
Icicle: Open-Source Hardware Support for

Top-Down Microarchitectural Analysis on RISC-V

Matthew Edwin Weingarten, Michael Grieco, Stephen A. Edwards, Tanvir Ahmed Khan

Columbia University, New York, USA

matthew.weingarten@columbia.edu, michael.grieco@columbia.edu, sedwards@cs.columbia.edu, tk3070@columbia.edu

Abstract—Performance characterization enables software
to efficiently utilize the underlying hardware by pinpointing
key performance bottlenecks. The need for specialization and
hardware/software co-design continues to drive up the pace of
hardware development, especially noticeable in open-source
platforms. Unfortunately, performance characterization on
these platforms remains challenging, as RISC-V processors do
not support the industry standard characterization methodol-
ogy, Top-Down Microarchitectural Analysis (TMA). This lack
of support inhibits practitioners who rely on open-source
tooling to understand workload bottlenecks and researchers
proposing novel characterization methods.

In this paper, we introduce Icicle,1 the first full system-stack
TMA implementation on widely-used open-source processors,
Rocket and BOOM. Icicle enables TMA by adding three
and seven new performance events to Rocket and BOOM
respectively, while also revising the physical implementation
of performance counters to support monitoring concurrent
events. Icicle also includes a perf-like software tool and
a trace-based validation infrastructure. We evaluate Icicle’s
efficacy with three case studies, accuracy against trace-based
ground truth, and overhead of adding new events and counter
architecture, measured in terms of post-synthesis power and
timing analysis.

Index Terms—Computer architecture, Computer perfor-
mance, Performance evaluation, Microarchitecture, RISC-V
instruction set architecture

I. Introduction

Characterization is essential in the post-Moore era to

identify and remedy performance bottlenecks [37], [68],

[98]. Accurate pinpointing of these bottlenecks enables

optimizations such as manual tuning of workloads [36], [62],

[104], [116], automated compiler techniques including Profile-

Guided Optimizations [32], [77], [78], [89], or modifications

to the hardware itself [57], [60], [61], [63], [64], [66], [91].

However, characterizing modern hardware is challenging due

to the growing design complexity [50], [81]–[83]. Successfully

locating performance bottlenecks often requires a detailed

understanding of the underlying hardware [28], [51], [53].

To enable finding performance bottlenecks without know-

ing hardware details, hardware vendors [5], [55], [75] and

software profilers [7], [38] adopt the industry-standard

characterization methodology, Top-Down Microarchitectural

Analysis (TMA) [107]. TMA feeds values of hardware perfor-

mance events [40], [84] to predefined models [6] and classifies

pipeline slots into high-level categories. Drilling down these

1
We open source all of our work at https://github.com/ice-rlab/Icicle

categories further to pinpoint specific sources of pipeline stalls

(e.g., cache misses or execution unit contentions), TMA helps

users and automated tools find effective optimizations [16],

[23], [24], [69], [85], [92], [93], [95], [111], [112], [115]. Alas,

while TMA is readily available on Intel [5]–[7], AMD [55],

and ARM [75] processors, open-source RISC-V processors

provide limited TMA support [15], [74], [96].

RISC-V has a robust and growing toolchain ecosystem [2].

Platforms such as Chipyard [18] enable rapid prototyping of

processors and system on chips (SoCs), facilitating research

into microarchitectural improvements [51], [53], custom

processor designs [22], [114], and hardware accelerators [57],

[60], [71], [72], [79], [86]. However, support for performance

characterization remains limited. Currently, conducting a TMA
performance characterization is infeasible on open-source RISC-V
cores due to insufficient hardware performance events. Even for

an in-order core like Rocket [22], existing performance events

cannot pinpoint stalls, as we show in §III, resulting in an

incomplete analysis. This challenge intensifies for superscalar

and out-of-order designs such as BOOM [114].

The insufficiency of Performance Monitoring Units (PMUs)

impedes both research and development efforts across open-

source RISC-V platforms. Since industry drove most prior

work in this field [3], [6], [74], [75], [107], the open-source

RISC-V environment presents a unique opportunity to develop

PMU architectures and performance characterization tools.

Many researchers rely on this ecosystem to experiment

with microarchitectural improvements [19], [46], [97], [113],

hardware/software co-design [19], [27], [41], [88], [94], [108],

or design space exploration [25], [56], [110]. These research

efforts would benefit from reliable characterization as it

provides insights during the design process [106], while also

increasing confidence in the evaluation of workloads [111].

Additionally, despite the trend towards offloading an ever-

increasing fraction of workloads to accelerators [49], CPU

performance remains critical as the sequential code running

on the CPU remains the dominating factor in runtime [21],

[53]. Finally, monitoring hardware on heterogeneous systems

remains an open research area [29], [54], [67], which is

much harder to pursue without solid foundations of CPU

characterization methods [83], [92], [117].

Missing performance events to capture and detect patholo-

gies in the pipeline at run time is the main contributor to the

insufficiency of characterization on open-source platforms. As

we demonstrate a motivating example in §III, the insufficiency

https://github.com/ice-rlab/Icicle

results in an incomplete understanding of how well software

is utilizing the underlying hardware, harming the ability to

build characterization tools. However, choosing which metrics

to track on modern hardware is challenging as bottom-up

events (e.g., cache-miss events [1], [4], [8], [39]) provide an

inaccurate performance picture on modern hardware [107].

Monitoring pipeline events for performance issues also

requires careful consideration, as stringent requirements on

physical design overhead drive the number of PMU counter

registers down [70], [73]. Proprietary processors amortize the

cost of monitoring by employing sampling and approximation

techniques, ignoring non-determinism [26], [100], [101], [109].

Unfortunately, existing literature fails to quantify the physical

overhead of performance events and counters in terms of

post-logic synthesis metrics for power, area, and timing.

Finally, performance events and counter values provide

only a snapshot of the processor pipeline across many cycles.

Consequently, exhaustively identifying the root causes of

pipeline stalls requires performance events that are too

invasive [50], incurring an unreasonable overhead. Similarly,

root causes of stalls also overlap in time in a way that is not

always possible to capture with performance events, yet there

is no way to quantify the inaccuracy [52].

Contributions. In this paper, we develop Icicle to address these

issues, and make the following contributions:

– Top-down microarchitectural analysis support for
both Rocket [22] and BOOM [114], by introducing 3

and 7 new performance events in Rocket and BOOM

respectively, and an accompanying software toolchain

to read counters and compute TMA metrics (§IV-A).

– Superscalar counter implementations with low phys-

ical overheads (post-placement increase of 4.15% in

power, 1.54% in area, 9.93% in wirelength, at 200MHz)

that allow tracking of multiple performance events per

cycle, a key requirement for characterization on wide-

issue designs (§IV-B).

– Trace-based validation to help design and evaluate the

accuracy of our TMA implementation (§IV-C).

– Comprehensive evaluation of our TMA implementa-

tion on SPEC CPU2017 [31] and CoreMark [47] (§V-A),

multiple case studies, trace-based validation (§V-B), and

a detailed efficiency analysis of the new performance

events and counters’ physical implementations in terms

of power, area, and timing (§V-C).

II. Background

To understand the motivating example in §III, we first cover

the PMU events and counters architecture (§II-A), followed

by the TMA methodology (§II-B), and finally an overview of

the Rocket and BOOM microarchitectures as they relate to

performance monitoring (§II-C).

A. PMU Counters Architecture

Chipyard has a single performance event interface shipped

with Rocket and reused across all hardware. The principal

component of the Performance Monitoring Unit (PMU) or

c0e0,0

e0,1

Event set 0

e1,0

Event set 1

c1
c2

Fig. 1: Counter Ck and event ei,j, where ei,j is event j in event set i.

Hardware Performance Monitor (HPM)
2
is a counter — the

piece of hardware that increments and retains the value of

the number of times the counter is triggered.

While BOOM and Rocket use the same interface, they do

not track the same events. We call the signal that triggers

this counter an event, such as a cache miss or an instruction

retirement signal. Events are grouped into event sets. Each
event can be mapped to one or many counters as long as

every event mapped to the same counter belongs to the same

event set. Fig. 1 shows that c0 increments whenever events

e0,0 or e0,1 signal high. Events can be mapped to multiple

counters; e0,1 maps to both c0 and c1. However, e0,1 could

not map to c2 as e1,0 does not belong to the same event

set [1], [2], [8]. Importantly, if two events are mapped to the
same counter signal high in the same cycle, the counter only
increments by one.

B. Top-Down Microarchitectural Analysis
TMA provides a methodology to interpret values collected

from PMUs to pinpoint bottlenecks. Slots are the primary

unit of abstraction. Intuitively, the number of slots represents

the “work” required to process a specific workload. Each slot

corresponds to one cycle spent at each stage of each lane in

the pipeline. On a high level, TMA boils down to classifying

every slot into a collection of hierarchical classes.

Drilling down into the class hierarchy helps to pinpoint the

root cause of stalls. The top-level classes on any CPU typically

include Backend Bound, Frontend Bound, Bad Speculation,
and Retiring. The Retiring category constitutes the only

category that represents useful work and is typically calculated

by the number of micro-ops
3
(µ-ops) retired. A workload

that is Frontend and I-cache Bound may see the highest

impact from code size reductions or prefetching [24], [63],

[77], [89], [111], a Bad Speculation Bound workload might

benefit from improvements to branch prediction [65], [90],

while Backend Bound workloads can be improved with

strength reduction [34], instruction scheduling [48], or data

prefetching [99] based on being Core or Memory Bound.

TMA outperforms traditional “bottom-up” approaches, that

assign a static cost to each event. Bottom-up approaches fail to

account for latency-hiding techniques in modern processors —

for example, not every cache miss results in the same number

of stalled cycles.

C. Performance Events in Rocket and BOOM
Performance characterization in TMA fashion entails iden-

tifying stalls and attributing each stall to a root cause.

2
From now on we will refer to the counter architecture as PMUs.

3
We use the term µ-ops exclusively without loss of generality, even though

Rocket does not use µ-ops.

Fig. 2: Core pipelines with marked performance event sources.

Characterization tools collect or sample strategically chosen

performance events by interacting with PMU hardware. Fig. 2

shows a simplified diagram of the 5-stage in-order Rocket

pipeline and 10-stage superscalar OoO BOOM pipeline. Tab. I

lists all performance events. There are three existing event sets:

Basic, Microarchitectural, and Memory. The TMA category

contains the events added in this work. A stall may occur in

the issue/execute stages due to structural- and data-hazards

(4 or 8), a branch misprediction (2 or 2) that may

cause an already issued µ-op to be flushed, or a miss in the

instruction cache (I-cache) (1 or 1) to name a few examples.

