
Specifying Confluent Processes

Olivier Tardieu and Stephen A. Edwards
Columbia University

{tardieu,sedwards}@cs.columbia.edu

Abstract

We address the problem of specifying concurrent pro-
cesses that can make local nondeterministic decisions with-
out affecting global system behavior—the sequence of
events communicated along each inter-process communica-
tion channel. Such nondeterminism can be used to cope with
unpredictable execution rates and communication delays.

Our model resembles Kahn’s, but does not include un-
bounded buffered communication, so it is much simpler to
reason about and implement. After formally characteriz-
ing these so-called confluent processes, we propose a col-
lection of operators, including sequencing, parallel, andour
own creation, confluent choice, that guarantee confluence by
construction.

The result is a set of primitive constructs that form the
formal basis of a concurrent programming language for both
hardware and software systems that gives deterministic be-
havior regardless of the relative execution rates of the pro-
cesses. Such a language greatly simplifies the verification
task because any correct implementation of such a system
is guaranteed to have the same behavior, a property rarely
found in concurrent programming environments.

1 Introduction

We propose a formalism for specifying asynchronous, con-
current processes that, when connected, produce a global be-
havior that is independent of their relative execution rates.
We want such a model for specifying distributed embedded
systems composed of communicating hardware and soft-
ware.

In an earlier work [3], we argued for a version of
Kahn’s influential model of dataflow processes [8]. Kahn’s
processes communicate exclusively through single-sender,
single-receiver channels—unbounded-length FIFOs—and
are specified using a sequential, imperative language that
blocks when it reads from an empty FIFO. Kahn showed
that networks of such processes behave deterministically,
i.e., that the sequence of data values transferred over any
given channel is consistent across all scheduling policiesand
process execution rates. In fact, Kahn established this prop-
erty for a much larger class of processes—continuous func-
tions from input histories to output histories—but provided
no programming language for the specification of such pro-
cesses.

We find three difficulties with Kahn’s model. First, its un-

bounded-length buffers make simple questions undecidable,
such as whether a system terminates or whether it can be ex-
ecuted in bounded memory. This latter problem makes prac-
tical scheduling of Kahn processes particularly difficult [14]
and generally precludes a pure hardware implementation.
The solution is simple: restrict communication in Kahn to
be synchronous or rendezvous-style (we proposed this else-
where [3], but were not the first). It is easy to show that this
restriction does not interfere with Kahn’s principle of global
determinism. Furthermore, bounded buffers are easily re-
covered by introducing buffer processes.

The second problem is that the parallel composition of
two processes cannot be represented as a sequential process.
A trivial example of this is the “two wires” process in Fig-
ure 1, which simply copies its first input to its first output
and its second input to its second output. Because a sequen-
tial process is forced to block on exactly one of its inputs ata
time, an environment that, for instance, supplies data on the
other channel only causes an deadlock. Again, the solution
is straightforward: include instruction-level parallel compo-
sition in the language.

The third problem—the main one we address here—is
that there are interesting processes that fit within Kahn’s
framework (i.e., that produce unique global behavior) yet
cannot be described as a parallel composition of sequential
processes, whatever the inter-process synchronizations.At
the end of his 1974 paper [8], Kahn describes one such pro-
cess, dubbed “warn,” that emits an event as soon as there is
an event available on either of the process’s two inputs chan-
nels. Parallel compositions of sequential processes cannot
perform such merging, yet such a process is well-behaved in
Kahn’s sense.

Figure 2 shows another interesting process that cannot be
described as a parallel composition of sequential processes:
a constructiveOR gate. Its input channelsa andb and output
channely convey Boolean values. A 1 value is sent ony
as soon as a 1 has been seen on eithera or b, otherwise 0
is sent. To make the process well-behaved, however, both
inputs must be supplied before the gate can compute its next
output. This eliminates the possibility of a race.

Figure 2b is an automaton for the constructiveOR gate.
From the initial state (in the center), the process is willing to
receive on either thea or b channels. If the process receives
a 0 on either channel, it goes to a state where it is waiting for

1

Figure 1: A process that cannot be specified using Kahn’s
blocking-read rule: two input channels that copy their values
to two output channels. (It can be specified with a pair of
concurrent processes.)

b
a y

〈a,1〉

〈b
,1
〉

〈a,0〉

〈b
,0
〉

〈b
,1
〉

〈a,1〉

〈b
,0
〉

〈a,0〉

〈y,
0〉

〈y,
1〉

〈y,
1〉

〈y,
1〉

〈b
,0
〉

〈a,0〉

〈a,1〉

〈b
,1
〉

〈b,1〉

〈b,0〉

〈a,1〉

〈a,0〉

(a) (b)

Figure 2: (a) A constructiveOR gate and (b) an automaton
for it. The initial state is in the center. A label such as〈a,0〉
indicates a 0 is communicated on channela. This drawing is
arranged so that the direction an arc leaves its state indicates
the type of event, e.g., moving up always means receiving 1
onb.

an input on the other channel, since the output cannot yet be
established. By contrast, if the process receives a 1 on either
channel, it goes to one of the two states where it can either
receive a value on the other channel or emit a 1 ony. Such
a choice may be dictated by the environment (e.g., it is not
yet ready for an event ony), or by the process itself (e.g.,
the computation of the output may still be ongoing when the
other input event arrives).

Kahn can represent a strict version of this process (i.e.,a
andb are both required beforey is produced) or an asym-
metric version (a is always read first, then eithery is written
or b is read depending on the value ofa), but not the process
we have described.

An implication of being able to compute such construc-
tive functions is the ability to simulate cyclic combinational
circuits [11]. Since our model is based on an assumption of
delay-insensitivity, it is not surprising that we are able to cor-
rectly analyze networks of logic gates and answer whether

they stabilize for all possible delay assignments (in his the-
sis, Shiple [15] showed that constructive simulation answers
this question exactly). The behavior of our processes is, by
definition, guaranteed to be the same for any delay behavior.

Others have considered simulating constructive logic in
an asynchronous setting. Berry and Sentovich [2] propose
a technique for simulating the Esterel language [1], which
requires constructive gate evaluation. A similar technique
would work in our model of computation, but ours has the
advantage of guaranteeing the overall behavior is determin-
istic, regardless of the choice of processes; Berry and Sen-
tovich had to choose their processes carefully.

Although it is always possible to write an automaton for
a process like the constructiveOR gate, not all automata are
well-behaved in Kahn’s sense. It is fairly easy, in fact, to per-
turb Figure 2 and break its determinism (e.g., change a〈y,1〉
to 〈y,0〉). The regularity of Figure 2—a consequence of
it being well-behaved—also suggests that higher-level con-
structs are appropriate.

1.1 A Roadmap

Our goal is a practical formalism for the specification of
confluent processes, i.e., those that, when combined, pro-
duce the same sequence of data values through each com-
munication channel regardless of any internal nondetermin-
istic choices a process makes. Such choices abstractly model
implementation-dependent behavior such as execution time
and scheduling policy.

Our processes are objects that consume and produce
atomic events provided and accepted by their environ-
ment. Inter-process communication is performed using ren-
dezvous, i.e., both processes must agree on when data trans-
fer occurs and no buffering occurs. This assumption of no
buffers is one of the big differences between our formal-
ism and Kahn’s—by making this assumption, the schedul-
ing problem is much easier for our processes and it opens the
possibility of pure hardware implementations. Buffering can
be recovered, however, by introducing buffering processes
along channels.

We characterize the behavior of processes and systems us-
ing traces [21]—sets of finite sequences taken from an al-
phabet of events. We use traces because they are somehow
operational and because they allow us to sidestep the issue
of equivalent states. Events may convey data, but we always
treat them as atomic.

We first define confluent processes (Section 3). The fun-
damental idea (Definition 3) is that a confluent process re-
sponds with the same sequence of events on each output
channel when placed in a particular environment, but that
the interleaving of events on different channels is irrelevant.
Furthermore, the number of input events actually consumed
from the environment is also consistent in this way.

This is a functional characterization in that the response of
a process (Definition 1) is a function of its environment (Def-
inition 2), which we characterize as a number and sequence
of input events and opportunities for output events. That the

2

response is a function (Theorem 1) guarantees our processes
are delay-insensitive, essentially a case of the Kahn princi-
ple.

Importantly, our characterization of a process, which de-
fines behavior for all environments, can enforce sequencing.
Say we want a process to emita before it emitsb. By insist-
ing that the process does not generateb when presented with
no opportunity to generatea, we prescribe this behavior.

