:

o Icicle: https://doi.org/10.5281/zenodo.17059077
o FPGA dataset: https://doi.org/10.5281/zenodo.16916499
Only the first Zenodo link needs to be downloaded; the rest
will follow automatically.

Before beginning, please ensure that you have SSH key
access to GitHub.

2) Hardware dependencies: An x86_64 machine with at least
8 cores and more than 32 GB of RAM running Ubuntu 22.04
with 200GB of storage.

D. Installation
First copy the artifact:

$ cd ~/

$ wget -0 Icicle-main.zip
https://zenodo.org/records/17059077/files/Icicle.zip
$ unzip Icicle-main.zip

Follow the setup instructions in the repository README to install conda,
system packages, and prepare sudo privileges.
Then, run the setup script. This step should take around 1-2 hours.

$ cd ~/Icicle-main
$ bash setup.sh --skip=fpga

It is common that the setup fails with a guestmount error, rerun the
command:

sudo chmod +r /boot/vmlinuz-*

Once done, the setup should print Init completed. The setup script
will download our fork of Chipyard, RocketChip, and BOOM. Icicle is built
in the top-level repository around the Chipyard code base.

From this point on, run all scripts inside the built environment.

’$ source ./env.sh ‘

E. Experiment workflow: FPGA dataset

Inside the Icicle repository, run:

’ bash ./plots-iiswc-2025-ae.sh ‘

This step should take a few minutes to complete.

1) Expected results: This will download all FPGA simulation results
used in the Icicle evaluation section and use the tma_tool to generate plots
and tables. Results can be found in:

’~/Icicle—main/iiswc—Z@ZS—ae—out/results/ ‘

and include all subfigures in Figure 7 (and additional TMA levels) and Table 5.
Raw data is in:

’~/Icicle—main/iiswc—2025—ae—out/data/ ‘

which includes collected counters, uartlog, and binary traces. Further
analysis can be done independently using the tma_tool commands.

F. Experiment workflow: Microbenchmark meta-simulation

This can take 8-10 hours to complete. Inside the Icicle repository, run:

make init
bash run-iiswc-2025-ae.sh

make init sets up the build recipes with performance characterization
configurations that include performance counters and counters architectures.

If an instance liveness error is encountered, rerun the Firesim ssh
agent setup from the Readme.

1) Expected results: This script will initialize the FireSim configu-
ration templates and run Verilator-based meta-simulation for the RISC-V
microbenchmarks suite. This script will first build FireMarshal workloads
with the perf harness and subsequently run the workloads on both Rocket
and BOOM. We use the LargeBoom configuration with Scalar, AddWires. We
compare counter values of AddWires and DistributedCounters. The latter
requires post-processing based on counter width and the artifact harness is
set up for add wires.

All simulation outputs including uartlogs, counter values, TMA plots, and
TMA numbers will be in:

‘ ~/Icicle-main/iiswc-2025-ae-out/<rocket|boom> ‘

Counter values comparison will be in:

‘ ~/Icicle-main/iiswc-2025-ae-out/counters-comparison ‘

G. Experiment workflow: Physical Design

This section walks through implementing different Chipyard configura-
tions in a Cadence-based physical design flow and extracting metrics of
interest. The script below iterates through each of the counter configurations
in the Mega size of Boom. Running from scratch, the four designs should
run through placement in around a day.

source ./env.sh
bash ./run-iiswc-2025-vlsi-ae.sh

This produces various plots that evaluate tradeoffs in physical metrics.
The two files listed below correspond to Figures 9(a) and 9(b) in our paper.

find ${PC_DIR}/iiswc-2025-ae-out/vlsi -name "*powerx"
find ${PC_DIR}/iiswc-2025-ae-out/vlsi -name
"xlongest_csr_pathx*"

H. Experiment customization

We only provide commands to run meta-simulation. However, if an FPGA
is available all commands work identically to meta-simulation, allowing for
running SPEC and Coremark benchmarks.

L Notes

Note that results from meta-simulation and FPGA simulation may differ
slightly due to differences in how memory behavior is modeled. While exact
numbers can vary, overall bottlenecks remain consistent.

REFERENCES

[1] “SiFive U54-MC Core Complex Manual v1p0,” October 2017, available
at https://static.dev.sifive.com/U54-MC-RVCorelP.pdf|

[2] “The RISC-V Instruction Set Manual Volume I” ttpsi
//1t-riscv.atlassian.net/wiki/spaces/HOME/pages/16154769/RISC-V+
Technical+Specifications, April 2024.