Dedicated events, like I$-blocked event, intend to capture the

number of cycles lost due to a miss in the I-cache. Notice

that the BOOM pipeline does not provide a comparable event

to diagnose I-cache stalls, as it is challenging to implement

such an event in an OoO pipeline.

III. Motivation: Why is event choice critical?

The primary motivation for our work is that an incorrect

or incomplete set of performance events leads to poor perfor-

mance characterization and ultimately inaccurate conclusions.

To illustrate, we consider a scenario in which we aim to

precisely identify how many cycles are lost in the Frontend

of Rocket for a small bare-metal mergesort workload. Notice

that the only existing performance events on Rocket related

to the Frontend are I$-miss and I$-blocked 1 . To diagnose

Frontend pathologies on mergesort, an intuitive first approach

TABLE I: List of Rocket (above) and BOOM PMU (below) events. n / n =

event origin, * = new event, † = Top-level TMA, ‡ = lower-level TMA.

Basic Microarchitect. Memory TMA Events*

Cycles Load-Use-inter. I$ miss 1 Instr. issued* 4
Instr.R. Long-latency inter. D$ miss 9 Fetch bubbles* 3
Load Csr-inter. D$-release Recovering* 2 3
Store I$-blocked 1 ITLB-miss 1
Atomic D$-blocked 9 DTLB-miss 10
System Br-mispred.

‡ 2 7 L2-TLB-miss

Arith CF-targ.mis.
† 2

Branch Flush
† 11

Fence
†

Replay 11
... Mul/Div-interlock 6

FP inter. 7

Cycles Br-mispred.
†

I$-miss 1 Uops-issued*† 8
Instr. R. CF-target-mispred. D$-miss 12 Fetch-bubbles*† 2 4 6
Exception Flush

†
D$-release 12 Recovering*† 2 9

Branch resolved I-TLB$ miss 1 Uops-retired*† 9
D-TLB$ miss 12 I$-blocked*‡ 1 4
L2-TLB$ miss 14 D$-blocked*‡ 8 13

might consider defining a model that uses these two events

to gain insight into the number of Frontend stalls. Counting

these two events is the only feasible approach to measure

Frontend stalls. Alas, this approach is insufficient as Frontend

stalls also originate from sources other than I$-miss and

I$-blocked!

To demonstrate this insufficiency, we traced (§IV-C) a

mergesort microbenchmark in simulation to collect the cycle-

accurate state of 6 performance-critical Frontend events,

visualized in Fig. 3. Focus on subfigure (a), where the trace

is zoomed into a single I-cache miss event, highlighting the

I$-blocked and I$-miss events. Each dot represents a signal

being high at a specific clock cycle. Early in the runtime,

instructions are loaded into the processor, triggering an

I$-miss event. The miss is followed by around 40 cycles

of the I$-blocked event.

Now, zooming out again, we add events to the trace, not

part of the performance events supported by Rocket. The

decode stage and instruction buffer operate a ready-valid

handshake [80] at 3 . We add both of these signals to the

trace as IBuf-valid and IBuf-ready. We can determine if there

is a stall that is caused by the Frontend if the decode stage

is ready for a new µ-op , but the instruction buffer does

not contain any valid instructions. One additional caveat is

that the Frontend must not be Recovering from a branch

misprediction 2 . We define:

FetchBubble = ¬Recovering ∧
(
¬IBuf-valid ∧ IBuf-ready

)
Focusing on the early parts of the trace below Fig. 3 (a),

the I$-blocked appears to accurately track the FetchBubble

signal. However, if we zoom into Fig. 3 (b), the I-cache is no

longer cold and there are no I$-miss signals in sight, yet the

Frontend of the pipeline is unable to supply instructions at

every cycle, although the decode stage is ready. These fetch

bubbles are also not due to branch misses or resteering, as

the core is not in a recovery state. Most importantly, this

Fig. 3: Cycle-accurate trace of Frontend events for mergesort.

Fig. 4: Icicle overview.

phenomenon is not an isolated incident. Indeed, most Frontend

stalls are not related to the I-cache for this workload, as its

instruction footprint comfortably fits in L1 I-cache.

To summarize, existing performance events of Rocket fail to
detect the Frontend stall. This makes it extremely challenging

to properly characterize the performance of any workload

on Rocket without understanding the implementation details

of the pipeline. The same argument holds for BOOM, as

BOOM has both a more complex microarchitecture, while

simultaneously providing fewer performance events.

IV. Icicle’s Implementation

We present Icicle, the first implementation of TMA on the

Chipyard ecosystem to enable researchers and practitioners

to seamlessly characterize workloads on open-source designs.

This comprises the full system-stack, from the addition of

new performance events to the processor pipelines, the PMU

counters architecture, all the way to the software stack that

includes a PMU harness and perf-tool to read counter values

and a performance and characterization tool to apply the

TMA model.

In particular, Icicle includes two types of components: (1)

in-band and (2) out-of-band components. In-band components

are all components native to the processor. This includes

the performance events (§IV-A), counters implementation

(§IV-B), and collecting and interpreting performance data

inside the processor core (§IV-D). The in-band components

target users that wish to characterize workloads using TMA

both in and out of simulation. Out-of-band components help

design and validate functionality and evaluate area and timing

overhead. In particular, Icicle enables functional validation

with a Chipyard extension to collect execution traces (§IV-C),

while estimating area and timing overhead by integrating

with various VLSI flows (§V-C). The out-of-band components

target users that wish to evaluate characterization hardware

itself. We show how all components of Icicle work together

in Fig. 4.

A. Adding Events for TMA

The primary limitation preventing effective TMA on Rocket

and BOOM cores is the lack of sufficient performance events.

To support TMA, we introduce three new events to Rocket

and seven events to BOOM (Tab. I). Fig. 5 visualizes first-

and second-level TMA classes. The formulas of TMA used

for each class is presented in Tab. II.

Fig. 5: TMA classes for BOOM and Rocket.

In this section, we detail the rationale for each event added

to the BOOM pipeline. For each added event, we ensure it

satisfies two Design Principles (DP):

DP 1: New events should capture a performance pathology that
is not observable by any of the existing events.

An added event must be indispensable to categorize a slot

into Top-down category. Each added event comes at cost in

physical design that we aim to minimize. We discuss some

further approximation possibilities in §V-A.

DP 2: New events should be minimally invasive, requiring little
to no additional state or complex logic to implement.

We define minimally-invasive events as single-cycle events

that do not require complex computing logic or finite-state ma-

chines with more than two states. Furthermore, the overhead

should only scale with the pipeline width. For example, while

it might be useful to track the runtime occupancy of the Fetch

Buffer 4 , doing so would introduce significant hardware

overhead. Instead, we opt for a lightweight approximation

using existing control signals, such as valid and ready.

1) Top-level Events: We begin with top-level categorization

organized by category. The Retiring category is the simplest to

capture and only requires counting retired µ-ops. Since BOOM
provides only an instruction-retired counter by default, we

add a Uops-retired event using the ROB commit signals 9 .

No events are added for the top-level Backend category, as

TABLE II: TMA model for BOOM with new performance events.

Derived Metrics

Mtotal Ccycle × WC

Mtf (All flushes) Cflush + Cbm + C∗
fence

Mbr_mr (Br miss rate) Cbm/Mtf

Mnf_r (Non-fence flush) (Cbm + C∗
fence

)/Mtf

Mfl_r (Machine-flush) Cflush/Mtf

Mrl (Recover-length) 4 (Cycles from Decode stage 6 to being issued 8)

Top-level TMA

Retiring Cret/Mtotal

BadSpec

(C∗
issued

– Cret) Mnf_r + (Crec + Mrl C∗
bm

) WC

Mtotal

Frontend C∗
fetch

/Mtotal

Backend 1 – Frontend – BadSpec – Retiring

Lower-level TMA

MachCl. (C∗
issued

– Cret) Mfl_r/Mtotal

BrMispr. ((C∗
issued

– Cret) Mbr_mr + C∗
rec

)/Mtotal

Resteer. (C∗
issued

– Cret) Mbr_mr/Mtotal

RecovBub C∗
rec

/Mtotal

FetchLat. C∗
iblk

WC /Mtotal

PCRes. Frontend – FetchLat

CoreBound Backend – C∗
db

/Mtotal

MemBound C∗
db

/Mtotal

this is the most complicated to diagnose and can be inferred

based on the values of the other three classes.

Frontend. To capture Frontend-bound stalls, we implement

Fetch-bubbles. These occur when the Frontend fails to supply

enough µ-ops for the Backend to operate at full capacity. The

Fetch-bubble event is equivalent to the one introduced in the

motivating example in Fig. 3.

The Fetch Buffer supplies raw instruction data to the

decoders and can deliver up to WC instructions per cycle,

where WC is the core width. We model Fetch-bubbles as WC
per-lane events, where event i is asserted if the fetch packet is

valid, but decoder lane Di 6 does not successfully handshake.

The decode stage itself never acts as a stall source, but can

put backpressure on the Frontend.

A challenge arises in avoiding misclassification during

pipeline flushes. For example, a mispredicted branch may

trigger a Frontend flush, resulting in fetch-bubbles that

are not attributable to the Frontend itself but rather to

Bad Speculation. To prevent this, fetch bubble events are

suppressed when the pipeline is in a recovery state. This is

tightly connected to the Bad Speculation category, which we

discuss subsequently.

Bad Speculation. To account for lost slots due to incorrect

speculation, we implement two new events: Uops-issued and

Recovering. The Bad Speculation category encompasses both

slots lost to pipeline flushes caused by incorrect speculation

along with the subsequent recovery phase. Common sources

of Bad Speculation include branch mispredictions and machine

clears, a “catch-all” for events such as memory disambiguation

failures [87], [107]. Conceptually, the number of lost slots

due to flushes must be computed by taking a start point in

the pipeline, in our case Uops-issued 8 , and an end-point,

in our case Uops-retiring 9 – the difference in these gives

us the flush count. The flush count is unreliable if buffers

sit between start and end-point. This also informs the choice

to take Uops-issued instead of Uops-dispatched 7 ; issue-

queues 8 may overinflate the number of lost slots due to

Bad Speculation. BOOM’s issue queues follow a valid only

protocol to their respective execution units, each of which

may contain multiple functional units. All stalling logic is

internal to the issue queue itself. BOOM typically includes

one issue queue for integer operations, one for memory, and

one for floating-point. The total issue width WI often exceeds

the commit width WC; we use WI valid signals to implement

this event.

While Uops-issued tracks the Backend of pipeline, flushes

will also affect the Frontend to recover the PC from a mis-

speculation. The Recovering event captures this phenomenon.