From the definition of confluent processes, we derive four
properties about their execution (Section 4). The first prop-
erty (Lemma 3) says that the order in which events are con-
sumed and produced cannot affect future behavior (although
their values can). Lemmas 4 and 5 say that once a com-
munication event is possible, subsequent events on distinct
channels cannot disable this event. Hence, it may take place
now or later. For example, if a confluent process can emit a
certain output at a particular point, it must eventually do so,
i.e., the output cannot be suppressed by, say, an additional
input. The last property (Lemma 6) tell us that output events
can be postponed, but that their values may not be affected
by such a delay.

Together, it turns out that these four properties exactly
characterize any confluent process (Theorem 3).

In Section 5, we propose several language-level con-
structs, including sequencing, Kleene closure, and parallel
composition, that guarantee confluence and are somehow
complete, i.e., any confluent process is the result on a poten-
tially infinite number of confluent choices between simple
sequential processes. These allow us to succinctly and cor-
rectly specify confluent processes such as the constructive
OR gate in Figure 2.

2 Related Work

The problem of modeling and specifying delay-independent
concurrent processes has been addressed in both the soft-
ware and the hardware communities. Each groups’ focus is
slightly different because of the physical constraints of hard-
ware; this has lead to different techniques.

2.1 Concurrent Software

Kahn’s seminal paper [8] is the cornerstone for our work,
but as we explained earlier, we do not adopt it because it
demands unbounded buffers and Kahn’s simple sequential
language cannot describe a number of useful confluent pro-
cesses.

Lynch’s I/O automata were also an inspiration, but Lynch
also assumes unbounded buffering, although she does so by
insisting that processes are always receptive to all inputs.
Lynch and Stark [10] define a deterministic subset of pro-
cesses that are very similar to ours and show that, when
combined, they produce a deterministic system for the same
reasons as Kahn, but do not suggest how to construct such
automata.

The process calculi of Hoare [4] (CSP) and Milner [12]
(CCS) are concerned primarily with whether two concurrent
processes have the same behavior. They are concerned more

with modeling a large class of systems rather than proposing
restrictions that give global properties. For example, Mil-
ner explains that he began his work after discovering how
difficult it was to describe the semantics of concurrent pro-
gramming languages with shared variables [13, preface]. As
a result, both frameworks include nondeterministic choice
as a primitive operator and provide none of the determinism
guarantees inherent in our model.

Milner did consider the question of determinacy and con-
fluence [12, chap. 10], but proposed a fairly limited subset
of CCS that did not address data values.
2.2 Asynchronous Hardware

The asynchronous digital hardware community has long
grappled with the problem of building delay-insensitive sys-
tems. Concerned mostly with the behavior of digital logic
gates, their models are necessarily lower-level than thosefor
software.

Udding’s classification of delay-insensitive behavior [17]
was one of the first to provide a formal characterization of
processes that are deterministic in the same sense as ours.
He defines a series of properties on traces (following Van de
Snepscheut’s thesis work [21], which we were also inspired
by) that amount to saying that changes in the order in which
events arrive somehow cannot affect long-term behavior. As
is appropriate for gate-level behavior, Udding only considers
pure events (i.e., voltage transitions) and thus models data
only as interaction order. Delay-insensitive algebra [9, 7],
which discussesCSP-like processes, derived from this work.

Josephs’s deterministic receptive processes [6], a subset
of his receptive processes [5], share much with our model,
but also differ significantly. Like Udding, Josephs only mod-
els pure events, not data. Similarly, Josephs uses a series of
axioms like Udding’s to characterize processes; we are able
to derive roughly the same properties from a single axiom
(i.e., that a process behaves functionally: the same environ-
ment will produce the same behavior), suggesting that our
definition is somehow more fundamental.

Berkel [18, 19, 20] proposed using a library of delay-
insensitive processes (more precisely, handshake circuits) to
implement an imperative, sequential language. As in our
model, the detailed behavior of the system may vary be-
cause of differing delays, but the overall system behavior
is guaranteed to be consistent. This approach has also been
followed by others, such as Smith and Zwarico [16].
3 Confluent Processes

Our systems resemble Kahn’s: a group of concurrently-
running processes that communicate data tokens through
single-sender, single-receiver channels. The topology ofthe
processes and channels are fixed before the system starts
running. Unlike Kahn, however, our processes communicate
in a CSP-like rendezvous style, meaning that both sender and
receiver must agree on when data is to be exchanged. As
mentioned earlier, this means communication in our model
does not introduce unboundedness. Combining our pro-
cesses, provided they are bounded, gives a bounded system.

3

We focus on characterizing the behavior of a sin-
gle process in some environment that consists of other
concurrently-running processes. Our model is abstract in
that we do not model the inner workings of a process, only its
interaction with its environment, i.e., the sequence of com-
munication events it attempts to engage in.

We want to provide some flexibility in how our systems
are implemented. Specifically, we do not want to have to
precisely control the relative execution rates of our processes
or the time taken by each communication event, but we do
want to be able to describe causal relationships, e.g., thatan
event on channelb occurs only after the event on channela
has completed.

Our goal is to ensure the behavior of the overall system
is the same for any choice of relative execution rates. Pre-
cisely, we guarantee that the number and sequence of data
values communicated over each channel is the same in any
valid implementation of our systems, but our assumption of
uncontrolled execution rates implies that we do not consider
the interleaving of events on distinct channels.

We describe process behavior using traces because they
are operational and natural for describing the sequential na-
ture of both hardware and software—our target implementa-
tion media.

Most of the machinery below attempts to characterize our
notion of delay-independence on the delay-sensitive model
of traces. For example, our definition of histories removes
the relative order of events on different channels, similarly,
our definition of environment characterizes what a process
“sees” of its environment—sequences of input values and
opportunities for output events.

Our definition of processes leads to a functional charac-
terization that is similar to Kahn’s [8], but differs in one im-
portant respect: Kahn assumes the environment of a process
is always willing to accept additional data—a side-effect
of his assumption of unbounded buffers—whereas we pre-
scribe exactly how much data the environment of a process
is willing to consume.

Sequences For a non-empty alphabetA, A∗ denotes the
set of allfinite-length sequencesof elements ofA, includ-
ing theempty sequence, which is denoted byε. Concatena-
tion of sequences is denoted by juxtaposition. We consider
the usualprefix partial ordering⊑ on sequences. For a se-
quences∈ A∗, we denote|s| ∈ N the lengthof s. For a sub-
setS⊆ A∗, we say the sequences∈ S is maximal in Siff
∀s′ ∈ S: s⊑ s′ ⇒ s= s′.

Channels, Messages, TracesLetV be a non-empty count-
able set ofdata values; let I be a finite set ofinput channels;
let O be a finite set ofoutput channels. We requireI , O, and
V to be pairwise disjoint and the set of channelsCIO = I ∪O
to be non-empty.

For the OR example in Figure 2, which we will use as
a running example to illustrate our definitions,I = {a,b},

O = {y}, CIO = {a,b,y}, andV = {0,1}.
An element of the setMIO = CIO ×V denotes amessage

〈c,v〉 of value vcarried onchannel c. The elements ofTIO =
(MIO)∗ are calledtraces. In the sequel,V is constant whereas
I andO may vary, hence the subscript notation.

Traces represent possible execution sequences of our pro-
cesses. The trace〈b,1〉〈a,1〉〈y,1〉〈a,1〉〈b,0〉〈y,1〉 is a valid
one for Figure 2 (because there is such a path) whereas
〈y,0〉〈y,1〉 is not (the specification requires the first event to
be ona or b).

Definition 1 (History). Thehistoryof a trace t∈ TIO is the
functiont : CIO → V∗ that maps each channel c to the se-
quence of values carried on c in t:

ε(c) = ε
〈c,v〉t(c) = vt(c)
〈d,v〉t(c) = t(c) if c 6= d

The history of a trace preserves the number and order of
messages on each channel (including values), but discards
information about the interleaving of messages on different
channels. This is exactly our notion of delay-insensitivity;
later, we will insist that a process must respond with a unique
history when placed in a particular environment.

The history of a particular trace from Figure 2 is

〈b,1〉〈a,1〉〈y,1〉〈a,1〉〈b,0〉〈y,1〉(a)=11
〈b,1〉〈a,1〉〈y,1〉〈a,1〉〈b,0〉〈y,1〉(b)=10
〈b,1〉〈a,1〉〈y,1〉〈a,1〉〈b,0〉〈y,1〉(y)=11

.

