
Determinism Should Ensure Deadlock-Freedom

Nalini Vasudevan
Columbia University, New York

Stephen A. Edwards
Columbia University, New York

Abstract

The advent of multicore processors has made concur-
rent programming models mandatory. However, most
concurrent programming models come with two major
pitfalls: non-determinism and deadlocks. By determin-
ism, we mean the output behavior of the program is in-
dependent of the scheduling choices (e.g., the operat-
ing system) and depends only on the input behavior. A
few concurrent models provide deterministic behavior by
providing constructs that impose additional synchroniza-
tion, but improper or out-of-order use of these constructs
leads to problems like deadlocks.

In this paper, we argue for both determinism and
deadlock-freedom. We propose a design of a determin-
istic, deadlock-free model. Any program that uses this
model is guaranteed to produce the same output for a
given input. Additionally, the program will never dead-
lock: the program will either terminate or run forever.

1 Introduction

Non-deterministic functional behavior arising from
timing variability is one of the biggest problems of con-
current programming. It makes debugging nearly impos-
sible because unwanted behavior is rarely reproducible.
Re-running a non-deterministic program on the same in-
put can produce very different behavior.

We agree with Bocchino et al. [8] that the program-
ming environment should ensure input-output determin-
ism. Most concurrent programming languages are not
deterministic, so one program in a language may be de-
terministic but another program written in the same lan-
guage may not be. Thus, programmers have to check
for determinism on a program-by-program basis. This is
not really practical because determinism checking tools
either do not scale or cause too much run-time overhead.

A solution is to build a deterministic concurrent lan-
guage that forces every program written in it to be de-
terministic. These languages provide determinism by

providing additional synchronization. Although the pro-
grammer looses some flexibility in programming, his or
her program is guaranteed to behave consistently.

While deterministic concurrent models are interesting,
they give rise to a number of problems. For example, a
deadlock may occur when tasks do not synchronize in
the right order. Fortunately, deadlocks in programs writ-
ten in deterministic concurrent languages are generally
not hard to detect because if a program deadlocks under
one interleaving of tasks it will deadlock under any other
interleaving. However, static deadlock detection is not
simple because of the state space explosion problem.

The problem with programs that can deadlock is that
during runtime, it is not possible to differentiate when the
program is still running from when it is stuck in a dead-
lock. Therefore, we want a run-time technique for detect-
ing deadlocks with almost no overhead and a method to
deterministicallybreak the deadlock. Our ultimate goal:
not only should any program produce consistent output,
it should never deadlock.

In this paper, we start by discussing some of our goals
in designing deterministic, deadlock-free systems. Next,
in Sections 3 and 4, we examine the pros and cons of
existing models. Then, we propose a new model with
the desired properties of deadlock-freedom and non-
determinism in Section 5. Finally, in Section 6, we it-
erate through other existing deterministic environments.
We discuss if they provide deadlock-freedom or not and
we also compare them with our model.

2 Design Considerations

Our goal in designing deterministic, deadlock-free
systems is to achieve three things: efficiency, scalability,
and programmer flexibility.

2.1 Efficiency

A general hypothesis is that determinism introduces
performance degradation because of synchronization,
and the amount of degradation depends on the type of



synchronization. There are two types of synchronization:
centralized and distributed. A centralized synchroniza-
tion forces all tasks in a system to synchronize while a
distributed synchronization forces only a subset of tasks
to synchronize. Distributed methods perform better be-
cause the tasks have to wait less, but they are more sus-
ceptible to deadlocks. An out-of-order synchronization
between subsets of tasks may lead to a deadlock. In
contrast, deadlocks are avoided in centralized systems
because all tasks are forced to synchronize at the same
point.

In some cases, the programming environments are
non-deterministic, but there are techniques and tools to
check for determinism and deadlocks during runtime.
The problem with these tools is that they add a consider-
able amount of overhead that reduces performance dras-
tically.

2.2 Scalability

A number of programming environments provide de-
terminism at compile time through, e.g., static verifiers
and type systems. These techniques do not explicitly
introduce deadlocks but they do not scale because they
have to consider all possible interleavings of tasks in the
program.