Furthermore, it is relevant to the Frontend, allowing us to

distinguish between fetch bubbles and recovery bubbles. This

event works as follows: This counter begins incrementing at

a flush event (2 , 9 , 11) and continues incrementing until

a fetch packet is valid 4 .

It is important to note that if a branch target misprediction

results in an I-cache miss of the new PC, the recovery

implementation attribute the lost slots to the Bad Speculation

category. To distinguish the two, one would have to decide

whether or not the miss would have happened if the target

was predicted correctly, which could depend on the prefetcher

implementation and we deem this approach to break DP 2.
Finally, strictly speaking, we want to avoid considering slots

lost by intended pipeline flushes by fence instructions, which

should not be considered performance pathology. Hence, we

add a Fence-retired instruction counter, since BOOM does

not have counters for each instruction type.

2) Low-level Events: In this section we discuss the events

necessary for second- and third-level TMA classes.

Low-level Frontend. To diagnose Frontend stalls, we intro-

duce the I$-blocked event. This event quantifies slots lost

specifically to I-cache misses, as opposed to stalls caused by

unresolved program counters (e.g., during indirect calls) or

any other Frontend issue. The main challenge in capturing

this event stems from the presence of multiple pipeline stages

and two buffers between the I-cache and decode: the I-mem

response Buffer 3 and the Fetch Buffer 4 . The Fetch Buffer

typically holds two cycles of instruction data, while the I-

mem response buffer holds a single fetch width. Due to

this buffering, the visibility of an I-cache miss can vary

depending on the PC timing and buffer occupancy, making

stall attribution non-trivial. Furthermore, a prefetcher could

make an I-cache request well before the instruction is used.

We therefore adopt a simple heuristic which incurs a low

cost: the I$-blocked event is asserted whenever a refill is in

progress and the Fetch Buffer is empty.

Low-level Bad speculation. To refine the Bad Speculation
category, we distinguish between lost slots from branch

mispredictions and machine clears. Branch mispredictions

are prioritized, as they are a frequent optimization target.

We leverage existing events (Flush and Br-mispredict) and

assume each flush type results in a fixed number of lost slots.

More precise tracking would require attributing each flushed

µ-op to its cause, which would violate DP 2.
At a third level, we use Uops-issued and Recovering to

separate flushed µ-ops from Frontend recovery stalls. We

conservatively assume that branch mispredictions (2) cause

full pipeline flushes, while Backend-originating flushes (9)

are limited to the Backend. Our model therefore assumes every

recovery bubble is incurred only by a branch mispredict; thus

overestimating its impact.

Low-level Backend. The low-level Backend categorization dis-

tinguishes between Core Bound stalls, caused by structural or

data hazards, and Memory Bound stalls, where µ-ops are stuck
in the issue queues waiting on cache misses. This distinction is

notoriously difficult to make in out-of-order processors, where

speculative execution is designed specifically to hide cache-

miss latency. However, even an approximate classification

between these two categories provides significant insight into

workload behavior.

To address this, we introduce the D$-blocked event to cap-

ture stalls attributable to the memory system. Implementing

this event is challenging due to the nature of modern issue

queues. These queues rely on a wake up mechanism [76],

(a) Add wires. (b) Distributed counters.

Fig. 6: Counter implementations.

where a µ-op remains in the queue until all its source operands

are ready, at which point it is “woken up.” Wake-up signals

may originate from either the bypass network or the register

file [14]. The key difficulty is that the wake-up signals abstract

away the cause of the stall, or the source of the wake-up signal.

Whether the µ-op is stalled on a long-latency cache miss or

waiting for another ALU µ-op due to a data dependency, the

wake-up mechanism is the same. Disentangling these cases

would require intrusive logic into the register file or bypass

network, once more violating our minimal-invasiveness design

principle (DP 2). Additionally, BOOM includes multiple types

of issue unit implementations [14], which would potentially

require specialized implementations for each.

To overcome this challenge we propose a simple heuristic.

In most cases if an the issue queues contain valid µ-ops,
their operands are not ready, and there is a D-cache refill

in-flight, it is very likely that µ-ops are stuck waiting for

the memory response. Matching this logic, for each commit

width slot WC , we define a corresponding D$-blocked event

that is high if: (1) the issue queue failed to produce a valid

instruction, (2) the queue was not empty, and (3) at least one

MSHR is currently handling a cache miss. This heuristic may

occasionally misattribute a stall to the Mem Bound category

that is stalling for another reason. For example, if the stall is

actually due to a long-latency functional unit like a pipelined

multiplier, and an unrelated MSHR is active.

Rocket Events. Most of the proposed event categories apply

directly to Rocket, though implementation is considerably

simpler due to its in-order, non-speculative design. Notably,

Rocket already includes I$-blocked and D$-blocked counters.

Limitations. This work focuses on top-level and second-level

TMA categories and does not yet consider the impact of TLB

behavior, we leave for future work. Similarly, deeper levels

of the TMA hierarchy, while potentially insightful, require

more dedicated analysis implementation.

B. Counters Architecture
There is a lack of hardware support for efficiently monitor-

ing concurrent events, which has contributed to an overall lack

of robust performance monitoring infrastructure in Chipyard.

A naïve approach monitors each concurrent event with a

separate counter. The advantage is that designers can easily

map new events to counters (Fig. 1). In our fetch bubbles

example at the top level of TMA (Fig. 2), each lane’s valid

signal would map to a separate counter. We denote this

approach as the scalar counters implementation. However, this

not always feasible as it exerts pressure on the already limited

number of counters [70], [73]. Hence, we design approaches

to combine information into the same counter mapping to

reduce the pressure on a limited set counters.

Additionally, there are implications in the physical design

process as tools must route wires from an event source to a

distant counter. This challenge is not immediately apparent

to an RTL designer. As we will see, the place and route tools

tend to place the counters in the middle of the die. These

tools find this to be optimal because the counters monitor

pieces of the entire design. The placement in the middle finds

the cheapest aggregate routing from event to counter. With

TMA, designs need many more events. Routing these event

signals on new wires to the counters can introduce a new

critical path, which would be a non-critical function limiting

performance. We address these challenges by implementing

new increment logic in the RTL design that reduces pressure

on the place and route process by simplifying the path from

event to the counter. Namely, we design two novel approaches

with awareness of wire length and combinational delay as

shown in Fig. 6.

Add wires. The first, more straightforward option is to

aggregate the number of sources that experienced the same

event in a cycle with a multi-bit increment signal routed to

a single counter. Fig. 6a depicts the incremental aggregation,

in which the adders are placed locally before the main

counter, thus reducing the amount of wires going between

events and the counter registers. However, the partial sums

must reach the next adder over longer wires. Additionally,

as the number of event sources increases, there are more

combinational adders in between each event and the counter

register. Those two factors may sum to create a new critical

path that compromises the entire design. Implementing an

adder network lacks modularity as the adder architecture

highly depends on the number of events and sources. While

adder trees would be more optimal, we prioritized simplifying

the Chisel-based implementation in Chipyard that compiled

into a sequential chain to aggregate events. Regardless of the

adder network optimality, the multi-bit increment signals lead

to complications when using event sets such as in BOOM.

This is because the counters can multiplex the sources as

discussed in §II-A. In the case where the increment signals

have different widths (i.e. if the events have a different number

of sources), the logic must pad the smaller increment signal

with extra bits to match the larger increment width.

Distributed counters. Our final strategy attempts to completely

remove the PMU logic from a potential critical path. Fig. 6b

depicts our implementation of local counters that count local

instances of an event near each source. Each local counter

sets a register bit once it overflows. The global counter (as

read by software) arbitrates the set of these registers using a

rotating one-hot mask to select one overflow signal in each

cycle. If that selected signal is high, the principal counter

increments by one. Each local counter’s overflow register

also clears when it sees its select signal, like a clear-on-read

register, to prevent double counting. The advantage is that

all counters can still use a one-bit increment signal. This,

along with the locality of smaller counters contributes to the

improved modularity of this design because the source of the

event only needs to route signals to a nearby counter register,

thus taking the increment logic off a potential critical path

as in the adders approach.

In this approach, we count concurrent events by increment-

ing based on the counter overflow bit, which represents the

event that has occurred by 2N
times, with N as the width

of the counter. Since only one counter passes its overflow

per cycle, each counter waits for a maximum number of

cycles corresponding to the number of event sources. One

drawback is that at the end of execution if the counter has not

overflowed, the final count will not reflect the leftover events

in each local counter. The principal counter undercounts

at most by the product of the number of event sources

multiplied and the maximum value of the counter. When

considering BOOM with a fetch width of four, there are

four corresponding fetch bubble event sources. Each slot

implements a local counter that waits for four cycles between

selections, so each counter must be able to count up to three

before signaling overflow. At the end of execution, the worst

case is that each counter holds the value of four, leading

to a total undercount of twelve. This number is negligible

when running longer benchmarks. In our smallest benchmark,

the fetch bubbles count was 929, hence the worst case error

would be
12

929+12 = 1.28%.

C. Microarchitectural Event Trace

In this section, we describe Icicle’s custom extension to

FirePerf that enables collecting traces of custom microarchi-

tectural events at the finest granularity (i.e., every cycle).

As we show in §III, fine-grained traces of microarchitectural

events also help identify critical events to detect performance

issues such as Frontend stalls. FireSim supports out-of-band

instruction tracing with TracerRV [58] using a Target-to-Host

bridge [13]. In particular, FireSim streams TracerRV data over

PCIe from the target FPGA simulating the design to the host

processor. Unfortunately, TracerRV produces a large amount

of data, slowing the simulation speed. For example, tracing

a single SPEC CPU2017 benchmark with TracerRV produces

hundreds of terabytes of data [52]. Other alternatives (e.g.,
waveform debugging) are not feasible as FireSim does not

support them in FPGA-accelerated simulation.

To solve this, we customize the TraceRV implementation

to optionally trace performance events and send dynamic

signals over the bridge and PCIe to the host machine for every

simulated cycle (Fig. 4), as opposed to instruction data. The

extension includes a custom DMA driver to read trace data,

interpreted as raw binary data. Each event must be chosen

manually in the BOOM core. A trace analyzer is needed to

parse and interpret the trace, and contains a matching type

definition for each bit in the trace to the TraceBundle. The

trace analyzer can apply the TMA model on raw trace data.

TABLE III: Simulation & Benchmark Configuration

Part Configuration

Simulator Firesim@141bff7 on Xilinx VCU118

Compiler riscv64-gcc 13.2.0 (-O2)
Benchmarks Coremark [47]; Dhrystone [103]; riscv-tests [11];

SPEC CPU2017 [31] -O3, Intrate, Threads=1, BOOM:ref, Rocket:test

OS / FW Buildroot + Linux 6.6.0; OpenSBI v1.2

We refer to trace-based TMA as temporal TMA, which can

look for performance event windows.

