Specifying Confluent Processes

Olivier Tardieu and Stephen A. Edwards
Columbia University
{tardieu,sedwards@cs.columbia.edu

Abstract bounded-length buffers make simple questions undecidable
We address the problem of specifying concurrent pro- SUch as whether a system terminates or whether it can be ex-

cesses that can make local nondeterministic decisions with cuted in bounded memory. This latter problem makes prac-
out affecting global system behavior—the sequence of tical scheduling of Kahn processes partlcularly difficad] .
events communicated along each inter-process communica@nd generally precludes a pure hardware implementation.
tion channel. Such nondeterminism can be used to cope with "€ solution is simple: restrict communication in Kahn to
unpredictable execution rates and communication delays. P& Synchronous or rendezvous-style (we proposed this else-

Our model resembles Kahn's, but does not include un- Where [3], but were not the first). Itis easy to show that this
bounded buffered communication, so it is much simpler to restriction does not interfere with Kahn's principle of g&
reason about and implement. After formally characteriz- determlnlsm. Furth_ermore, bounded buffers are easily re-
ing these so-called confluent processes, we propose a col€0vered by introducing buffer processes.

lection of operators, including sequencing, parallel, end The second problem is that the parallel composition of
own creation, confluent choice, that guarantee confluence bytwo processes cannot be represented as a sequential process
construction. A trivial example of this is the “two wires” process in Fig-

The result is a set of primitive constructs that form the ure 1, which simply copies its first input to its first output
formal basis of a concurrent programming language for both and its second input to its second output. Because a sequen-
hardware and software systems that gives deterministic be-tial process is forced to block on exactly one of its inputa at
havior regardless of the relative execution rates of the pro time, an environment that, for instance, supplies data en th
cesses. Such a language greatly simplifies the verificationother channel only causes an deadlock. Again, the solution
task because any correct implementation of such a systems straightforward: include instruction-level parall@ropo-
is guaranteed to have the same behavior, a property rarelysition in the language.

found in concurrent programming environments. The third problem—the main one we address here—is
1 Introduction that there are interesting processes that fit within Kahn's

We propose a formalism for specifying asynchronous, con- framework (i.e., _that produce unique 9'°b_"’T' behavior) yet
cannot be described as a parallel composition of sequential

current processes that, when connected, produce a global be : L

havior that is independent of their relative execution sate brocesses, _Nhatever the inter-process synchronlzatkns.

We want such a model for specifying distributed embedded the end of his }974 p:aper [8],'Kahn describes one such pro-

systems composed of communicating hardware and soft-“%% dubbeq warn, that emits an event as soon as there is
an event available on either of the process’s two inputs-chan

ware. o .
nels. Parallel compositions of sequential processes tanno

In an earlier work [3], we argued for a version of ! . .
Kahn's influential model of dataflow processes [8]. Kahn'’s perform such merging, yet such a process is well-behaved in
' Kahn’s sense.

processes communicate exclusively through single-sender
single-receiver channels—unbounded-length FIFOs—and Figure 2 shows another interesting process that cannot be
are specified using a sequential, imperative language thatdescribed as a parallel composition of sequential prosesse
blocks when it reads from an empty FIFO. Kahn showed & constructiveor gate. Its input channetsandb and output
that networks of such processes behave deterministically,channely convey Boolean values. A 1 value is sentyn
i.e., that the sequence of data values transferred over anyaS Soon as a 1 has been seen on eiherb, otherwise 0
given channel is consistent across all scheduling polaies IS sent. To make the process well-behaved, however, both
process execution rates. In fact, Kahn established thjs-pro INPuts must be supplied before the gate can compute its next
erty for a much larger class of processes—continuous func- Output. This eliminates the possibility of a race.
tions from input histories to output histories—but provided Figure 2b is an automaton for the constructe gate.
no programming language for the specification of such pro- From the initial state (in the center), the process is wgllia
cesses. receive on either tha or b channels. If the process receives
We find three difficulties with Kahn’s model. First, itsun- a0 on either channel, it goes to a state where it is waiting for

they stabilize for all possible delay assignments (in hés th
sis, Shiple [15] showed that constructive simulation answe
this question exactly). The behavior of our processes is, by
definition, guaranteed to be the same for any delay behavior.