Among the systems that provide determinism at run-
time, distributed systems are known to scale better than
centralized systems in both performance and ease of im-
plementation.

2.3 Flexibility and Ease of Use

Most deterministic programming models provide de-
terminism by imposing a number of restrictions. Most
type systems require programmers to explicitly annotate
the program. Static verifiers do not force any restrictions
on the program, but they do not scale with flexible pro-
grams and give false positives as results. Our goal is to
achieve a balance between performance, scalability and
programmer flexibility.

3 Kahn Networks

One of the early deterministic programming models
is the Kahn Network. A Kahn Network [9] is com-
posed of a set of communication processes that may send
and receive on channels. Each communication channel
connects a single sending process with a single receiv-
ing process. The communication structure of a system
is therefore a directed graph whose nodes are processes
and whose arcs are channels. There is no shared data;
processes communicate only through channels. The re-
ceiver process is blocking: it waits until the sender writes
the data. The receiver cannot choose to wait based on
whether the data is available or not. This property makes
the model deterministic. The sender is non-blocking; it

void f(out a)
{

for (;;) {
// send 1 on channel a
send a = 1;

}
}

void g(out b)
{

for(;;) {
// send 0 on channel b
send b = 0;

}
} f g

h

void h(in a, in b) {
int j;
for (int i = 0; i++; )

if (i%2)
j = recv a;
// j is now 1

else
j = recv b;
// j is now 0

}

main() {
chan int a, b;
// Run f, g, h in parallel
f(a) par g(b) par h(a, b);

}

Figure 1: Kahn processes and their network

writes to one end of the channel and the receiver reads
from the other end. The channel is implemented as an
unbounded buffer.

Figure 1 shows a Kahn processes and its correspond-
ing network. f , g, andh are three parallel tasks created
by thepar construct inmain. The two producer tasksf
andg send values 1 (on channela) and 0 (on channelb)
respectively. Taskh receives the values from channelsa
andb into variablej, which sees an alternating stream of
1’s and 0’s.

In Figure 1, supposef runs faster thang or h. Here,
the buffers of channela fill quickly. However,h will not
be able to receive the data as quickly asf sends. There-
fore, there will be an accumulation of data on the chan-
nel. This is not a problem in Kahn’s model, because the
channel acts as an infinite queue between the producer
and the consumer. Unfortunately, an infinite bound is
impossible to implement in practice. In the next session,
we see how this problem can be avoided by adding some
restrictions to Kahn Networks.

4 SHIM Networks

SHIM [6] eliminates Kahn’s infinite buffers by replac-
ing them with 0-place buffers. The sender and the re-
ceiver use rendezvous communication and thus both are
blocking; both have to wait for each other to communi-
cate. SHIM, thereby combines the determinism of Kahn
Networks with Hoare’s CSP [7] to provide bounded de-
terminism. Like Kahn Networks, the tasks in SHIM run
asynchronously but synchronize during communication.
Tasks can be created dynamically. There is no shared
data.

The SHIM program in Figure 2 creates two tasks,f

2



void f(in a) {
a = 3;
recv a;
// a is now 5

}

void g(out b) {
b = 5;
send b;
// b is 5

}

main() {
chan int c;
f(c) par g(c);
// c is 5

}

Figure 2: Example of a SHIM program

and g, and runs them in parallel. Thepar statement
blocks until bothf andg terminate.c is a channel and
botha andb are incarnations ofc. g takesc by out (ref-
erence); any modification ofb is therefore reflected in
main’sc. f takesc by in (value), and hencef maintains
a local copy ofc. Supposef wants to receive the updated
value, then it explicitly callsrecv on a. This statement
synchronizes with thesend bof g to exchange values.

In Figure 2, even ifg runs faster thanf , it has to wait
for f to synchronize on channelc. Therefore, there is
some performance degradation. But in practice SHIM
programs do not face a significant bottleneck because of
the structure of the programs. Future work would be to
implement channels as k-bounded buffers.