We denoteHIO the set of histories, i.e., the set of all func-
tions fromCIO to V∗. For h,h′ ∈ HIO, we defineh ⊑ h′ iff
∀c ∈ CIO : h(c) ⊑ h′(c). In addition, we definehh′ as the
function inHIO such that∀c∈CIO : hh′(c) = h(c)h′(c). The
projectiont 7→ t is monotonic and distributes over concate-
nation:∀t, t ′ ∈ TIO : tt ′ = t t ′.

Intuitively, h⊑ h′ means thath could evolve intoh′. For
example, if

h(a)=1
h(b)=0
h(y) =1

and
h′(a)=1
h′(b)=01
h′(y) =11

thenh⊑h′ and
hh′(a)=11
hh′(b)=001
hh′(y)=111

.

(1)

Definition 2 (Environment). An element of EIO = (I →
V∗)× (O → N) is an environment. An environment pro-
vides available input sequences and available output slots.
If e = (eI ,eO) ∈ EIO, we write e(c) for either eI (c) if c ∈ I or
eO(c) if c ∈ O.

One possible environment for the process in Figure 2 is

e(a)=010 (a sequence of 0’s and 1’s)
e(b)=1000 (a sequence of 0’s and 1’s)
e(y) =5 (an integer)

.

This environment is willing to supply three events ona: 0,
then 1, then 0, the four-event sequence 1000 onb, and is

4

b

a
y

1 0

1 1 0

input streams consumed first output slots
︷ ︸︸ ︷ e(a)=011

e(b)=01
e(y) =4

Figure 3: The constructiveOR gate of Figure 2 placed in an
environment that provides the sequence 011 on inputa, the
sequence 01 on inputb, and will accept four values ony.
The process will respond by consuming all the inputs and
produce the sequence 011 on the output, leaving one of the
output slots unused. Note that the first value in each input
stream is written on the right, the opposite of the convention
for sequences.

willing to accept up to 5 events on they output channel. See
Figure 3 for a graphical depiction of another environment.

Fore,e′ ∈EIO, we definee⊑ e′ iff ∀c∈ I : e(c)⊑ e′(c) and
∀c∈ O : e(c) ≤ e′(c). We say thate,e′ ∈ EIO arecompatible
and writee≍ e′ iff ∃s∈ EIO : e⊑ s∧e′ ⊑ s. In addition, we
defineee′ as the function inEIO such that∀c∈ I : ee′(c) =
e(c)e′(c) and∀c∈ O : ee′(c) = e(c)+e′(c).

As for histories,e⊑ e′ means that inputs and output slots
can be added to the environmente to givee′. Whene≍ e′,
nothing ine is incompatible withe′ and vice versa, so it is
possible to find an environment that has more behavior than
each. In general, this requires eithere(c) ⊑ e′(c) or e′(c) ⊑
e(c) for eachc.

Consider the environments

e(a)=010
e(b)=1000
e(y) =5

,
e′(a)=01011
e′(b)=10000
e′(y)=7

and
e′′(a)=0
e′′(b)=10000111
e′′(y)=4

.

We havee⊑ e′ because 010⊑ 01011, 1000⊑ 10000, and
5≤ 7, i.e.,ecan be extended to becomee′. Althoughe′ 6⊑ e′′

ande′′ 6⊑ e′, e′ ≍ e′′ because the environment

s(a)=01011
s(b)=10000111
s(y)=7

satisfiese′ ⊑ sande′′ ⊑ s.
For h∈ HIO, we defineh as the function inEIO such that

∀c ∈ I : h(c) = h(c) and∀c ∈ O : h(c) = |h(c)|. The pro-
jectionh 7→ h abstracts output channel values, only retaining
the number of values per output channel. It is monotonic and
distributes over concatenation.

Projecting the histories in (1) gives the environments

h(a)=1
h(b)=0
h(y) =1

,
h′(a)=1
h′(b)=01
h′(y)=2

and
hh′(a)=11
hh′(b)=001
hh′(y)=3

.

If t ∈ TIO then t ∈ HIO, thus t ∈ EIO. Intuitively, t ex-
presses the resources consumed byt. We say thatt ∈ TIO

complies withthe environmente∈ EIO iff t ⊑ e.

For the tracet = 〈b,1〉〈a,0〉〈y,1〉〈b,0〉〈a,1〉〈y,1〉〈a,0〉,

t(a)=010

t(b)=10

t(y) =11

and
t(a)=010
t(b)=10
t(y) =2

.

As always, bothε and t itself comply with t, but also
〈a,0〉, 〈b,1〉〈a,0〉〈a,1〉〈y,1〉, and many others.

Confluent Languages Let L⊆ TIO be a set of traces, i.e., a
language. Fort ∈ L ande∈EIO, we say thatt saturates e in L

and writet⌈L⌋e iff t complies witheand∀t ′ ∈ L : t ⊑ t ′∧t ′ ⊑

e⇒ t = t ′, that is to say ifft is maximal in{t ′ ∈ L : t ′ ⊑ e}.
In general,t⌈L⌋r does not implyt = ebut onlyt ⊑ e. That

is, a process may engage in no more events than the environ-
ment allows, but the process may end up performing fewer.

We introduce the notion of saturation to distinguish a tran-
sient state of a process (i.e., one in which additional commu-
nication is pending) from a quiescent one. Ultimately, we
want any process, when placed in a particular environment,
to only have one behavior (i.e., produce a single history), but
while a process is running it will pass through other, lesser
histories. However, we are only concerned with the final
outcome—exactly the saturating traces.

Consider a small subset of the traces generated by theOR

example in Figure 2 and two environmentseande′:

L =






〈b,1〉
〈b,1〉〈y,1〉
〈b,1〉〈a,0〉
〈b,1〉〈a,0〉〈y,1〉





,

e(a)=0
e(b)=1
e(y) =0

and
e′(a)=01
e′(b)=11
e′(y) =7

.

We have〈b,1〉〈a,0〉⌈L⌋ebecause there is no trace that ex-
tends〈b,1〉〈a,0〉 in L that still complies withe. Note that
although〈b,1〉〈a,0〉〈y,1〉 extends this trace, it does not com-
ply with e, which does not allow any events ony. The trace
〈b,1〉 does not saturatee in L because it can be extended to
(is a prefix of)〈b,1〉〈a,0〉 ∈ L.

Becausee′ allows up to 7y events,〈b,1〉〈a,0〉 does not
saturatee′ in L, but we do have〈b,1〉〈a,0〉〈y,1〉⌈L⌋e′. Note
that no trace in this smallL includes the 2a events, 2b
events, and 7y events allowed by the environment.

That we were able to find longer traces that did saturate
these environments starting from shorter, compliant traces is
no accident, as the following lemma shows:

Lemma 1. If L ⊆ TIO, t ∈ L, e∈ EIO, and t compiles with e
then there exists t′ ∈ L such that t⊑ t ′ and t′ saturates e in
L.

Proof. By contradiction. Ift does not saturatee in L, there
must exist at ′ complying withe in L such thatt ⊑ t ′ andt ′ 6=
t. By hypothesis,t ′ does not saturatee in L. By induction,
starting fromt, there exists inL a strictly increasing chain of
traces compliant withe. Contradiction.

5

Definition 3 (Confluent language). The language L⊆ TIO

is confluentiff it is non-empty, prefix-closed, and, for all
e∈ EIO, all traces saturating e in L have the same history:
∀e∈ EIO,∀t, t ′ ∈ L : t⌈L⌋e∧ t ′⌈L⌋e⇒ t = t ′.

Intuitively, a confluent process, when placed in a partic-
ular environment, will always do the same thing, i.e., pro-
duce and consume the same number (and values) of events
on each channel. The prefix-closed restriction simply guar-
antees that the process can proceed by single communication
events. As mentioned above, we restrict our consideration to
saturating traces since a process passes through many inter-
mediate states while completing its behavior.

That the confluence restriction considers all possible en-
vironments lets us recover sequencing. For a particular en-
vironment, the confluence restriction says nothing about the
order of events on different channels, suggesting that, say, a
process that must emit on channela before emitting on chan-
nel b could not be specified. However, by saying that in an
environment where only a communication onb is allowed
that the process will do nothing, such sequential behavior
can be recovered.

We call our processes confluent for the following reason.
Consider an environmente and a tracet from the language
that does not saturatee. Such a trace corresponds to the be-
havior of a process that has not yet done all it can ine. Now,
there may be two or more saturating traces, sayt ′ andt ′′ that
comply witheand extendt, i.e.,t ′⌈L⌋eandt ′′⌈L⌋ewith t ⊑ t ′

andt ⊑ t ′′. Intuitively, this means the process has a choice
of what to do aftert.