[3] “AMD uProf User Guide,” https://www.amd.com/content/dam/amd/en/
documents/developer/uprof-v4.0-gaGA-user-guide.pdf} n.d., [Accessed
05-09-2025].

[4] “CVAS6 performance counters,” https://docs.openhwgroup.org/projects/
cva6-user-manual/01_cva6_user/CSR_Performance_Counters.html,
n.d., [Accessed 17-05-2025].

[5] “Intel perfmon,” https://github.com/intel/perfmon, n.d., [Accessed: 2025-
09-05].

[6] “Intel pmu profiling tools,” https://github.com/andikleen/pmu-tools|
n.d., [Accessed 10-06-2025].

[7] “Intel VTune Profiler Performance Analysis Cookbook: Top-
down Microarchitecture Analysis Method, |https://www.intel|
com/content/www/us/en/docs/vtune-profiler/cookbook/2023-0/
top-down-microarchitecture-analysis-method.html, n.d., [Accessed
14-12-2024].

https://doi.org/10.5281/zenodo.17059077
https://doi.org/10.5281/zenodo.16916499
https://static.dev.sifive.com/U54-MC-RVCoreIP.pdf
https://lf-riscv.atlassian.net/wiki/spaces/HOME/pages/16154769/RISC-V+Technical+Specifications
https://lf-riscv.atlassian.net/wiki/spaces/HOME/pages/16154769/RISC-V+Technical+Specifications
https://lf-riscv.atlassian.net/wiki/spaces/HOME/pages/16154769/RISC-V+Technical+Specifications
https://www.amd.com/content/dam/amd/en/documents/developer/uprof-v4.0-gaGA-user-guide.pdf
https://www.amd.com/content/dam/amd/en/documents/developer/uprof-v4.0-gaGA-user-guide.pdf
https://docs.openhwgroup.org/projects/cva6-user-manual/01_cva6_user/CSR_Performance_Counters.html
https://docs.openhwgroup.org/projects/cva6-user-manual/01_cva6_user/CSR_Performance_Counters.html
https://github.com/intel/perfmon
https://github.com/andikleen/pmu-tools
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/2023-0/top-down-microarchitecture-analysis-method.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/2023-0/top-down-microarchitecture-analysis-method.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/2023-0/top-down-microarchitecture-analysis-method.html

(9]

(10]

O

(11]
(12]
(13]
[14]

(15]

[16]

(17]

(18]

(19]

[20]

[21]

[22]

(23]

[24]

(25]

(26]

(27]

(28]

[29]

“Micro-architectural event tracking,” https://docs.boom-core.org/en/
latest/sections/uarch-counters.html, n.d., [Accessed 10-12-2024].
“OpenSBL” https://github.com/riscv-software-src/opensbi, n.d., [Ac-
cessed 14-06-2025].

“Performance event sampling rvs-2770,” https://github.com/riscv/
riscv-performance-events/pull/18, n.d., [Accessed 10-12-2024].
“riscv-tests,” https://github.com/riscv-software-src/riscv-tests, n.d., [Ac-
cessed 14-12-2024].

“SiFive P400-Series Datasheet,” https://www.sifive.com/document-file/
p400-series-datasheet, n.d., [Accessed 13-06-2025].

“Target-to-Host Bridges documentation,” https://docs.fires.im/en/latest/
Golden-Gate/Bridges.html, n.d., [Accessed 14-06-2025].

“The Berkeley Out-of-Order Machine,” https://docs.boom-core.org/en/
latest/sections/intro-overview/boom.html, n.d., [Accessed 23-06-2025].
“Xiangshan top-down,” https://github.com/OpenXiangShan/XiangShan/
blob/master/scripts/top-down/top_down.py, n.d., [Accessed: 2025-09-
05].

A. Abel, Y. Li, R. O’Grady, C. Kennelly, and D. Gove, “A profiling-
based benchmark suite for warehouse-scale computers,” in International
Symposium on Performance Analysis of Systems and Software (ISPASS).
IEEE, 2024, pp. 325-327.

A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood, “DBMSs on
a modern processor: Where does time go?” in VLDB’99, Proceedings
of 25th International Conference on Very Large Data Bases, September
7-10, 1999, Edinburgh, Scotland, UK, 1999, pp. 266-277.

A. Amid, D. Biancolin, A. Gonzalez, D. Grubb, S. Karandikar, H. Liew,
A. Magyar, H. Mao, A. Ou, N. Pemberton et al, “Chipyard: Integrated
design, simulation, and implementation framework for custom socs,”
in International Symposium on Microarchitecture (MICRO), vol. 40, no. 4,
2020, pp. 10-21.