The SHIM model prohibits any variable from being
passed by reference (out) to more than one task at a time
and this makes it impossible for a task to modify an-
other task’s copy of a variable through a simple assign-
ment. Only anout variable can act as a sender; pass-by-
in channels are always receivers. The compiler rejects
programs that do not follow this rule. Also, channels
cannot be aliased or passed within complex data struc-
tures like structures.

To make communication deterministic, a send or re-
ceive forces the task sharing the channel to synchronize
on eithersendor recv, with at most one task acting as
a sender and at most one task acting as a receiver. If
the receiver terminates before receiving, then the sender
does not wait and therefore performs a dummy write to
the channel and advances. Similarly, if the sender ter-
minates, then the receiver does not wait and receives the
previous value on the channel.

Although SHIM solves the infinite buffer problem, it
can deadlock. Consider a program in Figure 3. Taskf ’s
send awaits for a matchingrecv afrom taskg; taskg’s
send bwaits for a matchingrecv bfrom task f . The two
tasksf andg wait infinitely for each other: a deadlock.

5 Deadlock-free SHIM Networks

A SHIM network is deterministic but not deadlock-
free. However, the deadlocks are reproducible [13]; for
some input, a deadlock that occurs under one schedule
will occur under any schedule.

When a set of tasks deadlock in SHIM, we propose to
use a “magic wand” that wakes up the deadlocked tasks

void f(out a, in b) {
// Wait for a recv a in task g
send a = 1;
recv b; // Unreached

}

void g(out b, in a) {
// Wait for a recv b in task f
send b = 2;
recv a; // Unreached

}

main() {
chan int c;
f(a, b) par g(b, a);

}

Figure 3: A SHIM program that deadlocks:f andg each
wait for the other on different channels.

p q

rs

(a) A possible SHIM network

p q

rs

(b) An impossible
SHIM network.p has
two outgoing edges

Figure 4: Possible and impossible configurations of tasks
in the SHIM model

and tells them to proceed with their executions without
waiting for matching communications from peers be-
cause we have proven they will never occur. At this
point, all the deadlocked tasks synchronize to break the
deadlock and continue their executions. Before any
deadlock, the execution of the SHIM program will be de-
terministic because of the property of the SHIM model.
The deadlock breaking step is deterministic because it
just advances all the deadlocked tasks. The program is
deterministic after the deadlock is broken because the re-
maining statements are executed normally following the
SHIM principle. Therefore, we still maintain determin-
ism even after introducing a run-time deadlock breaker
to the basic SHIM model.

To remove deadlocks, we maintain a dependency
graph during runtime. The vertices of the graph repre-
sent tasks. When a taskp calls sendon a channel, it
waits for a peer taskq to perform a matchingrecvon the
same channel. If taskq is also ready to communicate,
then the two tasks rendezvous and the communication is
successful. On the other hand, if taskq is not ready and
doing some other work, then taskp indicates that it is
waiting by adding an edge fromp to q in the dependency
graph. Then,p checks if there is a path fromq leading
back to itself. If there is a cycle, then the program has a
deadlock. For a SHIM program, the cycle detection al-
gorithm is inexpensive because each task can block on
at most one channel at a time. It follows that there is at

3



most one outgoing edge from any taskp (Figure 4). Con-
sequently, our cycle finding algorithm takes time linear
in the number of tasks.

Since every task updates edges originating from its
vertex in the shared dependency graph, the addition of
edges by two tasks can be done concurrently because no
two tasks would ever add the same edge (i.e., an edge
with the same end vertices).

Two or more tasks can check for a cycle concurrently
and at least one task in the deadlock will detect a cycle.
This is because every task adds the edge first and then
checks for a cycle. If a cycle is found, then the first task
to detect a cycle clears the cycle by removing the edges
in the dependency graph and revives all other blocked
processes in the cycle.

All revived tasks (including the task that signalled)
now complete their communication by not waiting for
their counter operations. A revivedrecv operation re-
ceives the last value seen on the channel. A revivedsend
value puts the new value on the channel by performing a
dummy write.