Our definition of confluence insists that the histories of
these two traces are the same, i.e.,t ′ = t ′′, i.e., that even
though the process had a choice of what to do aftert that
it ultimately produce the same behavior, i.e., consumes the
same number of inputs and produces the same number and
value of outputs. This is a diamond-like confluence prop-
erty: having a choice ultimately does not matter: the behav-
ior must be the same in the end.

Consider the languages

L =






ε
〈b,1〉
〈b,1〉〈a,0〉
〈b,1〉〈a,0〉〈y,1〉
〈a,0〉
〈a,0〉〈b,1〉
〈a,0〉〈b,1〉〈y,1〉






andL′ =






ε
〈b,1〉
〈b,1〉〈a,0〉
〈b,1〉〈a,0〉〈y,1〉
〈a,0〉
〈a,0〉〈b,1〉
〈a,0〉〈b,1〉〈y,0〉






.

Both L andL′ are non-empty and prefix-closed, but only
L is confluent. To see why, consider the environment

e(a)=0
e(b)=1
e(y) =1

.

In L, two traces saturatee, i.e., 〈b,1〉〈a,0〉〈y,1〉⌈L⌋e and

〈a,0〉〈b,1〉〈y,1〉⌈L⌋e, and

〈b,1〉〈a,0〉〈y,1〉(a)=〈a,0〉〈b,1〉〈y,1〉(a)=0
〈b,1〉〈a,0〉〈y,1〉(b)=〈a,0〉〈b,1〉〈y,1〉(b)=1
〈b,1〉〈a,0〉〈y,1〉(y) =〈a,0〉〈b,1〉〈y,1〉(y)=1

.

Again, two traces saturate e in L′, i.e.,
〈b,1〉〈a,0〉〈y,1〉⌈L′⌋e and 〈a,0〉〈b,1〉〈y,0〉⌈L′⌋e, how-
ever, 〈b,1〉〈a,0〉〈y,1〉(y) = 1 and 〈a,0〉〈b,1〉〈y,0〉(y) = 0.
Intuitively, L′ is not confluent because it produces a different
value ony depending on the order in which it sees the same
events ona andb.

In a confluent language, the order of inputs on different
channels may not suppress outputs, but their values may.
Consider

L =






ε
〈b,1〉
〈b,1〉〈a,0〉
〈b,1〉〈a,0〉〈y,1〉
〈b,0〉






andL′ =






ε
〈b,1〉
〈b,1〉〈a,0〉
〈b,1〉〈a,0〉〈y,1〉
〈a,0〉






in the environments

e(a)=0
e(b)=1
e(y) =1

and
e′(a)=0
e′(b)=0
e′(y)=1

.

It turns out L is confluent but thatL′ is not. In L,
only one trace,〈b,1〉〈a,0〉〈y,1〉 saturatese and one trace,
〈b,0〉 saturatese′. However, inL′, both 〈b,1〉〈a,0〉〈y,1〉
and 〈a,0〉 saturatee, and they have different histories:
〈b,1〉〈a,0〉〈y,1〉(y) = 1 yet〈a,0〉(y) = ε.

Behaviors We now formally establish that the response of
a confluent process is a function of its environment.

Theorem 1. If L is confluent then for all e∈ EIO, the set
{h ∈ HIO : ∃t ∈ TIO : t = h∧ t⌈L⌋e} is a singleton, which
we denotêL(e). We say the function̂L : EIO → HIO is the
behaviorof the confluent language L.

Proof. By definition of confluent languages, this set is at
most a singleton. By Lemma 1 applied to the empty trace,
this set is non-empty.

In other words, the communications of a confluent process
in a deterministic environment are deterministic in the sense
that the sequence of values exchanged on each channel is
deterministic, regardless of local nondeterministic choices
made by the process.

Moreover, behaviors characterize confluent languages.

Theorem 2. If L1,L2 ⊆ TIO are confluent and L1 6= L2 then
L̂1 6= L̂2.

Proof. There existst ∈TIO such thatt ∈ L1 andt /∈ L2 or vice
versa. Lett ′ be the largest prefix oft contained inL2. There

6

existsm∈ MIO such thatt ′m⊑ t. Hence,t ′m⌈L1⌋t ′m and

t ′⌈L2⌋t ′m. As a result,L̂1

(
t ′m

)
= t ′m whereasL̂2

(
t ′m

)
=

t ′.

Confluent processes can be equivalently specified using
confluent languages or behaviors, as convenient. Not every
function from EIO to HIO, however, encodes the behavior
of a confluent process as behaviors have many distinctive
properties.

Lemma 2. If L is confluent then:

• L̂ is monotonic:∀e,e′ ∈ EIO : e⊑ e′ ⇒ L̂(e) ⊑ L̂(e′).

• L̂ is reductive:∀e∈ EIO : L̂(e) ⊑ e.

• L̂ is idempotent:∀e∈ EIO : L̂
(

L̂(e)
)

= L̂(e).

Proof. If e⊑ e′ and t⌈L⌋e then t ⊑ e′, thus, by Lemma 1,
there existst ′ ∈ TIO such thatt ⊑ t ′ andt ′⌈L⌋e′. In particular,
t ⊑ t ′, that is to saŷL(e) ⊑ L̂(e′).

If t⌈L⌋e thent ⊑ eandL̂(e) = t, soL̂(e) ⊑ e.
∀t ∈ L : t⌈L⌋t. In particular, ift⌈L⌋e thent⌈L⌋t. Therefore,

L̂
(

L̂(e)
)

= L̂
(

t
)

= t = L̂(e).

While behaviors resemble Kahn’s continuous functions
from input histories to output histories, they differ signif-
icantly. Our model relies on synchronous communications.
Thus, first, behaviors take into account the environment will-
ingness to receive output events; second, behaviors report
the actual sequences of input events they consume. Also,
while behaviors are concerned with finite sequences only,
Kahn considers both finite and infinite sequences. This,
however, is a technical issue of no practical consequence,
which we established in a previous work [3].
4 Properties of Confluent Languages

The following four properties hold for any confluent lan-
guageL ⊆ TIO. We introduce them to simplify later proofs
and to provide more intuition about how confluent languages
behave.

It turns out that these four propertiesexactlycharacterize
confluent languages, i.e., any language that has these prop-
erties (in addition to being non-empty and prefix-closed) is
confluent. We prove this below (Theorem 3).

If a confluent process can consume and produce some se-
quence of events on its channels, then the order in which it
did so is irrelevant in the future. The following lemma for-
malizes this:

Lemma 3. If tt ′ ∈ L, t′′ ∈ L, andt = t ′′ then t′′t ′ ∈ L.

Proof. By induction on the length oft ′. Obvious if t ′ = ε.
Otherwise, there existm ∈ MIO and t ′′′ ∈ TIO such that
t ′ = t ′′′m. By induction hypothesis,t ′′t ′′′ ∈ L. By Lemma 1,

there existst ′′′′ ∈ TIO such thatt ′′t ′′′t ′′′′⌈L⌋t ′′t ′′′m. Since

tt ′′′m⌈L⌋t ′′t ′′′m, by confluence,t ′′t ′′′t ′′′′ = tt ′′′m. Hence,
t ′′′′ = m andt ′′t ′ ∈ L.

The following lemma states that if at some point a process
can either emit or receive an event〈c,v〉, then if the process
can do anything else at that same point, it must be able to
emit or receive〈c,v〉 in the future. Colloquially, communi-
cation is “sticky.”

Lemma 4. If t 〈c,v〉 ∈ L, tt′ ∈ L, and t ′(c) = ε then
tt ′〈c,v〉 ∈ L.

Proof. tt ′ ⊑ tt ′〈c,v〉 and t〈c,v〉 ⊑ t〈c,v〉t ′ = tt ′〈c,v〉 since
t ′(c) = ε. By Lemma 1, there existt ′′ and t ′′′ ∈ TIO such

thattt ′t ′′⌈L⌋tt ′〈c,v〉 andt〈c,v〉t ′′′⌈L⌋tt ′〈c,v〉. By confluence,
tt ′t ′′ = t〈c,v〉t ′′′, hencet ′′ = 〈c,v〉. As a resulttt ′〈c,v〉 ∈
L.

The following lemma refines this notion further: if a com-
munication event can be postponed as Lemma 4 allows, then
it does not affect the future.

