
Celling SHIM: Compiling Deterministic Concurrency to a
Heterogeneous Multicore

Nalini Vasudevan
Columbia University
New York, New York

naliniv@cs.columbia.edu

Stephen A. Edwards
Columbia University
New York, New York

sedwards@cs.columbia.edu

ABSTRACT

Parallel architectures are the way of the future, but are notoriously
difficult to program. In addition to the low-level constructs they of-
ten present (e.g., locks, DMA, and non-sequential memory models),
most parallel programming environments admit data races: the en-
vironment may make nondeterministic scheduling choices that can
change the function of the program.

We believe the solution is model-based design, where the pro-
grammer is presented with a constrained higher-level language that
prevents certain unwanted behavior. In this paper, we describe
a compiler for the SHIM scheduling-independent concurrent lan-
guage that generates code for the Cell Broadband heterogeneous
multicore processor. The complexity of the code our compiler gen-
erates relative to the source illustrates how difficult it is to manually
write code for the Cell.

We demonstrate the efficacy of our compiler on two examples.
While the SHIM language is (by design) not ideal for every algo-
rithm, it works well for certain applications and simplifies the par-
allel programming process, especially on the Cell architecture.

Categories and Subject Descriptors

D.3.4 [Software]: Programming Languages—Processors

General Terms

Languages, Performance

Keywords

Cell Processor, SHIM, Parallelism, Concurrency, Compiler

1. INTRODUCTION
Traditional processor architecture has hit a power/performance

wall; we cannot expect any improvements in single-threaded per-
formance [2]. Task-level parallelism appears to be the way forward
for mainstream and embedded systems alike.

Parallel software, unfortunately, presents a much larger design
challenge than traditional sequential software. Parallelism typically

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC ’09 March 8–12, 2009, Honolulu, Hawaii, USA
Copyright 2009 ACM 978–1–60558–166–8/09/03 ...$5.00.

adds data races, deadlocks, non-atomic data structure updates, pri-
ority inversion, nondeterminism, and a host of other problems to
the already-substantial challenges of designing complex software.

We believe the way forward is to provide more constrained par-
allel programming models that avoid some of these challenges by
construction. While restrictions mean that certain kinds of algo-
rithms are ruled out (or at least very awkward to code), this seems
a reasonable price to pay for correct programs.

We present a compiler for the SHIM scheduling-independent con-
current programming language [6] that produces code for the Cell
heterogeneous multicore processor. In contrast to the existing pro-
gramming environment, which requires two C compilers, explicitly
coded DMA transfers, numerous alignment directives, different C
code for each kind of core, and can produce programs that behave
nondeterministically, our SHIM environment for the Cell guaran-
tees determinism, provides a simple, robust communication mech-
anism, and allows different partitions with no source code changes.

Below, we review the SHIM language, the Cell processor, and de-
scribe the inner workings of our compiler. In Section 5, we describe
how we instrumented our generated code to collect performance
data, and present experimental results in Section 6.

2. THE SHIM LANGUAGE
The SHIM language [6,25] promotes model-based design by pro-

viding a restricted model of computation that renders it difficult or
impossible to make certain kinds of design errors. It is intended for
concurrent software, which is harder to reason about than sequen-
tial because of data races, non-atomic accesses, deadlocks, memory
consistency issues, and nondeterminism.

SHIM guarantees scheduling independence: any nondeterminis-
tic scheduling choices made at run time cannot affect the function
of a program. It eliminates data races, and it also simplifies formal
analysis. For example, it is easy to translate a SHIM program into a
synchronous automaton for model-checking [27].

SHIM gains scheduling independence by adopting stream-based
dataflow semantics inspired by Kahn networks [16]. However, it
eschews Kahn’s unbounded buffers as impractical, adopting instead
CSP-inspired multiway rendezvous [12]. Synchronous dataflow [18]
and StreamIt [26] also adopt Kahn semantics, but SHIM is more ex-
pressive: it supports data-dependent communication patterns.

SHIM uses a C-like syntax augmented with constructs for con-
currency, communication, and exceptions [25]. It has functions
with by-value and by-reference arguments. SHIM prohibits global
variables and pointers and currently does not support recursive types.

The p par q construct starts statements p and q in parallel, waits
for both to complete, then runs the next statement in sequence.