S. Anand, M. Friedman, M. Giardino, and G. Alonso, “Skip it: Take
control of your cache!” in International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
2024, pp. 1077-1094.

J. M. Anderson, L. M. Berc, J. Dean, S. Ghemawat, M. R. Henzinger,
S.-T. A. Leung, R. L. Sites, M. T. Vandevoorde, C. A. Waldspurger, and
W. E. Weihl, “Continuous profiling: Where have all the cycles gone?”
Transactions on Computer Systems (TOCS), vol. 15, no. 4, pp. 357-390,
1997.

M. Arora, S. Nath, S. Mazumdar, S. B. Baden, and D. M. Tullsen,
“Redefining the role of the cpu in the era of cpu-gpu integration,” IEEE
Micro, vol. 32, no. 6, pp. 4-16, 2012.

K. Asanovic, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin, C. Celio,
H. Cook, D. Dabbelt, J. Hauser, A. Izraelevitz et al., “The rocket chip
generator,” EECS Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2016-17, vol. 4, pp. 6-2, 2016.

G. Ayers, J. H. Ahn, C. Kozyrakis, and P. Ranganathan, “Memory
hierarchy for web search, in International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 2018, pp. 643-
656.

G. Ayers, N. P. Nagendra, D. I. August, H. K. Cho, S. Kanev, C. Kozyrakis,
T. Krishnamurthy, H. Litz, T. Moseley, and P. Ranganathan, “Asmdb:
understanding and mitigating front-end stalls in warehouse-scale
computers,” in International Symposium on Computer Architecture
(ISCA), 2019, pp. 462-473.

C. Bai, Q. Sun, J. Zhai, Y. Ma, B. Yu, and M. D. Wong, “BOOM-explorer:
RISC-V BOOM microarchitecture design space exploration,” Design
Automation of Electronic Systems, vol. 29, no. 1, pp. 1-23, 2023.

S. S. Banerjee, S. Jha, Z. Kalbarczyk, and R. K. Iyer, “Bayesperf:
minimizing performance monitoring errors using bayesian statistics,”
in International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2021, pp. 832-844.

L. Berger-Vergiat, S. G. Cardwell, B. Feinberg, S. D. Hammond,
C. Hughes, M. Levenhagen, and K. Pedretti, “Evaluation of HPC
workloads running on open-source RISC-V hardware,” in International
Conference on High Performance Computing. Springer, 2023, pp. 538~
551.

Bjoérn Gottschall and Lieven Eeckhout and Magnus Jahre, “Per-
instruction cycle stacks through time-proportional event analysis,’
in International Symposium on Microarchitecture (MICRO), vol. 44, no. 4.
IEEE, 2024, pp. 27-33.

B. Boroujerdian, Y. Jing, D. Tripathy, A. Kumar, L. Subramanian, L. Yen,
V. Lee, V. Venkatesan, A. Jindal, R. Shearer et al., “FARSI: An early-
stage design space exploration framework to tame the domain-specific

(30

—

(31

—

(32]

(33]

(34]

(35]

(36

=

(37]

(38]

(39]

(40]

[41

—

[42]

(43]

[44

flan)

[45]

[46]

(47]

(48]

(49]

(50]

system-on-chip complexity,” Transactions on Embedded Computing
Systems, vol. 22, no. 2, pp. 1-35, 2023.

M. Breughe, S. Eyerman, and L. Eeckhout, “A mechanistic performance
model for superscalar in-order processors,” in International Symposium
on Performance Analysis of Systems & Software (ISPASS). IEEE, 2012,
pp. 14-24.

J. Bucek, K.-D. Lange, and J. v. Kistowski, “SPEC CPU2017: Next-
generation compute benchmark,” in International Conference on Perfor-
mance Engineering, 2018, pp. 41-42.

D. Chen, T. Moseley, and D. X. Li, “Autofdo: Automatic feedback-
directed optimization for warehouse-scale applications,” in Code
Generation and Optimization (CGO). IEEE, 2016.

L. T. Clark, V. Vashishtha, L. Shifren, A. Gujja, S. Sinha, B. Cline,
C. Ramamurthy, and G. Yeric, “ASAP7: A 7-nm finFET predictive
process design kit,” Microelectronics Journal, vol. 53, pp. 105-115, 2016.
K. D. Cooper, L. T. Simpson, and C. A. Vick, “Operator strength
reduction,” Transactions on Programming Languages and Systems
(TOPLAS), vol. 23, no. 5, pp. 603-625, 2001.