D. Perf Software Harness
Our software harness supports both baremetal and Linux

simulations. We first describe how our harness supports

baremetal simulations. Then, we explain the extensions to

support Linux simulations.

The harness configures different counters to track a group

of performance events using Control and Status Register (CSR)

instructions. In particular, our harness sets up the counters in

four steps: (1) enabling the CSR registers, (2) writing an 8-bit

event ID into the control register of each counter (3) setting

a 56 event-bit mask to choose the tracked events in the event

set, and (4) clearing the inhibit bit to let the counters begin

incrementing.

As all four steps require M-mode, workloads on Linux

require (1)-(4) to be done in the openSBI bootloader [9].

Every workload and hardware configuration has varying

performance event requirements, especially for performance

characterization research, making it cumbersome to manually

update openSBI for each configuration. To solve this, we

provide a wrapper around FireMarshal build commands

with optional parameters of preset CSR booting instructions

depending on the event requirements into openSBI and

triggering a rebuild. Only one command is necessary to
experiment with new event and counter setups show TMA data
from simulated benchmarks.

V. Evaluation

Icicle implements TMA for BOOM and Rocket. We evaluate

it on SPEC CPU2017, Coremark, Dhrystone, and a collection

of microbenchmarks. We present three Case Studies (CS)

that demonstrate TMA’s sensitivity to software, compiler, and

architectural changes. We also show an example of trace-based

validation using a temporal TMA model to bound inaccuracies

of TMA our implementation. Finally, we report area, timing,

power, and wire-length overheads for the added events and

counter architecture.

Simulation methodology. All simulations use cycle-accurate

FireSim [58]. We compile all benchmarks with gcc -O2 unless

noted as -O3 does not provide any substantial benefit over

-O2 [35]. We list different simulation parameters in Tab. III

and parameters for different processor cores in Tab. IV. We

show TMA only for LargeBOOMV3 and Rocket for brevity.

A. Top–Down Analysis Results
Fig. 7 shows all TMA results for Rocket (subfigures a-f).

In particular, subfigure (a) shows Rocket’s top–level TMA

breakdown, and (b) zooms into the backend.

TABLE IV: Core & Simulation Configuration

Common RV64IMAFDCZICSR, 31 Perf Counters, 3.2 GHz, FASED@1 GHz, No LLC, 32 KiB, 8-way, 64 B block L1D/I, 512 KiB, 8-way, 64 B block L2

Component Rocket SmallBOOMV3 MediumBOOMV3 LargeBOOMV3 MegaBOOMV3 GigaBOOMV3

Pipeline 2-fe/1-de/1-iss 4-fe/1-de/3-iss 4-fe/2-de/4-iss 8-fe/3-de/5-iss 8-fe/4-de/8-iss 8-fe/5-de/9-iss

Execute – 32-entry ROB 64-entry ROB 96-entry ROB 128-entry ROB 130-entry ROB

IQ (I/M/F) – 8/8/8 12/20/16 16/32/24 24/40/32 24/40/32

LQ/STQ/nMSHR –/-/- 8/8/2 16/16/2 24/24/4 32/32/8 32/32/8

Branch Pred. 512-entry BHT, 28-entry BTB TAGE+BTB, ⟨14,14,28,28,28⟩ KiB

Rocket. We highlight the benchmarks qsort, where lost slots

are dominated by Bad Speculation. qsort exhibits bad branch

prediction accuracy due to an unpredictable branch for pivot

comparison. By contrast, rsort achieves near-ideal IPC since

its control flow is loop-centric and -O2 removes expensive

operations (mul/div). Most Rocket benchmarks are small,

yielding negligible Frontend stalls. The benchmark memcpy
exhibits the largest number of backend stalls. As we show

in Fig. 7 (b), roughly half of all backend stalls are Memory

Bound stalls.

BOOM. We demonstrate the top-level TMA characterization

of BOOM for SPEC CPU2017 Intrate and microbenchmarks

in Fig. 7 (g) and Fig. 7 (k) respectively. For SPEC benchmarks,

we show all second-level TMA results in (h), (i), (j), and

only the Backend category for the microbenchmarks (l).

525.x264_r stands out with a high retire rate matching

IPC, while 505.mcf_r and 523.xalancbmk_r are almost 80%

Backend Bound. Frontend remains minimal across all bench-

marks. Bad Speculation is most considerable for 525.x264_r.
Machine Clears overall represent a small portion of the Bad

Speculation category, which is mostly due to branch misses.

Microbenchmarks follow a similar breakdown to Rocket,

where Dhrystone and Coremark have high IPCs, on BOOM

this in the range of 2. Memcpy again stands out for being

memory bound.

Rocket CS1 : L1D-cache size (c) We run 531.deepsjeng_r with

16 KiB and 32 KiB L1D caches on Rocket. Reducing cache

size causes a 7% slowdown. Fig. 7 (a) shows Backend-bound

rises from almost 0% to around 12% with a smaller cache size.

Some of the lost slots are caught by Bad Speculation category,

signifying stall overlap.

Rocket CS2: Branch inversion (d) We synthesize a branch-

heavy benchmark that executes a chain of branch instruc-

tions without a loop: brmiss (always mispredicted) versus

brmiss_inv (always predicts correct). Retiring rises from

20% to 33% while Bad-speculation falls from 17% to 6%. The

remaining discrepancy reflects a slight misattribution between

Bad Speculation and Frontend Bound.

BOOM CS1: Branch inversion (n) The same case study on

BOOM shows the opposite effect, where the inverted bench-

mark is slower than the baseline by 3%. This is because

the branch prediction implementation is different. The Bad

Speculation category (0% in the base case) explains the

slowdown as there is no branch target misprediction.

Rocket CS3: Coremark (e) and (f) Coremark is Core

Bound in the Backend. We compare two -O1 builds:

one without instruction scheduling pass, one with

-fschedule-insns -fschedule-insns2. Both binaries have

identical instruction counts, only instruction ordering differs.

We observe a ∼4% IPC and runtime improvement, fully

explained by a ∼4% reduction in the Backend and Core Bound

categories.

BOOM CS1: Coremark (m) Similarly to the previous case study,

we can apply the same optimization on BOOM. Here the

performance increase is slim as instruction scheduling is less

effective on superscalar and OoO pipelines. Nevertheless the

runtime improves by 0.3% with the same compiler scheduling

pass, with the Backend and specifically the Core Bound

category reflecting this improvement. This demonstrates the

fidelity of the model

How important are per-lane events? In this work, we model

events per lane and argue each lane’s signals must be tracked.

We explore the impact of not supporting per-lane events. To

achieve this, we count every fetch lane individually. BOOM’s

three-wide fetch produces one Fetch-bubble event per lane,

and we report per-lane totals for selected benchmarks in

Tab. V. For Fetch-bubble, lanes are correlated: lane 1 has the

fewest bubbles, then lane 2, then lane 3. Thus, as a lightweight

heuristic, we could approximate total fetch bubbles as 3 ×
(Fetch-bubble1), yielding Frontend category errors within

about ±10% across our suite compared to the full model. The

simpler evaluation also realizes gains in the physical design,

if a processor designer wanted to implement the event only

from one lane as opposed to placing circuitry to monitor all

lanes. As we implemented BOOM configurations in a physical

design flow (§V-C), we also observed that the 10% decrease in

accuracy trades with a reduction in the length of the longest

PMU-specific wire by 11.39%.

By contrast, per-lane approximation fails for events like

Uops-issued or D$-blocked. Issue queues are not symmetric

(e.g., only the fourth queue handles floating-point µ-ops), so
each lane must be tracked separately.

B. Accuracy of Icicle’s TMA Implementation
When performance bottlenecks overlap with each other,

they introduce inaccuracy in TMA results. The key challenge

of identifying such inaccuracy is the lack of ground truth,

TABLE V: Per-lane events per total cycles.

Fetch-bubble D$-blocked Uops-issued

Benchmark 0 1 2 0 1 2 0 1 2 3 4

505.mcf_r 0.03 0.05 0.09 0.41 0.06 0.14 0.34 0.30 0.12 0.05 0.00

523.xalancbmk_r 0.03 0.07 0.11 0.47 0.09 0.18 0.29 0.31 0.12 0.02 0.00

541.leela_r 0.04 0.07 0.12 0.04 0.08 0.10 0.44 0.09 0.38 0.20 0.00

525.x264_r 0.02 0.05 0.08 0.03 0.06 0.08 0.24 0.16 0.43 0.29 0.00

548.exchange2_r 0.02 0.04 0.06 0.00 0.00 0.00 0.84 0.61 0.26 0.13 0.00

500.perlbench_r 0.04 0.07 0.11 0.05 0.08 0.10 0.02 0.13 0.14 0.05 0.00

mm 0.02 0.03 0.04 0.01 0.04 0.06 0.47 0.09 0.03 0.01 0.87

memcpy 0.03 0.04 0.05 0.13 0.67 0.74 0.69 0.13 0.06 0.00 0.00

Fig. 7: All TMA results for Rocket and BOOM on SPEC CPU2017 Intrate, microbenchmarks, and selected case studies.

which includes all overlapping performance bottlenecks. We

address this challenge by using Icicle’s tracing infrastructure

to record all overlapping bottlenecks. Specifically, we leverage

traces to build a temporal TMA model that helps us quantify

the upper bound of TMA inaccuracies.

How much do Bad Speculation and Frontend overlap? A full

microarchitectural trace lets us quantify overlaps. For example,

Frontend and Bad Speculation can both bottleneck and mask

each other’s lost slots; something counter values alone cannot

reveal. Fig. 8a shows one such overlap: an I-cache miss triggers

a branch misprediction before the miss completes. Even with

a detailed trace, slot classification remains challenging. We

cannot prove solely from the trace that the I-cache miss or

branch miss is responsible for the Fetch-bubbles. Most likely,

this I-cache miss is not responsible, and is only the prefetcher

missing, since Recovering perfectly overlaps them. However,

we can use the trace to provide an upper bound on the number

of overlapping slots.

Temporal TMA

Overlap Frontend,I$-miss & Bad Speculation 0.01%

Frontend 3.33% ± 0.30%

Bad Speculation 18.15% ± 0.06%

TABLE VI: Quantifying upper-bound for TMA class overlap.

