
EEWeb PULSE TECH ARTICLE

2322 Visit www.eeweb.comEEWeb | Electrical Engineering Community

--

library ieee;
use ieee.std_logic_1164.all;

entity AND_GATE is
port(A: in std_logic;
 B: in std_logic;
 F1: out std_logic
);
end AND_GATE;

architecture behv of AND_GATE is
begin
process(A,B)
begin

Dave Vandenbout
XESS Corp. - Founder

What’s in a Name?

I’ll suggest a more basic concern:

finding good names for stuff.

When you’re writing your HDL code, what consideration should be top-of-mind?

Creating a good hierarchy?

Maintaining a synchronous design?

Registering inputs and outputs?

EEWeb PULSE TECH ARTICLE

2524 Visit www.eeweb.comEEWeb | Electrical Engineering Community

Think for a moment what your HDL coding life would
look like if you took the time to clearly name the various
I/Os, signals, registers, modules, etc.

• You would write better documentation.

The HDL code itself would help to tell the story about
how the design does what it is meant to do. This means
the surrounding comments can concentrate on telling
why the design is built this way.

• You would write less explicit
documentation.

Because the HDL names assist with the documentation,
fewer actual comments are needed. And these
comments have to be updated less frequently as the
design changes because the “why” of a design changes
less frequently than “how” it actually operates.

• You would introduce fewer bugs.

Bugs get into the code because we place them there,
usually because we’re confused about what the design
is doing. Good names carry along the meaning of the
problem the design is meant to solve, so it’s easier to
load the problem into your head. Then you’ll spend less
mental energy translating the variables back into the
problem domain and more on producing correct code.

• Your debugging sessions would be
easier.

For the same reason, it’s easier to trace and find errors
when the debugger shows variables whose names refer
directly to items in the problem domain.

• Your designs would be re-used more
often.

If a design is easier for you to understand and modify,
the same will apply to others and they’ll be more likely
to use it as well.

Here’s another indication of the importance of naming:
“The Power of Variable Names” in Code Complete,
is 25% longer than any other chapter. You could stop
reading this right now and go read that chapter, but I’ll
synopsize the germane points for you:

• A variable name should describe what it
represents.

For example, heightOfAscent would be a good name for
a variable in a telemetry module that records the current

altitude of a rocket. Not so for a variable named h or
(even worse) x.

• A variable should refer to the problem
domain, not the implementation.

For example, naming a variable heightCounter
implies that the rocket’s altitude is maintained within a
counter. This speaks to how the altitude is computed
within the circuit, but that may change as the design’s
implementation changes. You don’t want to have to
change your variable names if your logic changes
or – worse yet – have your names give misleading
information about how the design works.

• Variable names should be between 10
and 16 characters.

This makes the variables easiest to comprehend while
still conveying meaning (although you can stretch this to
8-20 chars with only slightly worse results). Of course,
variable names that describe the problem domain
can get rather long (heightOfAscent is already at 14
characters), so you’ll have to employ some techniques
to shorten them like removing nonleading vowels
(hghtOfAscnt) and removing articles (hghtAscnt).

• The greater the scope of the variable,
the more descriptive the name should be.

For example, you can use i as the index in a short
generate loop but not for a 1000-line block of code (well,
nothing would be appropriate for that).

In addition to the general principles shown above,
I also have conventions for how I adorn names in my
VHDL code. I use capitalization and append suffixes to
make it easier and faster for me to generate meaningful,
consistent names. It also indicates where the signals
come from and where they can be used.

Here are the rules I use:

• Entities, architectures, procedures, functions,
typenames: CamelCase with an initial uppercase letter.

• Packages: CamelCase with an initial uppercase letter
and ending with Pckg.

• Component instantiations: CamelCase with an initial
U.

• Constants & generics: all caps with underscores and
either a _C or _G as a suffix.

• Signals & variables: CamelCase with an initial
lowercase letter and one or more of the following
suffixes:

- _i: Input port.

- _o: Output port.

- _s: Signal local to architecture.

- _v: Variable local to process.

- _b: Active-low (complementatry) signal.

- _r: Current register value.

- _x: Next register value after clock edge.

- _a: Asynchronous signal.

- _d: Delayed version of signal.

- _e: Enabled version of signal.

To show how I use my conventions, here’s an artificial
example of a module that integrates the difference of
two signals:

The comments in the code show some of the places
where my naming conventions help out. But there are
also a couple of places where I violate my conventions:

• I use short, nondescriptive names for the a_i and b_i
inputs. In my defense, there aren’t any really good names
for these since this is just a module for performing a
general-purpose calculation that would be used in some
larger application. I also tried to mitigate this by placing
AminusB in the output names to show that the difference
of these two inputs is what’s being worked with.

• I violated the CamelCase naming format for some
of the signals such as intgrlAminusB_r because the
correct version, intgrlAMinusB_r, looked rather odd and
was hard to read.

These violations demonstrate the last and most important
naming convention: don’t be a prig! These rules exist
to serve you and not the other way around. If you find
places where they make the code less clear, then either
violate them or change the conventions to account for
these new circumstances. There’s no reason for slavish
adherence to some standard if it generates poor code.

It can be hard to remember a
new set of naming rules. To
help myself, I created a bunch
of macros for the Notepad++
editor which automatically
generate VHDL that follows my
naming conventions. While I
don’t recommend my rules for
everyone, you should have some
convention to guide you. Maybe
you can modify my macros to fit
your design environment. ■