To prevent data races, SHIM forbids passing a variable by refer-
ence to two concurrent tasks. For example,



void f(int &x) {} void g(int x) {}

void main() {
int x, y;
f(x); par g(x); par f(y); // OK
f(x); par f(x); // rejected because x is passed by reference twice

}

If, in p par q, p is not a function call, our compiler transforms it
into a function whose interface is inferred [25].

SHIM’s channels enable tasks to synchronize and communicate
without races. The main function in Figure 1 declares the integer
channel A and passes it to f and g, then f passes it to h and j. Tasks
f and h send data with send A. Tasks g and j receive it with recv A.

A channel resembles a local variable. Passing a channel by value
copies its value, which can be modified independently. A channel
must be passed by reference to a sender.

Communication is blocking: a task that attempts to communi-
cate must wait for all other connected tasks to engage in the com-
munication. If the synchronization completes, the sender’s value
is broadcast to the receivers. In Figure 1, the value 4 is broadcast
from h to g and j. Task g blocks on the second send A because task
j does not run a matching recv A.

Like most formalisms with blocking communication, SHIM pro-
grams may deadlock. But at least deadlocks are easier to fix in
SHIM because they are deterministic: on a given input, a SHIM pro-
gram will either always deadlock or never do so.

3. THE CELL PROCESSOR
Coherent shared memory multiprocessors, such as the Intel Core

Duo, follow a conservative evolutionary path. Unfortunately, main-
taining coherence costs time, energy, and silicon because the sys-
tem must determine when data is being shared, and relaxed memory
ordering models [1] makes reasoning about coherence difficult.

The Cell processor [15,17,23], the target of our compiler, instead
uses a heterogeneous architecture consisting of a traditional 64-bit
power processor element (PPE) with its own 32K L1 and 512K L2
caches coupled to eight synergistic processor elements (SPEs).

Each SPE is an 128-bit processor whose ALU can perform up
to 16 byte operations in parallel. Each has 128 128-bit general-
purpose (vector) registers, a 256K local store, but no cache. Each
SPE provides high, predictable performance on vector operations.

Our compiler uses multiple cores to provide task-level paral-
lelism. Others address the Cell’s vector-style data parallelism [8].

Cell programs use direct-memory access (DMA) operations to
transfer data among the PPE and SPEs’ memories. While addresses
are global (i.e., addresses for the PPE’s and each SPE’s memories
are distinct), this is not a shared memory model. That our compiler
relieves the programmer from having to program the Cell’s memory
flow controllers (DMA units) is a key benefit.

3.1 DMA and Alignment
The centerpiece of the Cell’s communication system—and a ma-

jor concern of our compiler—is the element interconnect bus (EIB):
two pairs of counter-rotating rings [3,17], each 128 bits (16 bytes—
a quadword) wide.

The width of the EIB leads the DMA units to operate on 128-bit-
wide memory. Memory remains byte-addressed, but the 128-bit
model puts substantial constraints on transfers because of the lack
of byte-shifting circuitry [13, p. 61].

A DMA unit most naturally transfers quadwords. It can copy
between 1 and 1024 quadwords (16K) per operation; source and
destination addresses must be quadword-aligned.

A DMA unit can also transfer 1, 2, 4, or 8 bytes. The source
and destination addresses must be aligned on the transfer width and

void h(chan int &A) {
A = 4; send A;
A = 2; send A;

}

void j(chan int A) throws Done {
recv A;
throw Done;

}

void f(chan int &A) throws Done {
h(A); par j(A);

}

void g(chan int A) {
recv A;
recv A;

}

void main() {
try {

chan int A;
f(A); par g(A);

} catch (Done) {}
}

Figure 1: A SHIM program with exceptions

have the same alignment within quadwords. For example, a 7-byte
transfer requires three DMA operations, and transferring a byte from
address 3 to address 5 requires a DMA to a buffer followed by a
memory-to-memory move. To perform DMA operations, our com-
piler generates code that calls complex C macros that usually distill
down to only a few machine instructions.

The alignment restrictions impose memory allocation constraints
beyond the usual ones provided by C compilers, e.g., ensuring two
regions have the same alignment within a quadword is difficult.