C. Curtsinger and E. D. Berger, “Stabilizer: Statistically sound perfor-
mance evaluation,” ACM SIGARCH Computer Architecture News, vol. 41,
no. 1, pp. 219-228, 2013.

Curtsinger, Charlie and Berger, Emery D, “Coz: Finding code that
counts with causal profiling,” in USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2015, pp. 184-197.

W. J. Dally, Y. Turakhia, and S. Han, “Domain-specific hardware
accelerators,” Communications of the ACM, vol. 63, no. 7, pp. 48-57,
2020.

A. C. De Melo, “The new linux’perf’tools,” in Slides from Linux Kongress,
vol. 18, 2010, pp. 1-42.

J. M. Domingos, T. Rocha, N. Neves, N. Roma, P. Tomas, and L. Sousa,
“Supporting RISC-V Performance Counters Through Linux Performance
Analysis Tools,” in International Conference on Application-specific
Systems, Architectures and Processors (ASAP). IEEE, 2023, pp. 94-
101.

J. S. Emer and D. W. Clark, “A characterization of processor perfor-
mance in the VAX-11/780," ACM SIGARCH Computer Architecture News,
vol. 12, no. 3, pp. 301-310, 1984.

V. Espindola, L. Zago, H. Yviquel, and G. Araujo, “Source matching
and rewriting for MLIR using string-based automata,” Transactions on
Architecture and Code Optimization, vol. 20, no. 2, pp. 1-26, 2023.

S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith, “A mech-
anistic performance model for superscalar out-of-order processors,”
Transactions on Computer Systems (TOCS), vol. 27, no. 2, pp. 1-37,
2009.

S. Eyerman, W. Heirman, K. Du Bois, and L. Hur, “Multi-stage cpi
stacks,” IEEE Computer Architecture Letters, vol. 17, no. 1, pp. 55-58,
2017.

S. Eyerman, J. E. Smith, and L. Eeckhout, “Characterizing the branch
misprediction penalty,” in International Symposium on Performance
Analysis of Systems & Software (ISPASS). IEEE, 2006, pp. 48-58.
Eyerman, Stijn and Heirman, Wim and Du Bois, Kristof and Hur,
Ibrahim, “Extending the performance analysis tool box: Multi-stage CPI
stacks and FLOPS stacks,” in International Symposium on Performance
Analysis of Systems & Software (ISPASS). IEEE, 2018, pp. 179-188.
Z. Fu, R. Tedeschi, G. Ottavi, N. Wistoff, C. Fuguet, D. Rossi, and
L. Benini, “Ramping up open-source RISC-V cores: Assessing the energy
efficiency of superscalar, out-of-order execution,” in International
Conference on Computing Frontiers, 2025.

S. Gal-On and M. Levy, “Exploring coremark a benchmark maximizing
simplicity and efficacy,” The Embedded Microprocessor Benchmark
Consortium, 2012.

P. B. Gibbons and S. S. Muchnick, “Efficient instruction scheduling
for a pipelined architecture,” in SIGPLAN Symposium on Compiler
Construction, 1986, pp. 11-16.

A. Gonzalez, A. Kolli, S. Khan, S. Liu, V. Dadu, S. Karandikar, J. Chang,
K. Asanovic, and P. Ranganathan, “Profiling hyperscale big data
processing,” in International Symposium on Computer Architecture
(ISCA), 2023, pp. 1-16.

B. Gottschall, S. C. de Santana, and M. Jahre, “Balancing accuracy and
evaluation overhead in simulation point selection,” in International
Symposium on Workload Characterization (ISWC). IEEE, 2023, pp.
43-53.

https://docs.boom-core.org/en/latest/sections/uarch-counters.html
https://docs.boom-core.org/en/latest/sections/uarch-counters.html
https://github.com/riscv-software-src/opensbi
https://github.com/riscv/riscv-performance-events/pull/18
https://github.com/riscv/riscv-performance-events/pull/18
https://github.com/riscv-software-src/riscv-tests
https://www.sifive.com/document-file/p400-series-datasheet
https://www.sifive.com/document-file/p400-series-datasheet
https://docs.fires.im/en/latest/Golden-Gate/Bridges.html
https://docs.fires.im/en/latest/Golden-Gate/Bridges.html
https://docs.boom-core.org/en/latest/sections/intro-overview/boom.html
https://docs.boom-core.org/en/latest/sections/intro-overview/boom.html
https://github.com/OpenXiangShan/XiangShan/blob/master/scripts/top-down/top_down.py
https://github.com/OpenXiangShan/XiangShan/blob/master/scripts/top-down/top_down.py

(51]

[52]

(53]

[54]

(55]

(56]

(57]

(58]

(59]

[60]

[61]

[62]

(63]

[64]

[65]

[66]

[67]

(68]

[69]

B. Gottschall, L. Eeckhout, and M. Jahre, “TIP: Time-proportional
instruction profiling,” in International Symposium on Microarchitecture
(MICRO), 2021, pp. 15-27.