Lemma 5. If t 〈c,v〉 ∈ L, tt′〈c,v〉t ′′ ∈ L, andt ′(c) = ε then
t〈c,v〉t ′t ′′ ∈ L.

Proof. By induction on the length oft ′. Obvious itt ′ = ε.
Otherwise, there existd ∈ CIO, w ∈ V, andt ′′′ ∈ TIO such
that t ′ = 〈d,w〉t ′′′, d 6= c, and t ′′′(c) = ε. By Lemma 4,
t〈d,w〉〈c,v〉 ∈ L andt〈c,v〉〈d,w〉 ∈ L. By induction hypothe-
sis,t〈d,w〉〈c,v〉t ′′′t ′′ ∈ L. By Lemma 3,t〈c,v〉〈d,w〉t ′′′t ′′ ∈ L
that is to sayt〈c,v〉t ′t ′′ ∈ L.

This next lemma says that the sequence of data values
written on a particular channel is not affected by delays, an
important component of our delay-insensitive philosophy.

Lemma 6. If t 〈c,v〉 ∈ L, tt′〈c,w〉 ∈ L, t ′(c) = ε, and c∈ O
then v= w.

Proof. t〈c,v〉 ⊑ tt ′〈c,w〉 sincec ∈ O. By Lemma 1, there

existst ′′ ∈ TIO such thatt〈c,v〉t ′′⌈L⌋tt ′〈c,w〉. By confluence,
t〈c,v〉t ′′ = tt ′〈c,w〉, which impliesv = w.

The following theorem shows that together, the properties
in Lemmas 3–6 exactly characterize confluent languages.
Among other things, this means we could instead have taken
the properties in Lemmas 3–6 as the definition of a confluent
language and from there derived our notions of compliance,
histories, and so forth. Josephs [6] takes this approach. We
chose to start with our functional characterization of conflu-
ence because it more closely resembles Kahn’s approach and
is easier to state.

Theorem 3. The language L⊆ TIO is confluent if it is non-
empty, prefix-closed, and obeys Lemmas 3 to 6.

Proof. Let us choosee ∈ EIO, t1, t2 saturatinge in L and
provet1 = t2. We can assume|t1| ≤ |t2|.

For 0≤ n≤ |t1|, we establish by induction onn the prop-
erty P(n) = ∃t0, t3 ∈ L : |t0| = n∧ t0 ⊑ t1∧ t0 ⊑ t3∧ t2 = t3.

P(0) is obtained by choosingt0 = ε andt3 = t2.

7

For n such that 0≤ n < |t1|, let us assumeP(n), i.e., let
t0, t3 ∈ L be such that|t0| = n, t0 ⊑ t1, t0 ⊑ t3, andt2 = t3.
There existc,d ∈ CIO, v,w ∈ V, t ′1, t

′
3 ∈ TIO such thatt1 =

t0〈c,v〉t ′1 and t3 = t0〈d,w〉t ′3. If 〈c,v〉 = 〈d,w〉 then P(n+
1) holds. We now assume〈c,v〉 6= 〈d,w〉 and definet ′′3 =
〈d,w〉t ′3.

Sincet3 = t2 andt2⌈L⌋e, we havet3⌈L⌋eby Lemma 3. By
Lemma 4, ift ′′3(c) = ε then t3〈c,v〉 ∈ L, which contradicts
t3⌈L⌋e. Hence,t ′′3(c) 6= ε. In other words, there existu ∈
V andx,y ∈ TIO such thatt ′′3 = x〈c,u〉y with x(c) = ε. By
Lemma 6, if c ∈ O then u = v. Otherwise, ifc ∈ I then
t0〈c,v〉 ⊑ eandt0x〈c,u〉 ⊑ ewith x(c) = ε, sou = v. Hence,
u = v in all cases.

By Lemma 5,t0〈c,v〉xy∈ L. Moreover,t0〈c,v〉xy= t3 =
t2, which concludes the proof ofP(n+1).

For n = |t1|, P(n) reduces to∃t3 ∈ L : t1 ⊑ t3 ∧ t2 = t3.
In particular,t3 ⊑ e. Sincet1⌈L⌋r, this impliest1 = t3. To
conclude,t1 = t3 = t2.

5 Language Constructs

To this point, we have only characterized confluent lan-
guages, but have not provided a practical way to construct
them. In this section, we provide a series of operators for
building languages that guarantee confluent behavior.

We construct confluent languages starting with pure
events and combining them sequentially (;), through rep-
etition (Kleene-∗), in parallel (||), and through “confluent
choice” (|). Each of these constructs is confluence-closed
(i.e., combining two confluent languages with any of these
operators gives a confluent language). Furthermore, they are
complete in the sense that they can be used to construct any
confluent language.

We propose these operators as the building blocks of a
more user-friendly language for specifying confluent pro-
cesses. A practical language would also include constructs
such as variables, conditional statements, scoping, and so
forth; we will address this in future work.

Empty Trace We start with the most basic language.
WhateverI andO, we define the languageEIO = {ε} ⊆ TIO.

Message For 〈c,v〉 ∈ MIO, we denote〈〈c,v〉〉IO the conflu-
ent language{ε,〈c,v〉} ⊆ TIO.

This language expresses the willingness to engage in a
single communication. Because confluent languages must
be prefix-closed, this language includes the empty traceε.

The next construct is the familiar sequencing operator on
traces. The only technical point here is that in in the con-
structL1;L2, we wantL2 to start only afterL1 has “termi-
nated” [21]. We sayL1 has terminated when it has reached
a maximal trace, i.e., a point at which the process cannot
engage in any more communication. As a result, the sequen-
tial composition differs from the concatenation of languages,
which typically does not preserve confluence.

Sequence The sequential composition L1;L2 of the lan-
guagesL1,L2 ⊆ TIO is defined as follows:

t ∈ L1;L2 ⇔

{
∃t1 ∈ L1

∃t2 ∈ L2

}
:

{
t = t1t2
(t1maximal inL1)∨ (t2 = ε)

}
.

Lemma 7. The “;” operator is associative:∀L1,L2,L3 ⊆
TIO : (L1;L2);L3 = L1;(L2;L3).

Proof. See Van de Snepscheut [21].

Theorem 4. If L1 and L2 are confluent then L1;L2 is conflu-
ent.

Proof. L1;L2 is non-empty and prefix-closed. Let us sup-
poset1t2 andt ′1t

′
2 saturatee∈ EIO in L1;L2 with t1, t ′1 ∈ L1

andt2, t ′2 ∈ L2.
If t2 6= ε thent1 is maximal inL1, thust1⌈L1⌋e. If t2 = ε

then t1 is maximal in{t ∈ L1;L2 : t ⊑ e}, thust1⌈L1⌋e. In
any case,t1⌈L1⌋e and similarly t ′1⌈L1⌋e so thatt1 = t ′1 by
confluence ofL1.

If t1 is maximal inL1 but t ′1 is not then there existst 6= ε
such thatt ′1t ∈ L1. As a result,t1⌈L1⌋t ′1t andt ′1t⌈L1⌋t ′1t. Since
L1 is confluent,t1 = t ′1t. Contradiction. Therefore, either
botht1 andt ′1 are maximal inL1 or neither is.

In the first case, botht2 andt ′2 saturatee′ in L2 wheree′ ∈
EIO is such thate= t1e′. SinceL2 is confluent,t2 = t ′2. In the
second case,t2 = ε = t ′2, which impliest2 = t ′2 as well.

To conclude,t1t2 = t ′1t
′
2. Hence,L1;L2 is confluent.

The next construct is the obvious infinite extension of se-
quencing: Kleene’s∗ operator. It simply restartsL whenever
L terminates.

Kleene Closure For L ⊆ TIO, we define(Ln)n≥1 by in-
duction onn: L1 = L, ∀n ≥ 1 : Ln+1 = Ln;L. We define
L∗ =

⋃
n≥1Ln.

Theorem 5. If L is confluent then L∗ is confluent.

Proof. L1 ⊆ L2 ⊆ ·· · ⊆ Ln ⊆ ·· · ⊆ L∗. If t⌈L∗⌋eandt ′⌈L∗⌋e
then there existsn≥ 1 such thatt ∈Ln andt ′ ∈ Ln. Therefore,
t⌈Ln⌋e and t ′⌈Ln⌋e. By Theorem 4,Ln is confluent, thus
t = t ′.