Our compiler produces C code suitable for the port of GCC to the
SPE. We take advantage of a GCC extension that can place addi-
tional alignment constraints on types and variables. For example, a
struct type or array variable can be constrained to start on a 16-byte
boundary (e.g., to make it work with the DMA facility):

struct foo { int x, y; } attribute ((aligned (16)));
int z[10] attribute ((aligned (16)));

3.2 Mailboxes and Synchronization
For synchronization, our compiler generates code that uses the

Cell’s mailboxes: 32-bit FIFO queues for communication between
the PPE and an SPE. Each SPE has two one-entry mailboxes for
sending messages to the PPE and one four-entry queue for messages
from the PPE [13, p. 101].

We use mailboxes for synchronization messages between the
main program running on the PPE and tasks running on the SPEs.
The SPE writing to an outbound mailbox causes an interrupt on the
PPE, prompting it to read and empty the mailbox. In the other direc-
tion, the PPE writes to the SPE’s inbound mailbox and can signal an
interrupt on the SPE, but we just do a blocking read on the inbound
SPE mailbox to wait for the next message.

All our communication is done using handshaking through the
mailboxes; our protocol ensures the mailboxes do not overflow.

The Cell also provides signals: 32-bit registers whose bits can be
set and read for synchronization; our code does not use them.

4. OUR COMPILER
We generate asymmetric code because of asymmetries in the

Cell architecture and runtime environment. For example, the PPE

supports pthreads but we do not know of a similar library for the
SPEs. Also, mailboxes, the more flexible of the Cell’s two synchro-
nization mechanisms, work best between the PPE and an SPE. They
can be used between SPEs, but are more awkward.

These considerations, along with our experience in implement-
ing SHIM on shared-memory systems [7], led us to adopt a “com-
putational acceleration” model [15] in which the SPEs run more
time-critical processes and the PPE is responsible for the rest, in-
cluding coordination among the SPEs. Communication in the code
we generate takes place between the PPE and an SPE.



PPE

struct { ... } chan A;
void event A() { ... } // Synchronize and communicate on A

struct { ... } task main;
void func main() { ... } // Code for task main

struct { ... } task f;
void func f() { ... } // Code for task f

struct { ... } task g;
void func g() { ... } // Code for task g

struct { ... } task h;
void func h() { ... } // Communication proxy for task h

struct { ... int A;} task j;
void func j() { // Communication proxy for task j

mailbox send(START);
for (;;) {

switch (mailbox()) {
case BLOCK A:

chan A. blocked |= h; event A();
while ( chan A.blocked & h) wait( chan A. cond);
mailbox send(ACK);
break;

case TERM: ...
case POISON: ...

}
}
...

}

SPE 0

struct { int A; } task j;

void main() { // Code for task j
for (;;) {

if (mailbox() == EXIT)
return;

DMA receive( task j.A);
mailbox send(BLOCK A);
if (mailbox() == POISON)

break;
DMA receive( task j.A);
mailbox send(POISON);

}
}

SPE 1

struct { int A; } task h;

void main() { // Code for task h
...

}

D
M

A

Figure 2: The structure of the code our compiler generates for

the program in Figure 1. Each task becomes a function on the

PPE; tasks that run on an SPE communicate with a PPE-resident

proxy function using mailboxes and DMA.

Figure 2 shows the structure of the code we generate, here for
the small example from Figure 1. We instructed our compiler to
assign tasks h and j to two SPEs; all the others run on the PPE.

For PPE-resident tasks, our compiler generates almost the same
pthreads-based code we presented in earlier work [7]. For each
SPE-resident task, we generate SPE-specific code that communi-
cates through mailboxes and DMA to a proxy function running on
the PPE (e.g., func j in Figure 2). The SPE functions, shown at the
bottom of Figure 2, translate communication from the SPE code to
the PPE-resident pthreads environment.