Others have considered simulating constructive logic in
an asynchronous setting. Berry and Sentovich [2] propose
a technique for simulating the Esterel language [1], which
requires constructive gate evaluation. A similar techaiqu
Figure 1: A process that cannot be specified using Kahn’s would work in our model of computation, but ours has the
blocking-read rule: two input channels that copy theirealu advantage of guaranteeing the overall behavior is determin
to two output channels. (It can be specified with a pair of stic, regardless of the choice of processes; Berry and Sen-
concurrent processes.) tovich had to choose their processes carefully.

Although it is always possible to write an automaton for
a process like the constructiar gate, not all automata are
well-behaved in Kahn's sense. ltis fairly easy, in fact,éo-p
L<a’ O>ﬂ> al turb Figure 2 and break its determinism (e.g., change®

to (y,0)). The regularity of Figure 2—a consequence of

it being well-behaved—also suggests that higher-level con-
structs are appropriate.

1.1 A Roadmap

Our goal is a practical formalism for the specification of
confluent processes, i.e., those that, when combined, pro-
duce the same sequence of data values through each com-
munication channel regardless of any internal nondetermin
istic choices a process makes. Such choices abstractlyimode
implementation-dependent behavior such as execution time
and scheduling policy.

Our processes are objects that consume and produce
atomic events provided and accepted by their environ-
Figure 2: (a) A constructiveRr gate and (b) an automaton ment. Inter-process communication is performed using ren-
for it. The initial state is in the center. A label such(@s0) dezvous, i.e., both processes must agree on when data trans-
indicates a 0 is communicated on charmeThis drawingis ~ fer occurs and no buffering occurs. This assumption of no
arranged so that the direction an arc leaves its state iregica buffers is one of the big differences between our formal-
the type of event, e.g., moving up always means receiving 1ism and Kahn’'s—by making this assumption, the schedul-
onb. ing problem is much easier for our processes and it opens the

possibility of pure hardware implementations. Bufferiragc

be recovered, however, by introducing buffering processes
an input on the other channel, since the output cannot yet beajong channels.
established. By contrast, if the process receives a 1 oareith \e characterize the behavior of processes and systems us-
channel, it goes to one of the two states where it can eithering traces [21]—sets of finite sequences taken from an al-
receive a value on the other channel or emit a yoSuch phabet of events. We use traces because they are somehow
a choice may be dictated by the environment (e.g., it is not pperational and because they allow us to sidestep the issue
yet ready for an event oy), or by the process itself (e.g., of equivalent states. Events may convey data, but we always
the computation of the output may still be ongoing when the treat them as atomic.
other input event arrives). We first define confluent processes (Section 3). The fun-

Kahn can represent a strict version of this process @.e., damental idea (Definition 3) is that a confluent process re-
andb are both required beforgis produced) or an asym- sponds with the same sequence of events on each output

(@)

metric version @ is always read first, then eithgiis written channel when placed in a particular environment, but that

orbis read depending on the valuea)f but not the process the interleaving of events on different channels is irratay

we have described. Furthermore, the number of input events actually consumed
An implication of being able to compute such construc- from the environment is also consistent in this way.

tive functions is the ability to simulate cyclic combinatad This is a functional characterization in that the resporise o

circuits [11]. Since our model is based on an assumption of a process (Definition 1) is a function of its environment (Def

delay-insensitivity, it is not surprising that we are aldeor- inition 2), which we characterize as a number and sequence

rectly analyze networks of logic gates and answer whether of input events and opportunities for output events. That th

response is a function (Theorem 1) guarantees our processewith modeling a large class of systems rather than proposing
are delay-insensitive, essentially a case of the Kahn iprinc restrictions that give global properties. For example,-Mil
ple. ner explains that he began his work after discovering how
Importantly, our characterization of a process, which de- difficult it was to describe the semantics of concurrent pro-
fines behavior for all environments, can enforce sequencing gramming languages with shared variables [13, preface]. As

Say we want a process to eraibefore it emitsh. By insist- a result, both frameworks include nondeterministic choice
ing that the process does not genetai¢hen presented with as a primitive operator and provide none of the determinism
no opportunity to generate we prescribe this behavior. guarantees inherent in our model.