B. Gottschall and M. Jahre, “Tracedoctor: Versatile high-performance
tracing for firesim,” in The First FireSim and Chipyard User and Developer
Workshop at ASPLOS, 2023.

Gottschall, Bjérn and Eeckhout, Lieven and Jahre, Magnus, “TEA: Time-
proportional event analysis,” in International Symposium on Computer
Architecture (ISCA), 2023, pp. 1-13.

M. Hill and V. J. Reddi, “Gables: A roofline model for mobile socs,” in
International Symposium on High Performance Computer Architecture
(HPCA). 1IEEE, 2019, pp. 317-330.

M. Jarus and A. Oleksiak, “Top-down characterization approximation
based on performance counters architecture for amd processors,”
Simulation Modelling Practice and Theory, vol. 68, pp. 146-162, 2016.

Z. Jiang, K. Yang, N. Fisher, N. Guan, N. C. Audsley, and Z. Dong,
“Hopscotch: A hardware-software co-design for efficient cache resizing
on multi-core SoCs,” Transactions on Parallel and Distributed Systems,
vol. 35, no. 1, pp. 89-104, 2023.

S. Karandikar, C. Leary, C. Kennelly, J. Zhao, D. Parimi, B. Nikolic,
K. Asanovic, and P. Ranganathan, “A hardware accelerator for protocol
buffers,” in International Symposium on Microarchitecture, 2021, pp.
462-478.

S. Karandikar, H. Mao, D. Kim, D. Biancolin, A. Amid, D. Lee,
N. Pemberton, E. Amaro, C. Schmidt, A. Chopra et al., “Firesim: Fpga-
accelerated cycle-exact scale-out system simulation in the public cloud,”
in International Symposium on Computer Architecture (ISCA). IEEE,
2018, pp. 29-42.

S. Karandikar, A. Ou, A. Amid, H. Mao, R. Katz, B. Nikoli¢, and
K. Asanovi¢, “Fireperf: Fpga-accelerated full-system hardware/software
performance profiling and co-design,” in International Conference on
Architectural Support for Programming Languages and Operating Systems
(ASPLOS), 2020, pp. 715-731.

S. Karandikar, A. N. Udipi, J. Choi, J. Whangbo, J. Zhao, S. Kaneyv,
E. Lim, J. Alakuijala, V. Madduri, Y. S. Shao et al, “CDPU: Co-designing
compression and decompression processing units for hyperscale
systems,” in International Symposium on Computer Architecture (ISCA),
2023, pp. 1-17.

T. A. Khan, N. Brown, A. Sriraman, N. K. Soundararajan, R. Kumar,
J. Devietti, S. Subramoney, G. A. Pokam, H. Litz, and B. Kasikci,
“Twig: Profile-guided btb prefetching for data center applications,”
in International Symposium on Microarchitecture (MICRO), 2021, pp.
816-829.

T. A. Khan, I. Neal, G. Pokam, B. Mozafari, and B. Kasikci, “DMon:
Efficient detection and correction of data locality problems using
selective profiling,” in USENIX Symposium on Operating Systems Design
and Implementation (OSDI), Jul. 2021.

T. A. Khan, A. Sriraman, J. Devietti, G. Pokam, H. Litz, and B. Kasikci,
“I-SPY: Context-driven conditional instruction prefetching with coalesc-
ing.” in International Symposium on Microarchitecture (MICRO). IEEE,
2020, pp. 146-159.

T. Khan, M. Ugur, K. Nathella, D. Sunwoo, H. Litz, D. A. Jiménez,
and B. Kasikei, “Whisper: Profile-guided branch misprediction elim-
ination for data center applications,” in International Symposium on
Microarchitecture (MICRO), 2022.

T. A. Khan, M. Ugur, K. Nathella, D. Sunwoo, H. Litz, D. A. Jiménez,
and B. Kasikei, “Whisper: Profile-guided branch misprediction elim-
ination for data center applications,” in International Symposium on
Microarchitecture (MICRO). IEEE, 2022, pp. 19-34.