4.1 Code for the PPE
The C code we generate for the PPE uses the pthreads library

to emulate concurrency much like we did for our shared-memory
compiler [7]. Each task and each channel has its own shared data

int foo(int a, int &b, chan uint8 cin, chan uint8 &cout) {
next cout = a; next cout = b; next cout = next cin;
return ’\n’;

}

struct {
pthread t thread;
pthread mutex t mutex;
pthread cond t cond;
enum state { STOPPED, RUNNING, POISONED } state;
unsigned int attached children;
unsigned int dying children;
int *b;
int * return var;
struct {

struct {
unsigned char cout;
int b;
int return var;

} byref;
unsigned char cin;
int a;

} args attribute ((aligned (16)));
} foo;

struct {
pthread mutex t mutex;
pthread cond t cond;
unsigned int connected;
unsigned int blocked;
unsigned int poisoned;
unsigned int dying;
unsigned char *foo;
unsigned char *main 1;
unsigned char *main;

} cin;

Figure 3: Shared data for the foo task and cin channel.

structure that includes a lock used to guarantee access to it is atomic
and a condition variable for notifying other threads of state changes
(Figure 3). Each of these resides in main (PPE) memory and are
manipulated mostly by the PPE code.

For each SHIM function, our compiler generates a C function that
runs in its own thread. Our code starts a thread for each SHIM func-
tion when the program starts to minimize the overhead of creating
and terminating threads. With the exception of the thread for the
entry point, each thread immediately blocks until its parent calls it.

For each channel, we generate an event function responsible for
managing synchronization and communication on the channel (e.g.,
event A at the top of Figure 2). For speed, our compiler “hard-

wires” the logic of each event function because a SHIM program’s
structure is known at compile time. A generic function controlled
by channel-specific data would be more compact but slower.

4.2 Code for the SPEs
For each SHIM function that will execute on an SPE, we generate

a C function and compile it with the standard port of GCC to the
SPEs. Again, most of SHIM is translated mechanically into C; code
for communication and synchronization is the challenge.

Our strategy is to place most of the control burden on the PPE and
use the SPEs to offload performance-critical tasks. This simplifies
code generation by removing the need for inter-SPE synchroniza-
tion; we only need an SPE-PPE mechanism.

Using command-line arguments, the user specifies one or more
“leaf” functions to run on the SPEs, such as tasks h and j in Fig-
ure 2. Such functions may communicate on channels, but may
not start other functions in parallel or call functions that communi-
cate. However, a leaf function may call other functions that do not
communicate or invoke functions in parallel, i.e., those that behave
like standard C functions. This restriction saves us from creating a
mechanism for starting tasks from an SPE.

The pthreads synchronization mechanisms (mutexes, condition
variables) our code uses do not work across the PPE/SPE bound-
ary.1 Instead, for each function destined for an SPE, we synthesize

1IBM’s “Example” library [14] does provide cross-processor mu-
texes, but blocking operations never yield to the thread scheduler.



a proxy function on the PPE that acts as a proxy for the function
on the SPE that does the actual work ( func j and func h in Fig-
ure 2). Each proxy translates between pthreads events on the PPE

and mailbox events from the SPE.
Passing arguments to an SPE task turns out to be awkward be-

cause of DMA-imposed alignment constraints. Our solution re-
quires two copies: a DMA transfer from the PPE followed by word-
by-word copying into local variables, which allows the compiler
to optimize their access. This is one of the few cases where a C
compiler is a disadvantage over generating assembly.

Channel communication is done through mailbox messages for
synchronization and DMA for data transfer (Figure 2). It starts when
the SPE task sends a BLOCK message to the PPE for a particular
channel. This prompts the PPE proxy to signal it is blocked on that
channel. When the event function on the PPE releases the channel
(i.e., when all connected tasks have rendezvoused), the PPE sends
an ACK message to the SPE, which prompts it to start a DMA trans-
fer to copy the data for the channel from the argument struct on
the PPE to a matching struct on the SPE. There is no danger of this
data being overwritten because only the event function on the PPE

writes the struct, and that will only happen after the task is again
blocked on the channel, which will not happen until the SPE task
requests it, which will only happen after the DMA is complete.

A task may become “poisoned” when it attempts a rendezvous
and another task in the same scope has thrown an exception. The
event function in the PPE code handles the logic for propagating
exception poison; the PPE proxy code is responsible for informing
the SPE task it has been poisoned.

The SPE code may send two other messages. TERM is the sim-
pler: the SPE sends this when it has terminated, and the PPE proxy
jumps to its own terminate handler, which informs its parent that it
has terminated. The other message is POISON, which the SPE code
sends when it throws an exception. After this, it sends another word
that indicates the specific exception. Based on this word, the proxy
marks itself and all its callers in the scope of the exception as poi-
soned, then jumps to the poisoned label, which also handles the
case where the task has been poisoned by a channel.