From the definition of confluent processes, we derive four ~ Milner did consider the question of determinacy and con-
properties about their execution (Section 4). The first prop fluence [12, chap. 10], but proposed a fairly limited subset
erty (Lemma 3) says that the order in which events are con- of ccsthat did not address data values.
sumed and produced cannot affect future behavior (although2.2 Asynchronous Hardware

their values can). Lemmas 4 and 5 say that once a Com-The asynchronous digital hardware community has long
munication event is possible, subsequent events on distinc grappled with the problem of building delay-insensitive-sy
channels cannot disable this event. Hence, it may take plac§ems. Concerned mostly with the behavior of digital logic
now or later. For example, if a confluent process can emit a gates, their models are necessarily lower-level than tfase
certain output at a particular point, it must eventually do s goftware.

i.e., the output cannot be suppressed by, say, an additional yqding’s classification of delay-insensitive behavior][17
input. The last property (Lemma 6) tell us that output events \yas one of the first to provide a formal characterization of
can be postponed, but that their values may not be affectedyrocesses that are deterministic in the same sense as ours.

by such a de!ay. . He defines a series of properties on traces (following Van de
Together, it turns out that these four properties exactly snepscheut's thesis work [21], which we were also inspired
characterize any confluent process (Theorem 3). by) that amount to saying that changes in the order in which

In Section 5, we propose several language-level con- events arrive somehow cannot affect long-term behavior. As
structs, including sequencing, Kleene closure, and m@rall s appropriate for gate-level behavior, Udding only coesid
composition, that guarantee confluence and are somehowphyre events (i.e., voltage transitions) and thus models dat
complete, i.e., any confluent process is the result on a poten only as interaction order. Delay-insensitive algebra [9, 7
tially infinite number of confluent choices between simple which discussessrlike processes, derived from this work.
Sequential processes. These allow us to SUCCinCtly and cor- Josephs’s deterministic receptive processes [6], a subset
rectly specify confluent processes such as the constructiveof his receptive processes [5], share much with our model,
OR gate in Figure 2. but also differ significantly. Like Udding, Josephs only mod
2 Related Work els pure events, not data. Similarly, Josephs uses a séries o
axioms like Udding’s to characterize processes; we are able
to derive roughly the same properties from a single axiom
t('i.e., that a process behaves functionally: the same anviro
ment will produce the same behavior), suggesting that our
definition is somehow more fundamental.

Berkel [18, 19, 20] proposed using a library of delay-
2.1 Concurrent Software insensitive processes (more precisely, handshake @)doit
Kahn's seminal paper [8] is the cornerstone for our work, implement an imperative, sequential language. As in our
but as we explained earlier, we do not adopt it because it M0del, the detailed behavior of the system may vary be-
demands unbounded buffers and Kahn’s simple sequentialc@use of differing delays_, but the .overall system behavior
language cannot describe a number of useful confluent pro-i1S guaranteed to be consistent. This approach has also been
cesses. followed by others, such as Smith and Zwarico [16].

Lynch’s I/0 automata were also an inspiration, but Lynch 3 Confluent Processes
also assumes unbounded buffering, although she does so bpur systems resemble Kahn’s: a group of concurrently-
insisting that processes are always receptive to all inputs running processes that communicate data tokens through
Lynch and Stark [10] define a deterministic subset of pro- single-sender, single-receiver channels. The topologhef
cesses that are very similar to ours and show that, whenprocesses and channels are fixed before the system starts
combined, they produce a deterministic system for the samerunning. Unlike Kahn, however, our processes communicate
reasons as Kahn, but do not suggest how to construct suchin acsrlike rendezvous style, meaning that both sender and
automata. receiver must agree on when data is to be exchanged. As

The process calculi of Hoare [4E6P and Milner [12] mentioned earlier, this means communication in our model
(ccg are concerned primarily with whether two concurrent does not introduce unboundedness. Combining our pro-
processes have the same behavior. They are concerned moreesses, provided they are bounded, gives a bounded system.