To measure this, we sampled trace sequences for a total

1.5 million cycles across all benchmarks. Our trace analyzer

scans for overlaps between I-Cache Refills and Recovering,

using a rolling window padded by 50 cycles to conservatively

bound the overlap. Any fetch bubble within that window

could count toward either category. Tab. VI reports that about

0.01% of all total slots may be an overlapping slot. If we

assume the worst case and all of these 0.01% of slots were

to be placed the Frontend instead, the perturbation would be

0.01
3.33 ∗ 100 = 0.30%. The same calculation can be made for

Bad Speculation perturbation.

Can we approximate Recovering with a constant? We use

Icicle’s tracing infrastructure to explore further approxima-

tions. Specifically, we identify the Recovery sequence by

measuring the number of consecutive cycles the processor

Frontend requires to recover after a branch misprediction,

as we show in Fig. 8a. Fig. 8b shows the CDF of all such

Recovery sequences. Almost every sequence lasts exactly

four cycles, showing that the Frontend needs four cycles to

resume producing valid instructions after a misprediction.

However, a long tail extends beyond 30 cycles: Icicle’s trace

reveals the single longest Recovery occurs when a fence

instruction immediately follows the misprediction. Conversely,

the shortest Recovering sequences arise from two back-to-

back pipeline flushes.

C. Physical design overhead

We wanted to establish confidence in the practicality of

these designs in a synthesized design. Hence, we implemented

each of the counter implementations in the five different sizes

of the BOOM processor, small, medium, large, mega, and

giga Tab. IV. Our closed-source Cadence-based flow passed

each configuration through logic synthesis, floorplanning,

and placement with the open-source ASAP7 physical design

kit as its technology node [33]. Our infrastructure allowed

us to rapidly prototype different configurations. Any future

modifications, such as adding levels of TMA with new events,

would quickly realize metrics for physical overheads through

our infrastructure. Designers can then evaluate physical cost

tradeoffs.

We collect power, area, and wirelength metrics for Icicle.

Icicle incurs a maximum overhead of 4.15% in power (Fig. 9a),

1.54% in area, and 9.93% in total wirelength. Additionally,

all designs pass constraints at a 200MHz clock frequency.

This matches the desired frequency of the base processor

without TMA events or their corresponding increment logic.

Hence, we conclude that our implementation is off the existing

critical path and does not introduce a new critical path. While

(a) Overlap example. (b) Sequence Distribution

Fig. 8: Temporal TMA examples.

(a) Total core power. (b) Largest CSR combinational delay.

Fig. 9: Post-placement metrics (lower is better).

this frequency may be lower than previous taped-out BOOM

designs, we did not have access to an ASAP7 memory compiler.

Consequently, the flow unrolled all memories into register

arrays which complicated the placement and routing of the

designs. However, that frequency stability, along with the low

overhead numbers for area, demonstrate that these designs

are physically practical.

We also collected wirelength and maximum combinational

delay statistics, specifically scoped to the CSR file, as that

contains all PMU-relevant logic. Fig. 9b shows the normalized

longest combinational delay in a path between two registers

that crosses the CSR file (thus containing our modifications

and added interfaces with the entire core). In the small and

medium configurations, we observe that the adders imple-

mentation performs equal to or better than the distributed

counters. However, the likely reason is that there are fewer

sources for the events in these smaller sizes. As a result,

the circuit overhead of distributed counters outweighs its

scalability. However, as the size increases, there are more

sources for each event. The longer adder network of the

adders approach extends the combinational delay. This metric

highlights the scalability of distributed counters.

VI. Related Work

Performance characterization. Ahmad Yasin first proposed Top-

down analysis approach on Intel processors [107] and laid the

foundations of the hierarchical structure that categorizes the

slot breakdown, later adopted by AMD [55] and ARM [75].

TMA improves on earlier approaches that assign a static

cost to events, for instance a cache miss [17], [20], [44].

To the best of our knowledge, SiFive is the only industry

group that has applied top-down characterization to a RISC-V

core, specifically the P470 [12], [74], but only at top level.

XiangShan is the only open-source out-of-order core that

currently supports TMA [96], [105], but their implementation

is not directly transferable to Rocket and BOOM, and no

accuracy studies exist. To the best of our knowledge, their

implementation is out-of-band only and is not synthesizable. A

RISC-V working group is currently developing a specification

for a standardized set of PMU events to support TMA [10].

However, this specification only standardizes the name of the

event if such an event is implemented. Providing an open-

source implementation and evaluation infrastructure, our tool

would facilitate such standardization efforts. Closely related to

Top-down, Eyerman et al. [30], [30], [42] introduce Cycles Per

Instruction (CPI) stacks to uncover stalls to uncover sources

of stalls. More recent works improve this insight by proposing

CPI stacks per stage [43], [45] or per instruction cycle stacks

by Gottschall et al. [51], [53].

Counters architecture. Weaver et al. [102] diagnosed inaccura-

cies of commercial processors as issues with instruction-level

counters that stem from benchmark and operating system

design. Other works [84] have synthesized superscalar PMU

designs to FPGAs, but lack a quantitative analysis of design

choices that would not integrate well with Chipyard.

Out-of-band tools. Our out-of-band tools expand on Fireperf,

which includes TraceRV and AutoCounter [59]. AutoCounter

allows for annotating boolean signals and producing counter

values at the end of simulation, whereas Fireperf offers a suite

of pre-defined, well-evaluated events that enable accurate in-

band characterization. Our out-of-band evaluation tracing is

most comparable to TEA’s and TIP’s evaluation [51], [53]

that use TraceDoctor, however, TraceDoctor was built before

a major redesign of FireSim and is incompatible with new

FireSim versions.

VII. Conclusion

We have enabled TMA on Rocket and BOOM with

new performance events and shown that our model can

identify performance bottlenecks. To support BOOM, we

implemented two new counters architectures for single-

cycle, multi-increment tracking of concurrent events. We

extended TraceRV to enable microarchitectural tracing that

helps design and quantify overlaps in characterization models.

In future work, we aim to extend the TMA hierarchy to third-

and fourth levels, improve accuracy, explore performance

characterization on heterogeneous systems on Chipyard, and

expand the temporal TMA model to quantify inaccuracies for

every overlap.

VIII. Acknowledgments

We thank the anonymous reviewers for their insightful

feedback. This work was supported by generous gifts from

Google. Any opinions, findings, conclusions, or recommenda-

tions expressed in this material are those of the authors and

do not necessarily reflect the views of the funding agencies.

We thank Prathmesh Patel for helping us on earlier work on

the Ibex processor.

IX. Artifact Appendix

A. Abstract

This artifact provides all resources required to reproduce

top-down and VLSI results of Icicle. It includes raw logs

from FireSim FPGA simulations, analysis scripts, physical

design flow scripts, and Icicle’s full code base. To reproduce

microbenchmark results without FPGA hardware, we provide

a meta-simulation workflow based on Verilator. While larger

benchmarks require specialized FPGA infrastructure, the

Verilator flow enables reproduction of results at a smaller

scale.

B. Artifact check-list (meta-information)
• Run-time environment: Ubuntu 22.04

• Hardware: x86_64 machine with > 8 cores and > 32 GB RAM

• Output: Table 5, Figures 7(a), 7(b), 7(d), 7(k), 7(n), and 9

• Experiments: Meta-simulation (Verilator) with new perfor-

mance counters and top-down analysis

• Disk space required: 200 GB

• Time to prepare workflow: 2 hours

• Time to complete experiments: 10 hours

• Publicly available: Yes
• Code licenses: Apache 2.0

• Archived: https://doi.org/10.5281/zenodo.17059077,
https://doi.org/10.5281/zenodo.16916499

C. Description

1) How to access:
• Icicle: https://doi.org/10.5281/zenodo.17059077
• FPGA dataset: https://doi.org/10.5281/zenodo.16916499
Only the first Zenodo link needs to be downloaded; the rest

will follow automatically.

Before beginning, please ensure that you have SSH key

access to GitHub.

2) Hardware dependencies: An x86_64 machine with at least

8 cores and more than 32 GB of RAM running Ubuntu 22.04

with 200GB of storage.

D. Installation

First copy the artifact:

$ cd ~/
$ wget -O Icicle-main.zip
https://zenodo.org/records/17059077/files/Icicle.zip
$ unzip Icicle-main.zip

Follow the setup instructions in the repository README to install conda,
system packages, and prepare sudo privileges.

Then, run the setup script. This step should take around 1-2 hours.

$ cd ~/Icicle-main
$ bash setup.sh --skip=fpga

It is common that the setup fails with a guestmount error, rerun the

command:

sudo chmod +r /boot/vmlinuz-*

Once done, the setup should print Init completed. The setup script

will download our fork of Chipyard, RocketChip, and BOOM. Icicle is built

in the top-level repository around the Chipyard code base.

From this point on, run all scripts inside the built environment.

$ source ./env.sh

E. Experiment workflow: FPGA dataset
Inside the Icicle repository, run:

bash ./plots-iiswc-2025-ae.sh

This step should take a few minutes to complete.

1) Expected results: This will download all FPGA simulation results

used in the Icicle evaluation section and use the tma_tool to generate plots

and tables. Results can be found in:

~/Icicle-main/iiswc-2025-ae-out/results/

and include all subfigures in Figure 7 (and additional TMA levels) and Table 5.

Raw data is in:

~/Icicle-main/iiswc-2025-ae-out/data/

which includes collected counters, uartlog, and binary traces. Further

analysis can be done independently using the tma_tool commands.

F. Experiment workflow: Microbenchmark meta-simulation
This can take 8-10 hours to complete. Inside the Icicle repository, run:

make init
bash run-iiswc-2025-ae.sh

make init sets up the build recipes with performance characterization

configurations that include performance counters and counters architectures.

If an instance liveness error is encountered, rerun the Firesim ssh

agent setup from the Readme.

1) Expected results: This script will initialize the FireSim configu-

ration templates and run Verilator-based meta-simulation for the RISC-V

microbenchmarks suite. This script will first build FireMarshal workloads

with the perf harness and subsequently run the workloads on both Rocket

and BOOM. We use the LargeBoom configuration with Scalar, AddWires. We

compare counter values of AddWires and DistributedCounters. The latter

requires post-processing based on counter width and the artifact harness is

set up for add wires.

All simulation outputs including uartlogs, counter values, TMA plots, and

TMA numbers will be in:

~/Icicle-main/iiswc-2025-ae-out/<rocket|boom>

Counter values comparison will be in:

~/Icicle-main/iiswc-2025-ae-out/counters-comparison

G. Experiment workflow: Physical Design
This section walks through implementing different Chipyard configura-

tions in a Cadence-based physical design flow and extracting metrics of

interest. The script below iterates through each of the counter configurations

in the Mega size of Boom. Running from scratch, the four designs should

run through placement in around a day.

source ./env.sh
bash ./run-iiswc-2025-vlsi-ae.sh

This produces various plots that evaluate tradeoffs in physical metrics.