The next construct—the restriction operator—hides
events on output channels, which is useful to hide inter-
process communications. Indeed, we shall see later that
inter-process communication channels in a network of pro-
cesses (assembled by means of parallel compositions and
confluent choices) can be observed by the environment with-
out harm, i.e., are by default treated as output channels of the
network. On the other hand, a similar operator that hid in-
puts would not be confluent.

We start with the restriction of traces w.r.t. both inputs and
outputs as this will be useful for defining the parallel oper-
ator, then define the restriction of languages w.r.t. outputs
only.

8

Restriction For I ′ ⊆ I ∪O andO′ ⊆O such thatI ′∪O′ 6= /0
andI ′∩O′ = /0, we define therestrictionof the tracet ∈ TIO

to channelsCI ′O′ as the tracet|I ′O′ ⊆ TI ′O′ :

ε|I ′O′ = ε
(〈c,v〉t)|I ′O′ = 〈c,v〉(t|I ′O′) if c∈CI ′O′

(〈c,v〉t)|I ′O′ = t|I ′O′ if c /∈CI ′O′

Note that an output channel may be turned into an input
channel in the process (as required for the parallel composi-
tion).

Restrictions of histories and environments can be simi-
larly defined. Restriction commutes with projections (from
traces to histories and from histories to environments) and
distributes over concatenation.

ForO′ ⊆O andI∪O′ 6= /0, therestriction L|O′ ⊆TIO′ of the
languageL ⊆ TIO to the set of output channelsO′ is defined
by t ′ ∈ L|O′ ⇔∃t ∈ L : t ′ = t|IO′ .

Theorem 6. If L ⊆ TIO is confluent, O′ ⊆ O, and I∪O′ 6= /0
then L|O′ is confluent.

Proof. If t ′1⌈L|O′⌋e′ and t ′2⌈L|O′⌋e′ for somee′ ∈ EIO′ then
there existt1, t2 ∈ L such thatt ′1 = t1|IO′ andt ′2 = t2|IO′ . More-
over, t1 ≍ t2 sincet1 andt2 may only differ on output mes-
sages. As a result, there existse∈EIO such thatt1 ⊑ e, t2 ⊑ e,
ande′ = e|IO′ . Hence, there existt ′′1 , t ′′2 ∈ L such thatt1t ′′1⌈L⌋e
and t2t ′′2⌈L⌋e. By confluence ofL, we obtaint1t ′′1 = t2t ′′2 ,
which impliest ′1(t

′′
1 |IO′) = t ′2(t

′′
2 |IO′). Sincet1t ′′1 |IO′ ⊑ e′ and

t2t ′′2 |IO′ ⊑ e′, we have alsot ′′1 |IO′ = ε = t ′′2 |IO′ . Therefore,
t ′1 = t ′2.

We now come to the two key constructs for com-
posing confluent processes. The first construct—parallel
composition—interleaves the execution of two processes
and requires them to agree on events on shared input and out-
put channels—a sort of “logicalAND” concurrency. Later,
we will introduce “logicalOR” concurrency in the form of a
confluent choice operator.

Figure 4 illustrates how two confluent processes behave
when combined using both the parallel and confluent choice
operator. Both operators make the two processes run in par-
allel; the difference comes in how shared input channels are
split and how shared outputs are merged.

Parallel Composition Theparallel composition L1||L2 of
the languagesL1 ⊆ TI1O1 andL2 ⊆ TI2O2 is the language with
input channelsI = I1 ∪ I2 \ (O1 ∪O2) and output channels
O = O1∪O2 such thatt ∈ L1||L2 iff t|I1O1 ∈ L1 andt|I2O2 ∈
L2.

Parallel composition combines processes as shown in Fig-
ure 4 and insists that both processes participate in any shared
events. When an input channel is split, parallel composition
insists that both processes receive the event for it to hap-
pen. Similarly, when an output channel is merged, an output
event occurs only if both processes participate and agree on

L1

a d
b f
g e

L2

e g

b f
c h

L1

a d

e

L2
c h

g

b f

(a) (b)

Figure 4: (a) Two confluent processes with their inputs and
outputs. (b) The result of combining them in parallel or with
confluent choice; the behavior of the split and merge opera-
tors (the triangular objects) distinguishes the operators. In-
putb is shared, as is outpute. Inputseandg are connected to
the identically-named outputs on the other process, but are
no longer inputs of the whole system, only outputs.

the value. If the two processes agree that an event should
occur on a particular channel but disagree on the value, no
event is generated and the merge effectively prevents either
process from ever producing an event on that channel again.

Lemma 8. The “||” operator is associative.

Proof. See Van de Snepscheut [21].

In general, we define the parallel composition of the
potentially infinite set{Ln}n∈S of languages of respective
channelsCInOn as the language with output channelsO =⋃

n∈S{On} and input channelsI =
⋃

n∈S{In}\O that exactly
contains the tracest ∈ TIO such that∀n∈S: t|InOn ∈ Ln. This
extends the earlier definition for finite parallel compositions.

Theorem 7. If ∀n ∈ S : Ln is confluent then their parallel
composition L is confluent.

Proof. ∀n ∈ S : Ln contains the empty trace and is prefix-
closed. As a result, the parallel composition is non-empty
and prefix-closed. Let us show it obeys Lemmas 3–6.

If tt ′ ∈ L, t ′′ ∈ L, andt = t ′′ then∀n ∈ S: t|InOnt
′|InOn =

tt ′|InOn ∈ Ln, t ′′|InOn ∈ Ln, andt|InOn = t ′′|InOn. SinceLn is
confluent, by Lemma 3,t ′′|InOnt

′|InOn ∈ Ln for all n. There-
fore, t ′′t ′ ∈ L.

If t〈c,v〉 ∈ L, tt ′ ∈ L, t ′(c) = ε, and c ∈ C|InOn then
t|InOn〈c,v〉 ∈ Ln, t|InOnt

′|InOn ∈ Ln, andt ′|InOn(c) = ε. Since
Ln is confluent, by Lemma 4,t|InOnt

′|InOn〈c,v〉 ∈ Ln. Other-
wise, if c /∈C|InOn then(tt ′〈c,v〉)|InOn = tt ′|InOn ∈ Ln. There-
fore, tt ′〈c,v〉 ∈ L.

If t〈c,v〉 ∈ L, tt ′〈c,v〉t ′′ ∈ L, t ′(c) = ε, and c ∈ C|InOn

then t|InOn〈c,v〉 ∈ Ln, t|InOnt
′|InOn〈c,v〉t

′′|InOn ∈ Ln, and
t ′|InOn(c) = ε. SinceLn is confluent, by Lemma 5, we ob-
tain t|InOn〈c,v〉t

′|InOnt
′′|InOn ∈ Ln. Otherwise, ifc /∈ C|InOn

then (t〈c,v〉t ′t ′′)|InOn = (tt ′〈c,v〉t ′′)|InOn ∈ Ln. Therefore,
t〈c,v〉t ′t ′′ ∈ L.

9

If t〈c,v〉 ∈ L, tt ′〈c,w〉 ∈ L, t ′(c) = ε, andc ∈ O then let
us choosen ∈ S such thatc ∈ On. Sincet|InOn〈c,v〉 ∈ Ln,
t|InOnt

′|InOn〈c,w〉 ∈ Ln, andt ′|InOn(c) = ε, we concludev= w
by applying Lemma 6 toLn.

Thanks to Theorem 3, the parallel composition is conflu-
ent.

Importantly, if all Ln share the same input and output
channels then their parallel composition is their intersection.

Our final challenge is to define confluent choice. The
usual choice operator in regular expressions does not usu-
ally produce confluent languages because it suppresses the
untaken alternative.

Instead, we define the confluent choice of two languages
as the least confluent language that contains the behavior of
both. This can be thought of as the usual choice operator fol-
lowed by a closure operation that adds the behavior required
by confluence.

First, we prove a theorem that ensures us that if we take
a subset of a confluent language, there is always a unique,
least way to “grow” it back into a confluent language. We
need this for the definition of confluent choice because we
need to ensure that there is such a confluent language.

Theorem 8. If L ⊆ L′ ⊆ TIO and L′ is confluent then there
exists a least confluent language L0 ⊆ TIO that contains L:
∀L′

0 ⊆ TIO : L ⊆ L′
0∧L′

0 confluent⇒ L0 ⊆ L′
0.

Proof. The set of all confluent languages containingL is
non-empty thanks toL′. Let L0 be the intersection (i.e., the
parallel composition) of all such languages. By Theorem 7,
L0 is confluent. By construction, it is contained in any con-
fluent language containingL.