Figure 5 is a deadlocking SHIM program which we
will use to illustrate our deadlock breaking technique. It
consists of four simultaneously running tasks. Taskf ’s
send awaits forg’s recv a, taskg’s send bwaits forh’s
recv b, and taskh’s send cwaits for f ’s recv c. In the
absence of a deadlock breaker, these three tasks will wait
forever.

If we break the deadlocks in the program, the program
will run to termination. Supposef callssend afirst. As
shown in Figure 5(a), it will realize thatg is not ready to
receivea and therefore add an edge fromf to g in the de-
pendency graph.f then checks if there is a cycle. Since
there is not yet a cycle,f suspends itself. Next, ifh calls
send c, it finds that f is not ready to receivec and there-
fore h adds an edge from vertexh to vertex f , sees that
there is no cycle and suspends itself—Figure 5(b). Next,
if i callsrecv d—Figure 5(c)—i realizes thath is not yet
ready tosend d. Thereforei adds an edge from vertexi to
vertexh, sees that there is no cycle and suspends itself.
Next, g calls send band adds an edge from vertexg to
h—Figure 5(d).

After g adds an edge from itself toh, it detects a cy-
cle. It now removes the edges in the cycle, revives all
the tasks in the deadlock—Figure 5(e). Now the revived
tasks can proceed:f writes 1 to channel a,g writes 2
to channel b andh writes 3 to channel c. This modifies
main’s copy ofa, b, andc. The three tasks then advance
to their next statements.

Next, the tasksf , g, and h deadlock again on their
recv’s, forming a cycle: Figures 5(f), 5(g), and 5(h). The
deadlock is broken by taskf : Figure 5(i). f receives
whatever was last put on the channelc, which is 3. Sim-
ilarly, g receives 1 andh receives 2. Then tasksf and

void f(out a, in c)
{

send a = 1; // Deadlock point 1
// Writes 1 to a after first deadlock
recv c; // Deadlock point 2
// Receives 3 after second deadlock

}

void g(out b, in a)
{

send b = 2; // Deadlock point 1
// Writes 2 to b after first deadlock
recv a; // Deadlock point 2
// Receives 1 after second deadlock

}

void h (out c, in b, out d)
{

send c = 3; // Deadlock point 1
// Writes 3 to c after first deadlock
recv b; // Deadlock point 2
// Receives 2 after second deadlock
send d = 4;

}

void i (in d)
{

recv d; // Receives 4
}

main() {
// Create channels; initialize with 0
chan int a = 0, b = 0, c = 0, d = 0;
// Run f, g, h, and i in parallel

f(a, c)
par g(b, a)
par h(c, b, d)
par i(d);
// Here: a = 1, b = 2, c = 3, d = 4

}

f g

hi

(a) f blocks atsend a

f g

hi

(b) h blocks atsend c

f g

hi

(c) i blocks atrecv d

f g

hi

(d) g blocks atsend b

f g

hi

(e) g breaks cycle;
revives f andh

f g

hi

(f) h blocks onrecv b

f g

hi

(g) g blocks onrecv a

f g

hi

(h) f blocks onrecv c

f g

hi

(i) f breaks cycle; re-
vivesg andh

f g

hi

(j) h performssend d;
i was waiting

Figure 5: A deadlocking SHIM program and the effect
of our deadlock breaking policy

g terminate. Now taskh callssend d—Figure 5(j)—and
finds thati is ready to receive on channeld. The two
tasksh andi rendezvous to communicate and terminate.

Our method has the advantage of being able to run
deadlock detection concurrently in linear time. How-
ever, two or more tasks may detect a cycle simultane-
ously; therefore we need only one of the tasks to take
the responsibility of reviving other tasks. We therefore
require some sort of synchronization when breaking the
deadlock, but not to detect it.

4



6 Related Work

6.1 Determinizing Tools

A number of tools provide determinism. For example,
in the absence of data races, Kendo [10] ensures a deter-
ministic order of all lock acquisitions for a given program
input. However, if we have the sequencelock(A); lock
(B) in one thread andlock(B); lock(A)in another thread,
a deterministic ordering of locks may still deadlock.