5. COLLECTING PERFORMANCE DATA
While tuning our compiler and applications, we found we needed

pictures of the temporal behavior of our programs. While speeding
up any part of a sequential program is beneficial, improving a par-
allel program’s performance requires speeding computation along
a critical path—any other improvement is hidden.

To collect the data we wanted, we added a facility to our com-
piler that collects the times at which communication events begin
and end. For this, we use the SPE’s “decrementer”—a high-speed
(about 80 MHz) 32-bit software-controlled countdown timer. Our
compiler can add code that reads this timer and stores the start-
ing and stopping times of each communication action, i.e., periods
when the SPE is blocked waiting for synchronization. We fill a
small buffer in the SPE’s local store, then dump the event times-
tamps into a text file when the program terminates. Our goal is to
be as unintrusive; each sample event consists of testing whether the
buffer is full, reading the timer, writing into an array, and incre-
menting a destination pointer.

To understand the interaction among SPEs, we wanted global
time stamps, so we include code to synchronize the decrementers.
Although the SPEs’ decrementers run off a common clock, their
absolute values are set by software and not generally synchronized.

Our synchronization code measures round-trip communication
time and uses it to synchronize the clocks on the SPEs. We as-
sign one SPE to be the master, then synchronize all the other SPEs’

400 402 404 406 408 410 412 414 416 418

Time (ms)

1 SPE

2 SPEs

3 SPEs

4 SPEs

5 SPEs

6 SPEs

Blocked

Comm. started Comm. completed

Figure 4: Temporal behavior of the FFT for various SPEs

400 402 404 406 408 410 412 414 416 418

Time (ms)

1 SPE

2 SPEs

3 SPEs

4 SPEs

5 SPEs

6 SPEs

Figure 5: Temporal behavior of the JPEG decoder

clocks to it. The master first establishes communication with the
slave (i.e., waits for the slave to start), then sends a message to the
slave through its mailbox, which immediately sends it back. The
master measures the time this took—the round-trip time. Finally,
the master sends the current value of its clock plus half the round-
trip time to the slave, which sets its clock to that value.

Figures 4 and 5 shows data we obtained with this mechanism.
Time runs from left to right, and each line segment denotes the time
that one SPE is either blocked or communicating; empty spaces
between horizontal lines indicate time an SPE is doing useful work.
The vertical position of each line indicates the SPE number.

6. EXPERIMENTAL RESULTS
To evaluate our compiler, we used it to compile a pair of applica-

tions and ran them on a Sony Playstation 3 running Fedora Core 7
with Linux kernel 2.6.23 and the IBM SDK version 3.0.

The Sony Playstation 3 is a Cell-based machine with 256 MB of
memory, a single Cell with one SPE disabled to improve yield, and
peripherals including an Ethernet interface and a hard drive. While
the PS3 platform is open enough to boot an operating system such
as Linux, it does not allow full access to the hardware. Instead,
guest operating systems run under a hypervisor that limits access
to the hardware such as the disk, only part of which is visible to
Linux. The hypervisor on the PS3 also reserves one of the SPEs for
security tasks, leaving six available to our programs.



0
1
2
3
4
5

PPU only 1 2 3 4 5 6

E
x
ec

u
ti

o
n

ti
m

e
(s

)

Number of SPE tasks

Observed
×

×

×
× × × ×

× ×

×
× × × ×

×
×

×
× × × ×

×

Ideal

Run on a 20 MB audio file, 1024-point FFTs

Figure 6: Running time for the FFT on varying SPEs

We compiled the generated C code with GCC 4.1.2 for the PPE

and 4.1.1 for the SPE code, both optimized with -O.
Figure 6 shows execution times for an FFT that takes an au-

dio file, divides it into 1024-sample blocks, performs a fixed-point
(4.28) FFT on each block, follows it by an inverse FFT, and writes
it out to a file. A PPE-based reader tasks distributes 8 1024-sample
blocks to the SPE tasks in a round-robin order; a writer task collects
them in order and writes them out to a file. We communicate 8
blocks instead of the 16 we used earlier [7] to accommodate the
SPEs’ local store. We ran this on a 20 MB stereo audio file with 16-
bit samples. The “PPU only” code is from our earlier compiler [7].