T. A. Khan, D. Zhang, A. Sriraman,]J. Devietti, G. Pokam, H. Litz,
and B. Kasikei, “Ripple: Profile-guided instruction cache replacement
for data center applications,” in International Symposium on Computer
Architecture (ISCA), Jun. 2021.

G. Kornaros and D. Pnevmatikatos, “A survey and taxonomy of on-
chip monitoring of multicore systems-on-chip,” Design Automation of
Electronic Systems (TODAES), vol. 18, no. 2, pp. 1-38, 2013.

C. E. Leiserson, N. C. Thompson, J. S. Emer, B. C. Kuszmaul, B. W.
Lampson, D. Sanchez, and T. B. Schardl, “There’s plenty of room at
the top: What will drive computer performance after moore’s law?”
Science, vol. 368, no. 6495, 2020.

H. Li, D. S. Berger, L. Hsu, D. Ernst, P. Zardoshti, S. Novakovic,
M. Shah, S. Rajadnya, S. Lee, I. Agarwal et al., “Pond: Cxl-based memory
pooling systems for cloud platforms,” in International Conference on

[70]

(71]

(72]

(73]

(74]

[75]

(76

—

(7]

(78]

(79]

(80]

(81]

(82

—

(83]

(84]

(85

=

(86

—

(87]

(88

=

(89]

[90]

[91]

Architectural Support for Programming Languages and Operating Systems
(ASPLOS), 2023, pp. 574-587.

Y. Lv, B. Sun, Q. Luo, J. Wang, Z. Yu, and X. Qian, “Counterminer:
Mining big performance data from hardware counters,” in International
Symposium on Microarchitecture (MICRO). IEEE, 2018, pp. 613-626.
M. Maas, K. Asanovi¢, and J. Kubiatowicz, “A hardware accelerator for
tracing garbage collection,” in International Symposium on Computer
Architecture (ISCA). IEEE, 2018, pp. 138-151.

H. Mao, R. H. Katz, and K. Asanovic, “Hardware acceleration for
memory to memory copies,” Master’s thesis, 2017.

J. M. May, “MPX: Software for multiplexing hardware performance
counters in multithreaded programs,” in International Parallel and
Distributed Processing Symposium (IPDPS). IEEE, 2001.

C.-Y. Mou, C.-C. Hsiao, and J. Chou, “Top-down microarchitecture
analysis approximation based on performance counter architecture for
sifive risc-v processors.”

J. Mundichipparakkal, K. Nathella, and T. A. Khan, “Arm
neoverse nl core: Performance analysis methodology,’
https://armkeil.blob.core.windows.net/developer/Files/pdf/white-
paper/neoverse-nl-core-performance-v2.pdf, 2021.

Palacharla, Subbarao and Jouppi, Norman P and Smith, James E,
“Complexity-effective superscalar processors,” in International Sym-
posium on Computer Architecture (ISCA), 1997, pp. 206-218.

M. Panchenko, R. Auler, B. Nell, and G. Ottoni, “Bolt: a practical
binary optimizer for data centers and beyond,” in Code Generation and
Optimization (CGO). 1EEE, 2019, pp. 2-14.

M. Panchenko, R. Auler, L. Sakka, and G. Ottoni, “Lightning BOLT:
powerful, fast, and scalable binary optimization,” in SIGPLAN Interna-
tional Conference on Compiler Construction, 2021, pp. 119-130.

N. Pemberton, J. D. Kubiatowicz, and R. H. Katz, “Enabling efficient and
transparent remote memory access in disaggregated datacenters,” Ph.D.
dissertation, Ph. D. Dissertation. University of California at Berkeley,
Berkeley, CA, 2018.

R. B. Reese and M. A. Thornton, Introduction to logic synthesis using
Verilog HDL. Springer Nature, 2022.

J. Rogers, L. Eeckhout, and M. Jahre, “HILP: Accounting for workload-
level parallelism in system-on-chip design space exploration,” in
International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2025, pp. 1275-1288.

J. Rogers, L. Eeckhout, T. Soliman, and M. Jahre, “Neoscope: How
resilient is my soc to workload churn?” in International Symposium
on Computer Architecture (ISCA), 2025, pp. 1296-1310.

J. Rogers, T. Soliman, and M. Jahre, “AIO: An abstraction for
performance analysis across diverse accelerator architectures,” in
International Symposium on Computer Architecture (ISCA). IEEE,
2024, pp. 487-500.

V. Salapura, K. Ganesan, A. Gara, M. Gschwind,]J. C. Sexton, and R. E.
Walkup, “Next-generation performance counters: Towards monitoring
over thousand concurrent events,” in International Symposium on
Performance Analysis of Systems and software (ISPASS). IEEE, 2008,
pp. 139-146.