DMP [5] uses a deterministic token that is passed
among all threads. A thread to modify a shared variable
must first wait for the token and for all threads to block
on that token. Although, deadlocks may be avoided, we
believe this setting is non-distributed because it forces all
threads to synchronize and therefore leads to a consider-
able performance penalty. In SHIM setting, only threads
that share a particular channel must synchronize on that
channel; other threads can run independently.

Burmin and Sen [3] provide a framework for check-
ing determinism for multithreaded programs. Their tool
does not introduce deadlocks, but their tool does not
guarantee determinism because it is merely a testing tool
that checks the execution trace with previously executed
traces to see if the values match.

6.2 Programming Models

Other programming models guarantee determinism.
StreamIt [12], for example, is deterministic dataflow lan-
guage. It has simple static verification techniques for
deadlock and buffer overflow. However, StreamIt is a
strict subset of SHIM and StreamIt’s design limits it to a
smaller class of streaming applications.

Synchronous programming languages like Esterel [1]
are deterministic. An Esterel program executes in clock
steps and the outputs are synchronous with its inputs.
Although an Esterel program is susceptible to causality
problems, this form of deadlock can be detected at com-
pile time. Unfortunately, synchronous models require
constant, global synchronization and force designers to
explicitly schedule virtually every operation. Although
standard in hardware designs, global synchronization is
costly in software. Furthermore, the presence of a single
global clock effectively forces entire systems to operate
at the same rate. Frustration with this restriction was one
of the original motivations for SHIM.

6.3 Type Systems

Type and effect systems like DPJ [2] have been de-
signed for deterministic parallel programming. These
systems do not themselves introduce deadlocks, but
type systems generally require programmer annotations.
SHIM does not require annotations; it provides restric-
tions through its constructs. One may argue against
learning a new programming paradigm or language like

SHIM, but SHIM can be implemented as a library [14]
and the deadlock detector could be incorporated into it.

6.4 Deadlock Detection

Deadlock detection algorithms take exponential time
on general graphs. SHIM’s constraint of never waiting
on two channels sidesteps this exponential problem, ren-
dering the cycle-finding algorithm linear time.

There are a number of run-time distributed deadlock
detecting algorithms. Chandy, Misra, and Haas [4] is
among the best known. According to their technique,
whenever a process, sayi, is waiting on a process, sayj,
i sends a probe message toj. j sends the same message
to all the processes it is waiting on and so on. If the probe
message comes back toi, theni reports a deadlock.

Like others, Chandy et al. concentrate on the multiple-
path problem where multiple edges may leave a sin-
gle vertex. Probe messages must be duplicated at these
nodes. We can apply the same algorithm to our setting,
but since we have at most one outgoing edge per vertex,
we do not have to duplicate messages.

We [11, 13] have developed static deadlock mecha-
nisms for finding deadlocks at compile time; it is the
programmer’s job to break them. Also, these techniques
neither scale well with a large number of tasks nor do
they support dynamic creation of tasks.

7 Conclusions

We have presented a deterministic, deadlock free
model. Any program that uses our model will never
deadlock and is guaranteed to be deterministic. The run-
time deadlock detector is the contribution of this paper;
a formal proof of our hypothesis is future work.

Based on our model and related work, our conclusions
are as follows. Generally, if synchronization is highly
centralized and non-distributed, then there are no dead-
locks but there is a high performance penalty. On the
other hand, distributed synchronization imposes a lower
performance penalty at the danger of more deadlocks. In
our model, the synchronization is distributed and we re-
solve deadlocks at runtime.

Summarily, our model efficiently addresses the
two major pitfalls of concurrent programming: non-
determinism and deadlocks. We do not claim that our
method is the best; our technique does limit the program-
mer’s flexibility, but we believe that the discussion of this
paper will provide insight on achieving both determinism
and deadlock-freedom, and the ideas here can be used for
other concurrent models and languages.