Figure 4 illustrates why we observe a near-ideal speedup for the
FFT on six SPEs. Roughly half the time all six are doing useful
work; otherwise one is blocked communicating, giving a speed-up
of about 11/2 = 5.5, close to the 5.3 we observed (Figure 6).

Each horizontal line in Figure 4 represents two events: an FFT

task on an SPE reads a block, processes it, sends it, and then repeats
the process; the read immediately follow the write. The figure also
shows that the processes spend more time blocking waiting to write
than they do to read, suggesting the task that reassembles data from
the FFT tasks is slower than the one that parcels it out.

We also compiled and ran a JPEG decoder, similar to our earlier
work [7]. Figure 7 shows the execution times we observed, which
do not exhibit the same speedup as the FFT and are much more
varied. Figure 5 explains why: for these runs, the SPEs are spending
most of their time waiting for data. For this sample, only at one
point the 3-SPE case is more than one SPE active at any time.

Figure 5 tells us the SPEs are usually waiting for data to arrive.
Each line segment is actually two parts: sending processed data
(left), and receiving unprocessed data. This is not surprising; while
JPEG data is composed of independent blocks, the data itself is
Huffman encoded, meaning it requires the data to be uncompressed
before block boundaries can be identified.

The performance figures we report are for carefully chosen prob-
lem sizes. Start-up overhead is larger for smaller problems sizes,
leading to poorer results; the data for larger problem sizes does not
fit into the PS3’s 256 MB of main memory, necessitating disk ac-
cess that quickly becomes the bottleneck. For large data sets, our
performance degrades to just disk I/O bandwidth, suggesting the
PS3 is not ideally suited to large scientific computing tasks.

7. RELATED WORK
Other groups that have produced compilers for the Cell start from

models very different from SHIM and address different problems.
Eichenberger et al.’s compiler [8, 9] takes a traditional approach

by starting with C code with OpenMP annotations [21] and gen-
erates code for the Cell. They consider low-level aspects of code
generation: vectorizing scalar, array-based code; hiding branch la-
tency; and ensuring needed data alignment. They implement the
OpenMP model: programmers provide hints about parallelizable

0

1

2

3

PPU only 1 2 3 4 5 6

E
x
ec

u
ti

o
n

ti
m

e
(s

)

Number of SPE tasks

Observed×

×
×

×× ×× ×× ×× ××

×
×× ×× ×× ×× ××

×
×

×
××× ××× ××× ××× ××× ×

××
×××

×××
×
××

××× ××× ×
×× ×××

×

Ideal

Run on a 1.7 MB image that expands to a 29 MB raster file

Figure 7: Running time for the JPEG decoder on varying SPEs

loops, then the compiler breaks these into separate tasks and dis-
tributes them to the SPEs. It presents a shared memory model,
which their runtime system emulates with explicit DMA transfers.

OpenMP is a much different programming model than SHIM: it
assumes shared memory and focuses on parallelizing loops with ar-
ray access. SHIM, by contrast, is a stream-based language with ex-
plicit communication. Adding OpenMP-like constructs to improve
SHIM’s array performance would be a nice complement.

Adopting a more SHIM-like message passing approach, Ohara et
al.’s [20] preprocessor takes C programs written using the standard
message passing interface (MPI) API [19], determines a static task
graph, clusters and schedules this graph, and finally regenerates the
program to use Cell-specific API calls for communication.

Semantically, the MPI model is similar to SHIM but does not
guarantee scheduling independence. The big difference is that the
preprocessor of Ohara et al. does not enforce the programming
style; it would be easy to write a misbehaving program. The SHIM

compiler catches a host of bugs including deadlock [27].
Fatahalian et al.’s Sequoia [10] is most closely related to our

work. Like us, they compile a high-level concurrent language to
the Cell processor (and other architectures) with the goal of simpli-
fying the development process.

Their underlying computational model differs substantially from
SHIM’s, however. While also explicitly parallel, it is based on state-
less procedures that only receive data when they start and only
transmit it when they terminate. This model, similar to the one in
Cilk [4], is designed for divide-and-conquer algorithms that parti-
tion large datasets (typically arrays) into pieces, work on each piece
independently, then merge the results. While our example applica-
tions also behave this way, other SHIM programs do not.