Another challenging aspect of confluent choice is that it
insists on a form of compatibility between the processes be-
ing combined. Indeed, not every language is contained in a
confluent language. For instance, for valuesV = {0,1} and
channelsI = /0 andO = {c}, there exists no confluent lan-
guage containing the two traces〈c,0〉 and 〈c,1〉 since any
such language would violate Lemma 6.

Intuitively, two languages are compatible if they do not
contradict each other when generating shared output events.
Technically, we insist that the combination of the traces in
the languages we want to combine via confluent choice are
consistent in the following sense.

Consistency We say that a language isconsistentiff it is
contained in a confluent language.

Intuitively, a consistent language may be missing behavior
that would be required to make it confluent (e.g., the process
stops even though it is obligated to generate addition out-
puts in compliance with Lemma 4) but it does nothing that
prevents confluence (e.g., produces a conflicting output in
response to a different order in which inputs arrived).

The language consisting of the empty trace is the shortest
consistent language.

Confluent Choice For two languagesL1,L2 ⊆ TIO, if L1∪
L2 is consistent, we define theconfluent choice L1|L2 as the
least confluent language containingL1 andL2.

Lemma 9. The “|” operator is associative.∀L1,L2,L3 ⊆
TIO : (L1|L2)|L3 and L1|(L2|L3) are either both defined or
both undefined, and equal if defined.

Proof. If L1 ∪ L2 ∪ L3 is contained in the confluent lan-
guageL then bothL1|L2 and L2|L3 are defined and con-
tained in L. Therefore, both(L1|L2)|L3 and L1|(L2|L3)
are defined. Moreover,L1 ⊆ L1|L2 ⊆ (L1|L2)|L3. L2 ⊆
L1|L2 ⊆ (L1|L2)|L3. L3 ⊆ (L1|L2)|L3. Hence,L1|(L2|L3) ⊆
(L1|L2)|L3 and vice versa.

Otherwise, ifL1∪L2∪L3 is inconsistent, then eitherL1|L2

is undefined or(L1|L2)∪L3 is inconsistent. Similarly, either
L2|L3 is undefined orL1∪ (L2|L3) is inconsistent.

In general, we consider the union
⋃

n∈S{Ln} of a poten-
tially infinite set of languages of respective channelsCInOn to
be the language with output channelsO=

⋃
n∈S{On} and in-

put channelsI =
⋃

n∈S{In}\O that contains the tracest ∈TIO

such that∃n∈ S: t ∈ Ln.
If this union is consistent, we define the confluent choice

of the set of languages as the least confluent language con-
taining the union. This extends the earlier definition for finite
confluent choices.

5.1 Comparison

Once again, the basic idea behind confluent choice is to
merge the languages, provided they are not inconsistent, then
add whatever behavior is necessary to make the result con-
fluent. Lemmas 3–6 suggest the sort of behavior that must
be added. For example, if an input or output is allowed at a
certain point then it must also be allowed later.

When two processes do not share any inputs or outputs,
confluent choice is the same as parallel, i.e., the same as
interleaving; it is only when processes share input or output
channels that the difference arises.

Intuitively, the parallel operator imposes “logicalAND”
concurrency, meaning that both processes must participate
in all events on shared channels. By contrast, the confluent
choice operator is something like “logicalOR” concurrency:
it allows either process to consume or produce an event on
a shared channel, but to maintain confluence, the event is
still available to the other process, which may ignore this
event forever (and stop using the corresponding channel) or
consume it eventually.

Like parallel composition, confluent choice combines pro-
cesses as shown in Figure 4, but the split and merge behavior
is very different than the parallel case.

Splitting an input in confluent choice effectively buffers
it. The same sequence is fed to both processes, but the two
are not required to remain synchronized. Specifically, one
process is allowed to get arbitrarily far ahead of the other in
reading the sequence; both processes see the same sequence
of events on the channel.

10

Confluent choice, then, is a potentially dangerous oper-
ator in that it can require unbounded resources. However,
this is not always the case. For example, if the length of the
sequences accepted by the two processes is bounded, it fol-
lows that the size of the splitter buffer is bounded. While this
seem overly restrictive, observe that enclosing such a pairof
processes in a Kleene-∗ construct does not require an infi-
nite buffer. In general, unbounded buffers are only required
when one process can get arbitrarily far ahead of the other,
which we do not expect to be very common in practice.

Merging outputs in confluent choice is similar. The pro-
cesses can get arbitrarily out-of-sync, but must agree on the
values being sent on the channel. This is guaranteed if the
union of the two languages is consistent, so the behavior of
the merge is simply to keep track of how many events the
two processes have generated on the merged output channel
and transmit the longer sequence. Again, this may require
unbounded resources (i.e., to keep track of a potentially un-
bounded difference in the number of events), but if the two
processes have bounded-length traces, it is possible to bound
the maximum number that the merge operation must track.
Note that unlike the split, which must store the data values,
the merge only needs to maintain a count.

Examples To illustrate confluent choice and parallel com-
position, first consider the two languagesA|B andA||B with
A = 〈〈a,0〉〉{a} /0 andB = 〈〈b,0〉〉{b} /0, that it to say A has one
input channela and no output channel and similarly forB.

To simplify the notation, we will drop the angle bracket
notation and denote〈a,0〉 by a and〈b,0〉 by b. Hence,A =
{ε,a} andB = {ε,b}.

The confluent choice and parallel composition ofA andB
are equal:

A|B = A||B = {ε,a,b,ab,ba}

The parallel operator requires that any trace inA||B, when
restricted to the channels inA, must be a trace inA, and
similarly for B.

ForA|B, first note thatA∪B= {ε,a,b}. This is not conflu-
ent, but it is consistent because it is contained inA||B, which
is confluent. Moreover, neither{ε,a,b,ab} nor {ε,a,b,ba}
is confluent. Therefore,A|B = A||B.

Now, to see the difference between confluent choice
and parallel composition, consider the languagesX|Y
and X||Y with X = 〈〈a,0〉〉{a,c} /0;〈〈c,0〉〉{a,c} /0 and Y =

〈〈a,0〉〉{b,c} /0;〈〈c,0〉〉{b,c} /0, that is to sayX = {ε,a,ac} with
input channels{a,c} and no output channels andY =
{ε,b,bc} with input channels{b,c} and no output channels.
Here, the result is quite different as illustrated in Figure5:

X|Y = {ε,a,b,ac,abc,acb,bc,bca,bac}
X||Y = {ε,a,b,ab,ba,abc,bac}

Intuitively, the confluent choice operator allows thec
event to be generated independently, i.e., before the other
process has also decided to accept or generate it. Parallel

a

b

b

a

c
a

b

b

a

c

c

c

b

a

(a) (b)

Figure 5: Two automata generating the traces of the (a) par-
allel composition and (b) confluent choice of the languages
{ε,a,ac} with channels{a,c} and{ε,b,bc} with channels
{b,c}.

composition, by contrast, always insists that the two pro-
cesses agree on events before they are visible to the environ-
ment.

Last example, consider the languagesAp andAq for p,q∈
N, that is to sayAp is the set of traces containing up top
eventsa, and similarly forAq. Then,

Ap;Aq = Ap+q Ap∪Aq = Amax(p,q)

Ap||Aq = Amin(p,q) Ap|Aq = Amax(p,q)

Constructive OR gate With the confluent choice opera-
tor, we are able to succinctly express the behavior of the
constructiveOR gate in Figure 2, for instance as:

(〈〈a,1〉〉;〈〈y,1〉〉|〈〈b,1〉〉;〈〈y,1〉〉|〈〈a,0〉〉;〈〈b,0〉〉;〈〈y,0〉〉|〈〈b,0〉〉)∗

deciding the “;” operator binds tighter than “|”, and consid-
ering that all the combined languages have input channels
{a,b} and output channels{y}.

This specification consists of the Kleene closure (the∗) of
the confluent choice among four little languages. The first
two languages,〈〈a,1〉〉;〈〈y,1〉〉 and〈〈b,1〉〉;〈〈y,1〉〉, are sym-
metric and handle the early generation ofy. Each waits for
a 1 ona or b, then generates a 1 ony in response. Because
they are combined using confluent choice, only a singley
event is ever generated, i.e., if the environment provides both
〈a,1〉 and〈b,1〉, both processes generate〈y,1〉, and conflu-
ent choice merges them.