5



References

[1] BERRY, G., AND GONTHIER, G. The Esterel syn-
chronous programming language: Design, seman-
tics, implementation. Science of Computer Pro-
gramming 19, 2 (Nov. 1992), 87–152.

[2] BOCCHINO, JR., R. L., ADVE, V. S., DIG, D.,
ADVE, S. V., HEUMANN , S., KOMURAVELLI ,
R., OVERBEY, J., SIMMONS, P., SUNG, H., AND

VAKILIAN , M. A type and effect system for deter-
ministic parallel java. InOOPSLA ’09: Proceed-
ing of the 24th ACM SIGPLAN conference on Ob-
ject oriented programming systems languages and
applications(New York, NY, USA, 2009), ACM,
pp. 97–116.

[3] BURNIM , J.,AND SEN, K. Asserting and checking
determinism for multithreaded programs. InES-
EC/FSE ’09: Proceedings of the 7th joint meeting
of the European software engineering conference
and the ACM SIGSOFT symposium on The foun-
dations of software engineering on European soft-
ware engineering conference and foundations of
software engineering symposium(New York, NY,
USA, 2009), ACM, pp. 3–12.

[4] CHANDY, K. M., M ISRA, J., AND HAAS, L. M.
Distributed deadlock detection.ACM Trans. Com-
put. Syst. 1, 2 (1983), 144–156.

[5] DEVIETTI , J., LUCIA , B., CEZE, L., AND OSKIN,
M. Dmp: deterministic shared memory multipro-
cessing. InASPLOS(2009), ACM, pp. 85–96.

[6] EDWARDS, S. A.,AND TARDIEU, O. SHIM: A de-
terministic model for heterogeneous embedded sys-
tems. InProceedings of the International Confer-
ence on Embedded Software (Emsoft)(Jersey City,
New Jersey, Sept. 2005), pp. 37–44.

[7] HOARE, C. A. R. Communicating sequential pro-
cesses.Communications of the ACM 21, 8 (Aug.
1978), 666–677.

[8] JR., R. L. B., ADVE, V. S., ADVE, S. V., AND

SNIR, M. Parallel programming must be determin-
istic by default. InHOTPAR ’09: USENIX Work-
shop on Hot Topics in Parallelism(Mar. 2009).

[9] K AHN , G. The semantics of a simple language for
parallel programming. InInformation Processing
74: Proceedings of IFIP Congress 74(Stockholm,
Sweden, Aug. 1974), North-Holland, pp. 471–475.

[10] OLSZEWSKI, M., ANSEL, J., AND AMARAS-
INGHE, S. Kendo: efficient deterministic multi-
threading in software. InProceedings of the Inter-
national Conference on Architectural Support for
Programming Languages and Operating Systems
(ASPLOS)(New York, NY, USA, 2009), ACM,
pp. 97–108.

[11] SHAO, B., VASUDEVAN, N., AND EDWARDS,
S. A. Compositional deadlock detection for ren-
dezvous communication. InProceedings of the
International Conference on Embedded Software
(Emsoft)(Grenoble, France, Oct. 2009), pp. 59–66.

[12] THIES, W., KARCZMAREK, M., GORDON, M.,
MAZE, D., WONG, J., HO, H., BROWN, M.,
AND AMARASINGHE, S. StreamIt: A compiler
for streaming applications, Dec. 2001. MIT-LCS
Technical Memo TM-622, Cambridge, MA.

[13] VASUDEVAN, N., AND EDWARDS, S. A. Static
deadlock detection for the SHIM concurrent lan-
guage. InProceedings of the International Confer-
ence on Formal Methods and Models for Codesign
(MEMOCODE)(Anaheim, California, June 2008),
pp. 49–58.

[14] VASUDEVAN, N., SINGH, S., AND EDWARDS,
S. A. A deterministic multi-way rendezvous li-
brary for Haskell. InProceedings of the Interna-
tional Parallel and Distributed Processing Sympo-
sium (IPDPS)(Miami, Florida, Apr. 2008), pp. 1–
12.

6