D. Schall, A. Sandberg, and B. Grot, “Warming up a cold front-end
with ignite,” in International Symposium on Microarchitecture (MICRO),
2023, pp. 254-267.

C. Schmidt and A. Izraelevitz, “A fast parameterized sha3 accelerator,”
in tech. rep. EECS Department, University of California, 2015.

S. Sethumadhavan, R. Desikan, D. Burger, C. R. Moore, and S. W.
Keckler, “Scalable hardware memory disambiguation for high ilp
processors,” in International Symposium on Microarchitecture (MICRO).
IEEE, 2003, pp. 399-410.

S. Sheikhpour, D. Z. Metz, E. Jellum, M. Sjilander, and L. Eeckhout,
“Sustainable high-performance instruction selection for superscalar
processors,” in International Conference on Computer-Aided Design
(ICCAD), 2024, pp. 1-9.

H. Shen, K. Pszeniczny, R. Lavaee, S. Kumar, S. Tallam, and X. D. Li,
“Propeller: A profile guided, relinking optimizer for warehouse-scale
applications,” in International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2, 2023, pp.
617-631.

J. E. Smith, “A study of branch prediction strategies,” in International
Symposium on Computer Architecture (ISCA), 1998, pp. 202-215.

N. K. Soundararajan, P. Braun, T. A. Khan, B. Kasikci, H. Litz, and
S. Subramoney, “Pdede: Partitioned, deduplicated, delta branch target

(93]

[94]

[95]

[96]

[97]

[99]

[100]

[101]

[102]

[103]

[104]

buffer,” in International Symposium on Microarchitecture (MICRO), 2021,
pp. 779-791.

A. Sriraman and A. Dhanotia, “Accelerometer: Understanding accel-
eration opportunities for data center overheads at hyperscale,” in
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2020, pp. 733-750.

A. Sriraman, A. Dhanotia, and T. F. Wenisch, “Softsku: Optimizing
server architectures for microservice diversity scale,” in International
Symposium on Computer Architecture, 2019, pp. 513-526.

R. Starc, T. Kuchler, M. Giardino, and A. Klimovic, “Serverless? risc
more!” in Proceedings of the 2nd Workshop on SErverless Systems,
Applications and MEthodologies, 2024, pp. 15-24.

W. Su, A. Dhanotia, C. Torres, J. Gandhi, N. Gholkar, S. Kanaujia,
M. Naumov, K. Subramanian, V. Andrei, Y. Yuan et al, “DCPerf: An
open-source, battle-tested performance benchmark suite for datacenter
workloads,” in International Symposium on Computer Architecture, 2025,
pp. 1717-1730.

X. Team, “Xiangshan: An open-source high-performance risc-v proces-
sor and infrastructure for architecture research,” in High Performance
Computer Architecture (HPCA). IEEE, 2025.

R. Tedeschi, G. Ottavi, C. Allart, N. Wistoff, Z. Fu, F. Grillotti,
F. De Ambroggi, E. Guidetti, J.-B. Rigaud, O. Potin et al, “CVA6S+: A
superscalar RISC-V core with high-throughput memory architecture,”
arXiv preprint arXiv:2505.03762, 2025.

T. N. Theis and H.-S. P. Wong, “The end of moore’s law: A new
beginning for information technology,” Computing in Science &
Engineering, vol. 19, no. 2, pp. 41-50, 2017.

S. P. Vanderwiel and D. J. Lilja, “Data prefetch mechanisms,” ACM
Computing Surveys (CSUR), vol. 32, no. 2, pp. 174-199, 2000.

V. M. Weaver and S. A. McKee, “Can hardware performance counters
be trusted?” in 2008 IEEE International Symposium on Workload
Characterization. IEEE, 2008, pp. 141-150.

V. M. Weaver, D. Terpstra, and S. Moore, “Non-determinism and
overcount on modern hardware performance counter implementations,”
in 2013 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS). IEEE, 2013, pp. 215-224.

Weaver, Vincent M and Terpstra, Dan and Moore, Shirley, “Non-
determinism and overcount on modern hardware performance counter
implementations,” in International Symposium on Performance Analysis
of Systems and Software (ISPASS). IEEE, 2013, pp. 215-224.