The two files listed below correspond to Figures 9(a) and 9(b) in our paper.

find ${PC_DIR}/iiswc-2025-ae-out/vlsi -name "*power*"
find ${PC_DIR}/iiswc-2025-ae-out/vlsi -name
"*longest_csr_path*"

H. Experiment customization
We only provide commands to run meta-simulation. However, if an FPGA

is available all commands work identically to meta-simulation, allowing for

running SPEC and Coremark benchmarks.

I. Notes
Note that results from meta-simulation and FPGA simulation may differ

slightly due to differences in how memory behavior is modeled. While exact

numbers can vary, overall bottlenecks remain consistent.

References

[1] “SiFive U54-MC Core Complex Manual v1p0,” October 2017, available

at https://static.dev.sifive.com/U54-MC-RVCoreIP.pdf.

[2] “The RISC-V Instruction Set Manual Volume I,” https:

//lf-riscv.atlassian.net/wiki/spaces/HOME/pages/16154769/RISC-V+

Technical+Specifications, April 2024.

[3] “AMD uProf User Guide,” https://www.amd.com/content/dam/amd/en/

documents/developer/uprof-v4.0-gaGA-user-guide.pdf, n.d., [Accessed

05-09-2025].

[4] “CVA6 performance counters,” https://docs.openhwgroup.org/projects/

cva6-user-manual/01_cva6_user/CSR_Performance_Counters.html,

n.d., [Accessed 17-05-2025].

[5] “Intel perfmon,” https://github.com/intel/perfmon, n.d., [Accessed: 2025-

09-05].

[6] “Intel pmu profiling tools,” https://github.com/andikleen/pmu-tools,

n.d., [Accessed 10-06-2025].

[7] “Intel VTune Profiler Performance Analysis Cookbook: Top-

down Microarchitecture Analysis Method,” https://www.intel.

com/content/www/us/en/docs/vtune-profiler/cookbook/2023-0/

top-down-microarchitecture-analysis-method.html, n.d., [Accessed

14-12-2024].

https://doi.org/10.5281/zenodo.17059077
https://doi.org/10.5281/zenodo.16916499
https://static.dev.sifive.com/U54-MC-RVCoreIP.pdf
https://lf-riscv.atlassian.net/wiki/spaces/HOME/pages/16154769/RISC-V+Technical+Specifications
https://lf-riscv.atlassian.net/wiki/spaces/HOME/pages/16154769/RISC-V+Technical+Specifications
https://lf-riscv.atlassian.net/wiki/spaces/HOME/pages/16154769/RISC-V+Technical+Specifications
https://www.amd.com/content/dam/amd/en/documents/developer/uprof-v4.0-gaGA-user-guide.pdf
https://www.amd.com/content/dam/amd/en/documents/developer/uprof-v4.0-gaGA-user-guide.pdf
https://docs.openhwgroup.org/projects/cva6-user-manual/01_cva6_user/CSR_Performance_Counters.html
https://docs.openhwgroup.org/projects/cva6-user-manual/01_cva6_user/CSR_Performance_Counters.html
https://github.com/intel/perfmon
https://github.com/andikleen/pmu-tools
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/2023-0/top-down-microarchitecture-analysis-method.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/2023-0/top-down-microarchitecture-analysis-method.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/2023-0/top-down-microarchitecture-analysis-method.html

[8] “Micro-architectural event tracking,” https://docs.boom-core.org/en/

latest/sections/uarch-counters.html, n.d., [Accessed 10-12-2024].

[9] “OpenSBI,” https://github.com/riscv-software-src/opensbi, n.d., [Ac-

cessed 14-06-2025].

[10] “Performance event sampling rvs-2770,” https://github.com/riscv/

riscv-performance-events/pull/18, n.d., [Accessed 10-12-2024].

[11] “riscv-tests,” https://github.com/riscv-software-src/riscv-tests, n.d., [Ac-

cessed 14-12-2024].

[12] “SiFive P400-Series Datasheet,” https://www.sifive.com/document-file/

p400-series-datasheet, n.d., [Accessed 13-06-2025].

[13] “Target-to-Host Bridges documentation,” https://docs.fires.im/en/latest/

Golden-Gate/Bridges.html, n.d., [Accessed 14-06-2025].

[14] “The Berkeley Out-of-Order Machine,” https://docs.boom-core.org/en/

latest/sections/intro-overview/boom.html, n.d., [Accessed 23-06-2025].

[15] “Xiangshan top-down,” https://github.com/OpenXiangShan/XiangShan/

blob/master/scripts/top-down/top_down.py, n.d., [Accessed: 2025-09-

05].

[16] A. Abel, Y. Li, R. O’Grady, C. Kennelly, and D. Gove, “A profiling-

based benchmark suite for warehouse-scale computers,” in International
Symposium on Performance Analysis of Systems and Software (ISPASS).
IEEE, 2024, pp. 325–327.

[17] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood, “DBMSs on

a modern processor: Where does time go?” in VLDB’99, Proceedings
of 25th International Conference on Very Large Data Bases, September
7-10, 1999, Edinburgh, Scotland, UK, 1999, pp. 266–277.

[18] A. Amid, D. Biancolin, A. Gonzalez, D. Grubb, S. Karandikar, H. Liew,

A. Magyar, H. Mao, A. Ou, N. Pemberton et al., “Chipyard: Integrated
design, simulation, and implementation framework for custom socs,”

in International Symposium on Microarchitecture (MICRO), vol. 40, no. 4,
2020, pp. 10–21.

[19] S. Anand, M. Friedman, M. Giardino, and G. Alonso, “Skip it: Take

control of your cache!” in International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
2024, pp. 1077–1094.

[20] J. M. Anderson, L. M. Berc, J. Dean, S. Ghemawat, M. R. Henzinger,

S.-T. A. Leung, R. L. Sites, M. T. Vandevoorde, C. A. Waldspurger, and

W. E. Weihl, “Continuous profiling: Where have all the cycles gone?”

Transactions on Computer Systems (TOCS), vol. 15, no. 4, pp. 357–390,
1997.

[21] M. Arora, S. Nath, S. Mazumdar, S. B. Baden, and D. M. Tullsen,

“Redefining the role of the cpu in the era of cpu-gpu integration,” IEEE
Micro, vol. 32, no. 6, pp. 4–16, 2012.

[22] K. Asanovic, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin, C. Celio,

H. Cook, D. Dabbelt, J. Hauser, A. Izraelevitz et al., “The rocket chip

generator,” EECS Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2016-17, vol. 4, pp. 6–2, 2016.

[23] G. Ayers, J. H. Ahn, C. Kozyrakis, and P. Ranganathan, “Memory

hierarchy for web search,” in International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 2018, pp. 643–

656.

[24] G. Ayers, N. P. Nagendra, D. I. August, H. K. Cho, S. Kanev, C. Kozyrakis,

T. Krishnamurthy, H. Litz, T. Moseley, and P. Ranganathan, “Asmdb:

understanding and mitigating front-end stalls in warehouse-scale

computers,” in International Symposium on Computer Architecture
(ISCA), 2019, pp. 462–473.

[25] C. Bai, Q. Sun, J. Zhai, Y. Ma, B. Yu, and M. D. Wong, “BOOM-explorer:

RISC-V BOOM microarchitecture design space exploration,” Design
Automation of Electronic Systems, vol. 29, no. 1, pp. 1–23, 2023.

[26] S. S. Banerjee, S. Jha, Z. Kalbarczyk, and R. K. Iyer, “Bayesperf:

minimizing performance monitoring errors using bayesian statistics,”

in International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2021, pp. 832–844.

[27] L. Berger-Vergiat, S. G. Cardwell, B. Feinberg, S. D. Hammond,

C. Hughes, M. Levenhagen, and K. Pedretti, “Evaluation of HPC

workloads running on open-source RISC-V hardware,” in International
Conference on High Performance Computing. Springer, 2023, pp. 538–

551.

[28] Björn Gottschall and Lieven Eeckhout and Magnus Jahre, “Per-

instruction cycle stacks through time-proportional event analysis,”

in International Symposium on Microarchitecture (MICRO), vol. 44, no. 4.
IEEE, 2024, pp. 27–33.

[29] B. Boroujerdian, Y. Jing, D. Tripathy, A. Kumar, L. Subramanian, L. Yen,

V. Lee, V. Venkatesan, A. Jindal, R. Shearer et al., “FARSI: An early-

stage design space exploration framework to tame the domain-specific

system-on-chip complexity,” Transactions on Embedded Computing
Systems, vol. 22, no. 2, pp. 1–35, 2023.

[30] M. Breughe, S. Eyerman, and L. Eeckhout, “A mechanistic performance

model for superscalar in-order processors,” in International Symposium
on Performance Analysis of Systems & Software (ISPASS). IEEE, 2012,

pp. 14–24.

[31] J. Bucek, K.-D. Lange, and J. v. Kistowski, “SPEC CPU2017: Next-

generation compute benchmark,” in International Conference on Perfor-
mance Engineering, 2018, pp. 41–42.

[32] D. Chen, T. Moseley, and D. X. Li, “Autofdo: Automatic feedback-

directed optimization for warehouse-scale applications,” in Code
Generation and Optimization (CGO). IEEE, 2016.

[33] L. T. Clark, V. Vashishtha, L. Shifren, A. Gujja, S. Sinha, B. Cline,

C. Ramamurthy, and G. Yeric, “ASAP7: A 7-nm finFET predictive

process design kit,” Microelectronics Journal, vol. 53, pp. 105–115, 2016.
[34] K. D. Cooper, L. T. Simpson, and C. A. Vick, “Operator strength

reduction,” Transactions on Programming Languages and Systems
(TOPLAS), vol. 23, no. 5, pp. 603–625, 2001.

[35] C. Curtsinger and E. D. Berger, “Stabilizer: Statistically sound perfor-

mance evaluation,” ACM SIGARCH Computer Architecture News, vol. 41,
no. 1, pp. 219–228, 2013.

[36] Curtsinger, Charlie and Berger, Emery D, “Coz: Finding code that

counts with causal profiling,” in USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2015, pp. 184–197.

[37] W. J. Dally, Y. Turakhia, and S. Han, “Domain-specific hardware

accelerators,” Communications of the ACM, vol. 63, no. 7, pp. 48–57,

2020.

[38] A. C. De Melo, “The new linux’perf’tools,” in Slides from Linux Kongress,
vol. 18, 2010, pp. 1–42.