The confluent choice between the third and fourth lan-
guages,〈〈a,0〉〉;〈〈b,0〉〉;〈〈y,0〉〉 and〈〈b,0〉〉, waits for zeros on
botha andb, then produces a 0 ony. Indeed, while the third
language requires〈a,0〉 to be read first, the fourth language
allows 〈b,0〉 to come first. In fact, this confluent choice is
equivalent to each of the following languages:

•
(
〈〈a,0〉〉;〈〈b,0〉〉;〈〈y,0〉〉

)
|
(
〈〈b,0〉〉;〈〈a,0〉〉;〈〈y,0〉〉

)

•
(
〈〈a,0〉〉{a}{y}||〈〈b,0〉〉{b}{y}

)
;〈〈y,0〉〉{a,b}{y}

•
(
〈〈a,0〉〉{a}{y};〈〈y,0〉〉{a}{y}

)
||
(
〈〈b,0〉〉{b}{y};〈〈y,0〉〉{b}{y}

)

The confluent choice operator insists that the languages
being combined are consistent. It is less obvious that the

11

third language is consistent with the first two, since the value
generated ony is different, but a simple case analysis shows
that it is: only when the environment provides both〈a,0〉 and
〈b,0〉 does the third language generate〈y,0〉. However, the
first two languages do not accept this pattern and therefore
do not generate any value ony, which is consistent.

Although only the third language explicitly says that
events must be consumed on botha andb, confluent choice
insists that exactly one event must be consumed on each
channel before the whole block terminates.

5.2 Completeness

We now establish that confluent choice and sequential pro-
cesses are expressive enough somehow.

WhateverI finite, O finite, I ∪O non-empty, andV count-
able non-empty, the setTIO is infinite and countable. Lett0
be the empty trace. For alln∈ (N\{0}), there exists a trace

tn = 〈c1
n,v

1
n〉 . . .〈c

|tn|
n ,v|tn|n 〉 ∈ TIO such thatTIO = {tn}n∈N.

Let L0 be theEIO. For all n ∈ (N \ {0}), let Ln be the

language〈〈c1
n,v

1
n〉〉IO; . . . ;〈〈c|tn|n ,v|tn|n 〉〉IO so thatLn is the lan-

guage of all prefixes oftn, thus the least confluent language
containingtn.

Theorem 9. If L ⊆ TIO then there exists S⊆N such that L=
{tn}n∈S. Moreover, if L is confluent then L is the confluent
choice of the set of languages{Ln}n∈S.

Proof. If L is confluent and containsLn for all n ∈ S then
their union is consistent and their confluent choice is well
defined. Let it beL′. To start withL′ ⊆ L sinceL′ is the least
confluent language containingTn for all n∈ S. Reciprocally,
for all n∈ S, tn ∈ Ln ⊆ L′. Hence,L ⊆ L′.

Every confluent language can be obtained as the conflu-
ent choice of a finite or infinite collection of sequential lan-
guages.

6 Conclusions

We have presented a characterization of confluent processes.
When these processes are combined, they guarantee the
overall behavior of the system—the number and sequence
of values communicated on each channel—is the same re-
gardless of local nondeterministic decisions made by each
process. Such behavior can model, for example, the differ-
ences in execution time that comes from different implemen-
tations.

Our key definition is that of a confluent process, which
behaves functionally: when placed in an environment char-
acterized by the sequence of inputs it is willing to provide
and the number of output events it is willing to accept, the
process will generate a unique number and sequence of out-
puts. By insisting that this is a function, our processes adhere
to the Kahn principle and guarantee overall system behavior.

Our main contribution is a series of operators that guar-
antee confluence and can be used to specify any confluent
process. In addition to proving that classical sequencing,

Kleene closure, and parallel composition preserve conflu-
ence, we introduce the confluent choice operator, which pro-
vides a way to deterministically merge both inputs and out-
puts and proves to be somehow fundamental for specifying
processes that cannot otherwise be specified by Kahn’s se-
quential language plus parallel composition.

Our goal in starting this work was to build the formal
underpinnings of a flexible language for describing delay-
insensitive hardware and software systems based on the
Kahn principle, but removing some of its drawbacks such
as undecidability and scheduling challenges. Our ongoing
work involves building a user-level language around these
primitives and incorporating them into a hardware/software
codesign environment that avoids many usual problems
in concurrent systems, such as races and nondeterminism
brought on by shared variables.

At a more theoretical level, we have observed that con-
fluent choice does not preserve regularity. Hence, we want
to further analyze confluence w.r.t. regularity, so as to guar-
antee both confluence and regularity and specify processes
both regular and confluent effectively.

References

[1] Gérard Berry and Georges Gonthier. The Esterel syn-
chronous programming language: Design, semantics,
implementation.Science of Computer Programming,
19(2):87–152, November 1992.

[2] Gérard Berry and Ellen Sentovich. An implementation
of constructive synchronous programs in POLIS.For-
mal Methods in System Design, 17(2):165–191, Octo-
ber 2000.

[3] Stephen A. Edwards and Olivier Tardieu. SHIM: A
deterministic model for heterogeneous embedded sys-
tems. InProceedings of the International Conference
on Embedded Software (Emsoft), pages 37–44, Jersey
City, New Jersey, September 2005.

[4] C. A. R. Hoare.Communicating Sequential Processes.
Prentice Hall, Upper Saddle River, New Jersey, 1985.

[5] Mark B. Josephs. Receptive process theory.Acta In-
formatica, 29(1):17–31, February 1992.

[6] Mark B. Josephs. An analysis of determinacy using
a trace-theoretic model of asynchronous circuits. In
Proceedings of the Ninth International Symposium on
Asynchronous Circuits and Systems (ASYNC), pages
121–130, Vancouver, BC, Canada, May 2003.

[7] Mark B. Josephs and Jan Tijmen Udding. An overview
of D-I algebra. InProceedings of the 26th Hawaii In-
ternational Conference on System Sciences, volume I,
pages 329–338, Hawaii, January 1993.

[8] Gilles Kahn. The semantics of a simple language
for parallel programming. InInformation Processing

12

74: Proceedings of IFIP Congress 74, pages 471–475,
Stockholm, Sweden, August 1974. North-Holland.

[9] Paul G. Lucassen.A Denotational Model and Com-
position Theorems for a Calculus of Delay-Insensitive
Specifications. PhD thesis, University of Groningen,
May 1994.

[10] Nancy Lynch and Eugene Stark. A proof of the Kahn
principle for Input/Output automata.Information and
Computation, 82(1):81–92, July 1989.

[11] Sharad Malik. Analysis of cyclic combinational cir-
cuits. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 13(7):950–956,
July 1994.

[12] Robin Milner. A Calculus of Communicating Sys-
tems, volume 92 ofLecture Notes in Computer Science.
Springer-Verlag, 1980.

[13] Robin Milner. Communication and Concurrency.
Prentice Hall, Upper Saddle River, New Jersey, 1989.

[14] Thomas M. Parks.Bounded Scheduling of Process Net-
works. PhD thesis, University of California, Berkeley,
1995. Available as UCB/ERL M95/105.

[15] Thomas Robert Shiple. Formal Analysis of Syn-
chronous Circuits. PhD thesis, University of Califor-
nia, Berkeley, October 1996. Memorandum UCB/ERL
M96/76.

[16] Scott F. Smith and Amy E. Zwarico. Correct compi-
lation of specifications to deterministic asynchronous
circuits. Formal Methods in System Design, 7(3):155–
226, November 1995.

[17] Jan Tijmen Udding. A formal model for defining and
classifying delay-insensitive circuits and systems.Dis-
tributed Computing, 1(4):197–204, 1986.

[18] Kees van Berkel. Handshake Circuits: An Asyn-
chronous Architecture for VLSI Programming. Cam-
bridge University Press, 1993.

[19] Kees van Berkel, Joep Kessels, Marly Roncken,
Ronald Raeijs, and Frits Schalij. The VLSI-
programming language Tangram and its translation
into handshake circuits. InProceedings of European
Design Automation (EDAC), pages 384–389, Amster-
dam, The Netherlands, February 1991.

[20] Kees van Berkel and Martin Rem. VLSI program-
ming of asynchronous circuits for low power. In
G. Birtwistle and A. Davis, editors,Asynchronous Dig-
ital Circuit Design, Workshops in Computing, pages
151–210. Springer-Verlag, 1995.

[21] Jan L. A. Van de Snepscheut.Trace Theory and VLSI
Design, volume 200 ofLecture Notes in Computer Sci-
ence. Springer-Verlag, 1985.

13