A. R. Weiss, “Dhrystone benchmark,” History, Analysis, Scores and
Recommendations, White Paper, ECL/LLC, 2002.

L. Weng, Y. Hu, P. Huang, J. Nieh, and J. Yang, “Effective performance
issue diagnosis with value-assisted cost profiling,” in Proceedings of the
Eighteenth European Conference on Computer Systems, 2023, pp. 1-17.

[105] Y. Xu, Z. Yu, D. Tang, G. Chen, L. Chen, L. Gou, Y. Jin, Q. Li, X. Li, Z. Li

[106

[107

[108

[109

[110

[111

[112

[113

[114

[115

[116

[117

]

]

]

]

]

]

]

]

]

]

]

—

et al., “Towards developing high performance risc-v processors using
agile methodology,” in International Symposium on Microarchitecture
(MICRO). IEEE, 2022, pp. 1178-1199.

J. Yang, M. Wen, D. Chen, Z. Chen, Z. Xue, Y. Li, J. Shen, and
Y. Shi, “HyFiSS: A hybrid fidelity stall-aware simulator for gpgpus,” in
International Symposium on Microarchitecture (MICRO). IEEE, 2024,
pp. 168-185.

A. Yasin, “A top-down method for performance analysis and counters
architecture,” in International Symposium on Performance Analysis of
Systems and Software (ISPASS). 1EEE, 2014, pp. 35-44.

D. You, J. Jiang, X. Wang, Y. Du, Z. Tan, W. Xu, H. Wang, J. Guan, R. Wei,
S. Zhao et al., “MERE: Hardware-software co-design for masking cache
miss latency in embedded processors” ACM, 2025.

D. Zaparanuks, M. Jovic, and M. Hauswirth, “Accuracy of performance
counter measurements,” in 2009 IEEE international symposium on
performance analysis of systems and software. IEEE, 2009, pp. 23-32.
J. Zhai and Y. Cai, “Microarchitecture design space exploration
via pareto-driven active learning,” Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 31, no. 11, pp. 1727-1739, 2023.

Y. Zhang, T. A. Khan, G. Pokam, B. Kasikci, H. Litz, and J. Devietti,
“Ocolos: Online code layout optimizations,” in International Symposium
on Microarchitecture (MICRO). IEEE, 2022, pp. 530-545.

Z. Zhang, M. K. Ramanathan, P. Raj, A. Parwal, T. Sherwood,
and M. Chabbi, “{CRISP}: Critical path analysis of {Large-Scale}
microservice architectures,” in USENIX Annual Technical Conference
(USENIX ATC), 2022, pp. 655-672.

J. Zhao, A. Gonzalez, A. Amid, S. Karandikar, and K. Asanovi¢,
“COBRA: A framework for evaluating compositions of hardware branch
predictors,” in International Symposium on Performance Analysis of
Systems and Software (ISPASS). IEEE, 2021, pp. 310-320.

J. Zhao, B. Korpan, A. Gonzalez, and K. Asanovic, “Sonicboom: The
3rd generation berkeley out-of-order machine,” in Fourth Workshop on
Computer Architecture Research with RISC-V, vol. 5, 2020, pp. 1-7.

Y. Zhong, D. S. Berger, C. Waldspurger, R. Wee, I. Agarwal, R. Agarwal,
F. Hady, K. Kumar, M. D. Hill, M. Chowdhury et al., “Managing memory
tiers with {CXL} in virtualized environments,” in USENIX Symposium
on Operating Systems Design and Implementation (OSDI), 2024, pp.
37-56.

F. Zhou, Y. Gan, S. Ma, and Y. Wang, “wperf: Generic off-cpu analysis to
identify bottleneck waiting events,” in USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2018, pp. 527-543.

T. Zidenberg, 1. Keslassy, and U. Weiser, “MultiAmdahl: How should
i divide my heterogenous chip?” IEEE Computer Architecture Letters,
vol. 11, no. 2, pp. 65-68, 2012.

	Introduction
	Background
	PMU Counters Architecture
	Top-Down Microarchitectural Analysis
	Performance Events in Rocket and BOOM

	Motivation: Why is event choice critical?
	Icicle's Implementation
	Adding Events for TMA
	Top-level Events
	Low-level Events

	Counters Architecture
	Microarchitectural Event Trace
	Perf Software Harness

	Evaluation
	Top–Down Analysis Results
	Accuracy of Icicle's TMA Implementation
	Physical design overhead

	Related Work
	Conclusion
	Acknowledgments
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies

	Installation
	Experiment workflow: FPGA dataset
	Expected results

	Experiment workflow: Microbenchmark meta-simulation
	Expected results

	Experiment workflow: Physical Design
	Experiment customization
	Notes

	References