[39] J. M. Domingos, T. Rocha, N. Neves, N. Roma, P. Tomás, and L. Sousa,

“Supporting RISC-V Performance Counters Through Linux Performance

Analysis Tools,” in International Conference on Application-specific
Systems, Architectures and Processors (ASAP). IEEE, 2023, pp. 94–

101.

[40] J. S. Emer and D. W. Clark, “A characterization of processor perfor-

mance in the VAX-11/780,” ACM SIGARCH Computer Architecture News,
vol. 12, no. 3, pp. 301–310, 1984.

[41] V. Espindola, L. Zago, H. Yviquel, and G. Araujo, “Source matching

and rewriting for MLIR using string-based automata,” Transactions on
Architecture and Code Optimization, vol. 20, no. 2, pp. 1–26, 2023.

[42] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith, “A mech-

anistic performance model for superscalar out-of-order processors,”

Transactions on Computer Systems (TOCS), vol. 27, no. 2, pp. 1–37,
2009.

[43] S. Eyerman, W. Heirman, K. Du Bois, and I. Hur, “Multi-stage cpi

stacks,” IEEE Computer Architecture Letters, vol. 17, no. 1, pp. 55–58,
2017.

[44] S. Eyerman, J. E. Smith, and L. Eeckhout, “Characterizing the branch

misprediction penalty,” in International Symposium on Performance
Analysis of Systems & Software (ISPASS). IEEE, 2006, pp. 48–58.

[45] Eyerman, Stijn and Heirman, Wim and Du Bois, Kristof and Hur,

Ibrahim, “Extending the performance analysis tool box: Multi-stage CPI

stacks and FLOPS stacks,” in International Symposium on Performance
Analysis of Systems & Software (ISPASS). IEEE, 2018, pp. 179–188.

[46] Z. Fu, R. Tedeschi, G. Ottavi, N. Wistoff, C. Fuguet, D. Rossi, and

L. Benini, “Ramping up open-source RISC-V cores: Assessing the energy

efficiency of superscalar, out-of-order execution,” in International
Conference on Computing Frontiers, 2025.

[47] S. Gal-On and M. Levy, “Exploring coremark a benchmark maximizing

simplicity and efficacy,” The Embedded Microprocessor Benchmark
Consortium, 2012.

[48] P. B. Gibbons and S. S. Muchnick, “Efficient instruction scheduling

for a pipelined architecture,” in SIGPLAN Symposium on Compiler
Construction, 1986, pp. 11–16.

[49] A. Gonzalez, A. Kolli, S. Khan, S. Liu, V. Dadu, S. Karandikar, J. Chang,

K. Asanovic, and P. Ranganathan, “Profiling hyperscale big data

processing,” in International Symposium on Computer Architecture
(ISCA), 2023, pp. 1–16.

[50] B. Gottschall, S. C. de Santana, and M. Jahre, “Balancing accuracy and

evaluation overhead in simulation point selection,” in International
Symposium on Workload Characterization (IISWC). IEEE, 2023, pp.

43–53.

https://docs.boom-core.org/en/latest/sections/uarch-counters.html
https://docs.boom-core.org/en/latest/sections/uarch-counters.html
https://github.com/riscv-software-src/opensbi
https://github.com/riscv/riscv-performance-events/pull/18
https://github.com/riscv/riscv-performance-events/pull/18
https://github.com/riscv-software-src/riscv-tests
https://www.sifive.com/document-file/p400-series-datasheet
https://www.sifive.com/document-file/p400-series-datasheet
https://docs.fires.im/en/latest/Golden-Gate/Bridges.html
https://docs.fires.im/en/latest/Golden-Gate/Bridges.html
https://docs.boom-core.org/en/latest/sections/intro-overview/boom.html
https://docs.boom-core.org/en/latest/sections/intro-overview/boom.html
https://github.com/OpenXiangShan/XiangShan/blob/master/scripts/top-down/top_down.py
https://github.com/OpenXiangShan/XiangShan/blob/master/scripts/top-down/top_down.py

[51] B. Gottschall, L. Eeckhout, and M. Jahre, “TIP: Time-proportional

instruction profiling,” in International Symposium on Microarchitecture
(MICRO), 2021, pp. 15–27.

[52] B. Gottschall and M. Jahre, “Tracedoctor: Versatile high-performance

tracing for firesim,” in The First FireSim and Chipyard User and Developer
Workshop at ASPLOS, 2023.

[53] Gottschall, Björn and Eeckhout, Lieven and Jahre, Magnus, “TEA: Time-

proportional event analysis,” in International Symposium on Computer
Architecture (ISCA), 2023, pp. 1–13.

[54] M. Hill and V. J. Reddi, “Gables: A roofline model for mobile socs,” in

International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2019, pp. 317–330.

[55] M. Jarus and A. Oleksiak, “Top-down characterization approximation

based on performance counters architecture for amd processors,”

Simulation Modelling Practice and Theory, vol. 68, pp. 146–162, 2016.
[56] Z. Jiang, K. Yang, N. Fisher, N. Guan, N. C. Audsley, and Z. Dong,

“Hopscotch: A hardware-software co-design for efficient cache resizing

on multi-core SoCs,” Transactions on Parallel and Distributed Systems,
vol. 35, no. 1, pp. 89–104, 2023.

[57] S. Karandikar, C. Leary, C. Kennelly, J. Zhao, D. Parimi, B. Nikolic,

K. Asanovic, and P. Ranganathan, “A hardware accelerator for protocol

buffers,” in International Symposium on Microarchitecture, 2021, pp.
462–478.

[58] S. Karandikar, H. Mao, D. Kim, D. Biancolin, A. Amid, D. Lee,

N. Pemberton, E. Amaro, C. Schmidt, A. Chopra et al., “Firesim: Fpga-

accelerated cycle-exact scale-out system simulation in the public cloud,”

in International Symposium on Computer Architecture (ISCA). IEEE,

2018, pp. 29–42.

[59] S. Karandikar, A. Ou, A. Amid, H. Mao, R. Katz, B. Nikolić, and

K. Asanović, “Fireperf: Fpga-accelerated full-system hardware/software

performance profiling and co-design,” in International Conference on
Architectural Support for Programming Languages and Operating Systems
(ASPLOS), 2020, pp. 715–731.

[60] S. Karandikar, A. N. Udipi, J. Choi, J. Whangbo, J. Zhao, S. Kanev,

E. Lim, J. Alakuijala, V. Madduri, Y. S. Shao et al., “CDPU: Co-designing
compression and decompression processing units for hyperscale

systems,” in International Symposium on Computer Architecture (ISCA),
2023, pp. 1–17.

[61] T. A. Khan, N. Brown, A. Sriraman, N. K. Soundararajan, R. Kumar,

J. Devietti, S. Subramoney, G. A. Pokam, H. Litz, and B. Kasikci,

“Twig: Profile-guided btb prefetching for data center applications,”

in International Symposium on Microarchitecture (MICRO), 2021, pp.
816–829.

[62] T. A. Khan, I. Neal, G. Pokam, B. Mozafari, and B. Kasikci, “DMon:

Efficient detection and correction of data locality problems using

selective profiling,” in USENIX Symposium on Operating Systems Design
and Implementation (OSDI), Jul. 2021.

[63] T. A. Khan, A. Sriraman, J. Devietti, G. Pokam, H. Litz, and B. Kasikci,

“I-SPY: Context-driven conditional instruction prefetching with coalesc-

ing,” in International Symposium on Microarchitecture (MICRO). IEEE,

2020, pp. 146–159.

[64] T. Khan, M. Ugur, K. Nathella, D. Sunwoo, H. Litz, D. A. Jiménez,

and B. Kasikci, “Whisper: Profile-guided branch misprediction elim-

ination for data center applications,” in International Symposium on
Microarchitecture (MICRO), 2022.

[65] T. A. Khan, M. Ugur, K. Nathella, D. Sunwoo, H. Litz, D. A. Jiménez,

and B. Kasikci, “Whisper: Profile-guided branch misprediction elim-

ination for data center applications,” in International Symposium on
Microarchitecture (MICRO). IEEE, 2022, pp. 19–34.

[66] T. A. Khan, D. Zhang, A. Sriraman, J. Devietti, G. Pokam, H. Litz,

and B. Kasikci, “Ripple: Profile-guided instruction cache replacement

for data center applications,” in International Symposium on Computer
Architecture (ISCA), Jun. 2021.

[67] G. Kornaros and D. Pnevmatikatos, “A survey and taxonomy of on-

chip monitoring of multicore systems-on-chip,” Design Automation of
Electronic Systems (TODAES), vol. 18, no. 2, pp. 1–38, 2013.

[68] C. E. Leiserson, N. C. Thompson, J. S. Emer, B. C. Kuszmaul, B. W.

Lampson, D. Sanchez, and T. B. Schardl, “There’s plenty of room at

the top: What will drive computer performance after moore’s law?”

Science, vol. 368, no. 6495, 2020.
[69] H. Li, D. S. Berger, L. Hsu, D. Ernst, P. Zardoshti, S. Novakovic,

M. Shah, S. Rajadnya, S. Lee, I. Agarwal et al., “Pond: Cxl-based memory

pooling systems for cloud platforms,” in International Conference on

Architectural Support for Programming Languages and Operating Systems
(ASPLOS), 2023, pp. 574–587.

[70] Y. Lv, B. Sun, Q. Luo, J. Wang, Z. Yu, and X. Qian, “Counterminer:

Mining big performance data from hardware counters,” in International
Symposium on Microarchitecture (MICRO). IEEE, 2018, pp. 613–626.

[71] M. Maas, K. Asanović, and J. Kubiatowicz, “A hardware accelerator for

tracing garbage collection,” in International Symposium on Computer
Architecture (ISCA). IEEE, 2018, pp. 138–151.

[72] H. Mao, R. H. Katz, and K. Asanovic, “Hardware acceleration for

memory to memory copies,” Master’s thesis, 2017.
[73] J. M. May, “MPX: Software for multiplexing hardware performance

counters in multithreaded programs,” in International Parallel and
Distributed Processing Symposium (IPDPS). IEEE, 2001.

[74] C.-Y. Mou, C.-C. Hsiao, and J. Chou, “Top-down microarchitecture

analysis approximation based on performance counter architecture for

sifive risc-v processors.”

[75] J. Mundichipparakkal, K. Nathella, and T. A. Khan, “Arm

neoverse n1 core: Performance analysis methodology,”

https://armkeil.blob.core.windows.net/developer/Files/pdf/white-

paper/neoverse-n1-core-performance-v2.pdf, 2021.

[76] Palacharla, Subbarao and Jouppi, Norman P and Smith, James E,

“Complexity-effective superscalar processors,” in International Sym-
posium on Computer Architecture (ISCA), 1997, pp. 206–218.