While the low-level compilation challenges of the Cell are fairly
conventional, higher-level issues are less obvious. Because the pro-
cessor is young and idiosyncratic, there is still work to be done
in choosing strategies for structuring large programs. For exam-
ple, Petrini et al. [22] observe a high performance implementa-
tion of a three-dimensional neutron transport algorithm requires a
careful balance among vector parallelism in the SPEs, the effect of
their pipelines, balancing and scheduling DMA operations, and co-
ordinating multiple SPEs. Saidani et al. [24] change DMA transfer
sizes to improve the performance of an image processing algorithm.
Gedik et al. [11] optimize distributed sorting algorithms on the Cell
by careful vectorization and communication. They note main mem-
ory bandwidth becomes the bottleneck on large datasets since the
inter-SPE bandwidth is so high. Our compiler only provides higher-
level data communication and synchronization facilities.

Chow et al. [5] discuss coding a large FFT on the Cell. They
suggest putting the control of the application on the PPE, then of-
floading computationally intensive code to the SPEs and adapting
it to work with the SPEs’ vector capabilities. We adopt a similar
philosophy in the code generated by our compiler.



They target their application at a 128 MB dataset—too large to fit
in on-chip memory, so much of their design concentrates on orches-
trating data movement among off-chip memory, the PPE’s cache,
and the SPEs’ local stores. They divide the FFT into three stages
and synchronize the SPEs using mailboxes on stage boundaries.

8. CONCLUSIONS
We described a compiler for the SHIM concurrent language that

generates code for the Cell processor. While not an aggressive opti-
mizing compiler, it removes much of the drudgery in programming
the Cell in C, which requires extensive library calls for starting
threads, careful memory alignment of data if it is to be transferred
between processors, and many other nuisances.

The SHIM language presents a scheduling-independent model to
the programmer, i.e., relative task execution rates never affects the
function computed by the program. This, too, greatly simplifies the
programming task because there is no danger of introducing races
or other nondeterministic behavior.

Unfortunately, our compiler does not solve a main challenge of
parallel programming: creating well-balanced parallel algorithms.
For example, the sequential portion of our FFT was able to keep six
SPEs fed, leading to near-ideal speedups; the sequential portion of
the JPEG decoder was substantial and became the bottleneck.

Our compiler does help to identify bottlenecks: it provides a
mechanism for capturing precise timing traces using the Cell’s pre-
cision timers. This gives a precise summary of when and how long
each SPE is blocked waiting for communication, which can illus-
trate poorly balanced computational loads.

The Cell processor is an intriguing architecture that is represen-
tative of architectures we expect to find in many future embedded
systems. While it has many idiosyncrasies, our work shows that it
is possible to map a higher-level parallel programming model onto
it and obtain reasonable performance.

In the future, we plan extensions to SHIM that make it easier
to express instruction-level parallelism. While SHIM is currently
effective for expressing task-level parallelism, it is weak at ex-
pressing the SIMD-like vector operations supported on both types
of cores in the Cell. At the moment, we rely on the C compiler to
exploit these features, but language extensions should greatly im-
prove designers’ control over these features.

9. REFERENCES

[1] S. V. Adve et al. Shared memory consistency models: A
tutorial. Computer, 29(12):66–76, 1996.

[2] V. Agarwal et al. Clock rate versus IPC: The end of the road
for conventional microarchitectures. In Intl. Symp. Computer

Architecture (ISCA), pages 248–259, June 2000.

[3] T. W. Ainsworth and T. M. Pinkston. Characterizing the Cell
EIB on-chip network. IEEE Micro, 27(5):6–14, Sept. 2007.

[4] R. D. Blumofe et al. Cilk: An efficient multithreaded runtime
system. In Principles and Practice of Parallel Programming

(PPoPP), pages 207–216, Santa Barbara, CA, July 1995.

[5] A. C. Chow et al. A programming example: Large FFT on
the Cell Broadband Engine. In Global Signal Processing

Expo (GSPx), Santa Clara, CA, Oct. 2005. (from IBM)

[6] S. A. Edwards and O. Tardieu. SHIM: A deterministic model
for heterogeneous embedded systems. In Embedded Software

(Emsoft), pages 37–44, Jersey City, New Jersey, Sept. 2005.