[77] M. Panchenko, R. Auler, B. Nell, and G. Ottoni, “Bolt: a practical

binary optimizer for data centers and beyond,” in Code Generation and
Optimization (CGO). IEEE, 2019, pp. 2–14.

[78] M. Panchenko, R. Auler, L. Sakka, and G. Ottoni, “Lightning BOLT:

powerful, fast, and scalable binary optimization,” in SIGPLAN Interna-
tional Conference on Compiler Construction, 2021, pp. 119–130.

[79] N. Pemberton, J. D. Kubiatowicz, and R. H. Katz, “Enabling efficient and

transparent remote memory access in disaggregated datacenters,” Ph.D.

dissertation, Ph. D. Dissertation. University of California at Berkeley,

Berkeley, CA, 2018.

[80] R. B. Reese and M. A. Thornton, Introduction to logic synthesis using
Verilog HDL. Springer Nature, 2022.

[81] J. Rogers, L. Eeckhout, and M. Jahre, “HILP: Accounting for workload-

level parallelism in system-on-chip design space exploration,” in

International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2025, pp. 1275–1288.

[82] J. Rogers, L. Eeckhout, T. Soliman, and M. Jahre, “Neoscope: How

resilient is my soc to workload churn?” in International Symposium
on Computer Architecture (ISCA), 2025, pp. 1296–1310.

[83] J. Rogers, T. Soliman, and M. Jahre, “AIO: An abstraction for

performance analysis across diverse accelerator architectures,” in

International Symposium on Computer Architecture (ISCA). IEEE,

2024, pp. 487–500.

[84] V. Salapura, K. Ganesan, A. Gara, M. Gschwind, J. C. Sexton, and R. E.

Walkup, “Next-generation performance counters: Towards monitoring

over thousand concurrent events,” in International Symposium on
Performance Analysis of Systems and software (ISPASS). IEEE, 2008,

pp. 139–146.

[85] D. Schall, A. Sandberg, and B. Grot, “Warming up a cold front-end

with ignite,” in International Symposium on Microarchitecture (MICRO),
2023, pp. 254–267.

[86] C. Schmidt and A. Izraelevitz, “A fast parameterized sha3 accelerator,”

in tech. rep. EECS Department, University of California, 2015.

[87] S. Sethumadhavan, R. Desikan, D. Burger, C. R. Moore, and S. W.

Keckler, “Scalable hardware memory disambiguation for high ilp

processors,” in International Symposium on Microarchitecture (MICRO).
IEEE, 2003, pp. 399–410.

[88] S. Sheikhpour, D. Z. Metz, E. Jellum, M. Själander, and L. Eeckhout,

“Sustainable high-performance instruction selection for superscalar

processors,” in International Conference on Computer-Aided Design
(ICCAD), 2024, pp. 1–9.

[89] H. Shen, K. Pszeniczny, R. Lavaee, S. Kumar, S. Tallam, and X. D. Li,

“Propeller: A profile guided, relinking optimizer for warehouse-scale

applications,” in International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2, 2023, pp.
617–631.

[90] J. E. Smith, “A study of branch prediction strategies,” in International
Symposium on Computer Architecture (ISCA), 1998, pp. 202–215.

[91] N. K. Soundararajan, P. Braun, T. A. Khan, B. Kasikci, H. Litz, and

S. Subramoney, “Pdede: Partitioned, deduplicated, delta branch target

buffer,” in International Symposium on Microarchitecture (MICRO), 2021,
pp. 779–791.

[92] A. Sriraman and A. Dhanotia, “Accelerometer: Understanding accel-

eration opportunities for data center overheads at hyperscale,” in

International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2020, pp. 733–750.

[93] A. Sriraman, A. Dhanotia, and T. F. Wenisch, “Softsku: Optimizing

server architectures for microservice diversity scale,” in International
Symposium on Computer Architecture, 2019, pp. 513–526.

[94] R. Starc, T. Kuchler, M. Giardino, and A. Klimovic, “Serverless? risc

more!” in Proceedings of the 2nd Workshop on SErverless Systems,
Applications and MEthodologies, 2024, pp. 15–24.

[95] W. Su, A. Dhanotia, C. Torres, J. Gandhi, N. Gholkar, S. Kanaujia,

M. Naumov, K. Subramanian, V. Andrei, Y. Yuan et al., “DCPerf: An
open-source, battle-tested performance benchmark suite for datacenter

workloads,” in International Symposium on Computer Architecture, 2025,
pp. 1717–1730.

[96] X. Team, “Xiangshan: An open-source high-performance risc-v proces-

sor and infrastructure for architecture research,” in High Performance
Computer Architecture (HPCA). IEEE, 2025.

[97] R. Tedeschi, G. Ottavi, C. Allart, N. Wistoff, Z. Fu, F. Grillotti,

F. De Ambroggi, E. Guidetti, J.-B. Rigaud, O. Potin et al., “CVA6S+: A
superscalar RISC-V core with high-throughput memory architecture,”

arXiv preprint arXiv:2505.03762, 2025.
[98] T. N. Theis and H.-S. P. Wong, “The end of moore’s law: A new

beginning for information technology,” Computing in Science &
Engineering, vol. 19, no. 2, pp. 41–50, 2017.

[99] S. P. Vanderwiel and D. J. Lilja, “Data prefetch mechanisms,” ACM
Computing Surveys (CSUR), vol. 32, no. 2, pp. 174–199, 2000.

[100] V. M. Weaver and S. A. McKee, “Can hardware performance counters

be trusted?” in 2008 IEEE International Symposium on Workload
Characterization. IEEE, 2008, pp. 141–150.

[101] V. M. Weaver, D. Terpstra, and S. Moore, “Non-determinism and

overcount on modern hardware performance counter implementations,”

in 2013 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS). IEEE, 2013, pp. 215–224.

[102] Weaver, Vincent M and Terpstra, Dan and Moore, Shirley, “Non-

determinism and overcount on modern hardware performance counter

implementations,” in International Symposium on Performance Analysis
of Systems and Software (ISPASS). IEEE, 2013, pp. 215–224.

[103] A. R. Weiss, “Dhrystone benchmark,” History, Analysis, Scores and
Recommendations, White Paper, ECL/LLC, 2002.

[104] L. Weng, Y. Hu, P. Huang, J. Nieh, and J. Yang, “Effective performance

issue diagnosis with value-assisted cost profiling,” in Proceedings of the
Eighteenth European Conference on Computer Systems, 2023, pp. 1–17.

[105] Y. Xu, Z. Yu, D. Tang, G. Chen, L. Chen, L. Gou, Y. Jin, Q. Li, X. Li, Z. Li

et al., “Towards developing high performance risc-v processors using

agile methodology,” in International Symposium on Microarchitecture
(MICRO). IEEE, 2022, pp. 1178–1199.

[106] J. Yang, M. Wen, D. Chen, Z. Chen, Z. Xue, Y. Li, J. Shen, and

Y. Shi, “HyFiSS: A hybrid fidelity stall-aware simulator for gpgpus,” in

International Symposium on Microarchitecture (MICRO). IEEE, 2024,

pp. 168–185.

[107] A. Yasin, “A top-down method for performance analysis and counters

architecture,” in International Symposium on Performance Analysis of
Systems and Software (ISPASS). IEEE, 2014, pp. 35–44.

[108] D. You, J. Jiang, X. Wang, Y. Du, Z. Tan, W. Xu, H. Wang, J. Guan, R. Wei,

S. Zhao et al., “MERE: Hardware-software co-design for masking cache

miss latency in embedded processors.” ACM, 2025.

[109] D. Zaparanuks, M. Jovic, and M. Hauswirth, “Accuracy of performance

counter measurements,” in 2009 IEEE international symposium on
performance analysis of systems and software. IEEE, 2009, pp. 23–32.

[110] J. Zhai and Y. Cai, “Microarchitecture design space exploration

via pareto-driven active learning,” Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 31, no. 11, pp. 1727–1739, 2023.

[111] Y. Zhang, T. A. Khan, G. Pokam, B. Kasikci, H. Litz, and J. Devietti,

“Ocolos: Online code layout optimizations,” in International Symposium
on Microarchitecture (MICRO). IEEE, 2022, pp. 530–545.

[112] Z. Zhang, M. K. Ramanathan, P. Raj, A. Parwal, T. Sherwood,

and M. Chabbi, “{CRISP}: Critical path analysis of {Large-Scale}
microservice architectures,” in USENIX Annual Technical Conference
(USENIX ATC), 2022, pp. 655–672.

[113] J. Zhao, A. Gonzalez, A. Amid, S. Karandikar, and K. Asanović,

“COBRA: A framework for evaluating compositions of hardware branch

predictors,” in International Symposium on Performance Analysis of
Systems and Software (ISPASS). IEEE, 2021, pp. 310–320.

[114] J. Zhao, B. Korpan, A. Gonzalez, and K. Asanovic, “Sonicboom: The

3rd generation berkeley out-of-order machine,” in Fourth Workshop on
Computer Architecture Research with RISC-V, vol. 5, 2020, pp. 1–7.

[115] Y. Zhong, D. S. Berger, C. Waldspurger, R. Wee, I. Agarwal, R. Agarwal,

F. Hady, K. Kumar, M. D. Hill, M. Chowdhury et al., “Managing memory

tiers with {CXL} in virtualized environments,” in USENIX Symposium
on Operating Systems Design and Implementation (OSDI), 2024, pp.
37–56.

[116] F. Zhou, Y. Gan, S. Ma, and Y. Wang, “wperf: Generic off-cpu analysis to

identify bottleneck waiting events,” in USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2018, pp. 527–543.

[117] T. Zidenberg, I. Keslassy, and U. Weiser, “MultiAmdahl: How should

i divide my heterogenous chip?” IEEE Computer Architecture Letters,
vol. 11, no. 2, pp. 65–68, 2012.

	Introduction
	Background
	PMU Counters Architecture
	Top-Down Microarchitectural Analysis
	Performance Events in Rocket and BOOM

	Motivation: Why is event choice critical?
	Icicle's Implementation
	Adding Events for TMA
	Top-level Events
	Low-level Events

	Counters Architecture
	Microarchitectural Event Trace
	Perf Software Harness

	Evaluation
	Top–Down Analysis Results
	Accuracy of Icicle's TMA Implementation
	Physical design overhead

	Related Work
	Conclusion
	Acknowledgments
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies

	Installation
	Experiment workflow: FPGA dataset
	Expected results

	Experiment workflow: Microbenchmark meta-simulation
	Expected results

	Experiment workflow: Physical Design
	Experiment customization
	Notes

	References