[7] S. A. Edwards, N. Vasudevan, and O. Tardieu. Programming
shared memory multiprocessors with deterministic

message-passing concurrency: Compiling SHIM to Pthreads.
In Proc. Design, Automation, and Test in Europe (DATE),
pages 1498–1503, Munich, Germany, Mar. 2008.

[8] A. E. Eichenberger et al. Using advanced compiler
technology to exploit the performance of the Cell Broadband
Engine architecture. IBM Sys. J., 45(1):59–84, 2006.

[9] A. E. Eichenberger et al. Optimizing compiler for the CELL
processor. In Par. Arch. and Compilation Techniques (PACT),
pages 161–172, Saint Louis, MO, Sept. 2005.

[10] K. Fatahalian, T. J. Knight, M. Houston, M. Erez, D. R.
Horn, L. Leem, J. Y. Park, M. Ren, A. Aiken, W. J. Dally, and
P. Hanrahan. Sequoia: Programming the memory hierarchy.
In Supercomputing (SC), Tampa, FL, 2006. Article 83.

[11] B. Gedik et al. CellSort: High performance sorting on the
Cell processor. In Very Large Data Bases (VLDB), pp.
1286–1297, Vienna, Austria, Sept. 2007.

[12] C. A. R. Hoare. Communicating sequential processes.
Communications of the ACM, 21(8):666–677, Aug. 1978.

[13] IBM. Cell Broadband Engine Architecture v1.02, Oct. 2007.

[14] IBM. Example Library API Reference v3.0, Sept. 2007.

[15] J. A. Kahle et al. Introduction to the Cell multiprocessor.
IBM J. of R&D, 49(4/5):589–604, July/Sep. 2005.

[16] G. Kahn. The semantics of a simple language for parallel
programming. In Information Processing 74: IFIP Congress

74, pages 471–475, Stockholm, Sweden, Aug. 1974.

[17] M. Kistler, M. Perrone, and F. Petrini. Cell multiprocessor
communication network: Built for speed. IEEE Micro,
26(3):10–23, May-June 2006.

[18] E. A. Lee and D. G. Messerschmitt. Synchronous data flow.
Proc. IEEE, 75(9):1235–1245, Sept. 1987.

[19] The Message Passing Interface Forum. MPI: A

Message-Passing Interface Standard, June 1995. Version 1.1.

[20] M. Ohara, H. Inoue, Y.Sohda, H. Komatsu, and T. Nakatani.
MPI microtask for programming the Cell Broadband Engine
processor. IBM Systems Journal, 45(1):85–102, 2006.

[21] OpenMP Arch. Review Board, www.openmp.org. OpenMP

C and C++ Application Program Interface, 2002. Ver. 2.0.

[22] F. Petrini et al. Multicore surprises: Lessons learned from
optimizing Sweep3D on the Cell Broadband Engine. In Intl.

Parallel and Distributed Processing Symposium (IPDPS),
pages 1–10, Long Beach, CA, Mar. 2007.

[23] D. Pham et al. The design and implementation of a
first-generation Cell processor. In Solid-State Cir. Conf.

(ISSCC), v. 1, pp. 184–185, San Francisco, CA, Feb. 2005.

[24] T. Saidani, S. Piskorski, L. Lacassagne, and S. Bouaziz.
Parallelization schemes for memory optimization on the Cell
processor: A case study of image processing algorithm. In
Workshop on Memory Performance: Dealing with

Applications, Systems and Architecture (MEDEA), pages
9–16, Brastov, Romania, Sept. 2007.

[25] O. Tardieu and S. A. Edwards. Scheduling-independent
threads and exceptions in SHIM. In Embedded Software

(Emsoft), pages 142–151, Seoul, Korea, Oct. 2006.

[26] W. Thies, M. Karczmarek, and S. Amarasinghe. StreamIt: A
language for streaming applications. In Compiler

Construction (CC), volume 2304 of LNCS, pages 179–196,
Grenoble, France, Apr. 2002.

[27] N. Vasudevan and S. A. Edwards. Static deadlock detection
for the SHIM concurrent language. In Formal Methods and

Models for Codesign, Anaheim, CA, June 2008.