The problem of modeling and specifying delay-independent
concurrent processes has been addressed in both the sof
ware and the hardware communities. Each groups’ focus is
slightly different because of the physical constraintsanth
ware; this has lead to different techniques.

We focus on characterizing the behavior of a sin- O={y},Co ={ab,y}, andVv ={0,1}.
gle process in some environment that consists of other An element of the sé¥lo = Cio x V denotes anessage
concurrently-running processes. Our model is abstract in (c,v) of value vcarried onchannel ¢ The elements ofio =
that we do not model the inner workings of a process, only its (Mo)* are calledraces In the sequel is constant whereas
interaction with its environment, i.e., the sequence of com | andO may vary, hence the subscript notation.
munication events it attempts to engage in. Traces represent possible execution sequences of our pro-
We want to provide some flexibility in how our systems cesses. The tragd, 1)(a,1)(y,1)(a,1){b,0)(y,1) is a valid
are implemented. Specifically, we do not want to have to one for Figure 2 (because there is such a path) whereas
precisely control the relative execution rates of our psses (y,0)(y, 1) is not (the specification requires the first event to
or the time taken by each communication event, but we do be ona or b).
want to be able to describe causal relationships, e.g.athat
event on channdd occurs only after the event on chanmeel
has completed.
Our goal is to ensure the behavior of the overall system

Definition 1 (History). Thehistory of a trace te Tjo is the
functiont : C,o — V* that maps each channel c to the se-
guence of values carried on cin t:

is the same for any choice of relative execution rates. Pre- £(c) €
cisely, we guarantee that the number and sequence of data cwt(c) = V()
values communicated over each channel is the same in any [dwtlc) = f(c) ifc#d

valid implementation of our systems, but our assumption of
uncontrolled execution rates implies that we do not comside The history of a trace preserves the number and order of
the interleaving of events on distinct channels. messages on each channel (including values), but discards
We describe process behavior using traces because theynformation about the interleaving of messages on differen
are operational and natural for describing the sequergial n channels. This is exactly our notion of delay-insensiivit
ture of both hardware and software—our target implementa- later, we will insist that a process must respond with a uaiqu
tion media. history when placed in a particular environment.
Most of the machinery below attempts to characterize our The history of a particular trace from Figure 2 is
notion of delay-independence on the delay-sensitive model

of traces. For example, our definition of histories removes (b, 1)(a,1)(y,1){(a 1)(b,0)(y, 1)(a) =11
the relative order of events on different channels, siryijar (b,1)(a,1){y, 1)(a 1)(b,0)(y, 1)(b) =10 .
our definition of environment characterizes what a process (b,1)(a,1)(y,1)(a,1)(b,0)(y, 1)(y) =11

“sees” of its environment—sequences of input values and

opportunities for output events, We denoteH|o the set of histories, i.e., the set of all func-

L . _tions fromCip to V*. Forh,h’ € Hio, we defineh C K iff
Our definition of processes leads to a functional charac Ve € Co : h(c) C W(c). In addition, we definéill as the

terization that is similar to Kahn’s [8], but differs in orm1 e) = ,
portant respect: Kahn assumes the environment of a procesgunCtlon inHio such that/c € Cio : htT(c) = h(c)i(c). The

is always willing to accept additional data—a side-effect projectiont — t is monotonic and distributes over concate-

H . !/ 1t Ft/
of his assumption of unbounded buffers—whereas we pre- naf;?ﬂ{t\icé: ehTE)H’tfﬂg;r:s. thah could evolve intdY. For
scribe exactly how much data the environment of a process Y= '

is willing to consume. example, if

h(a)=1 W(a)=1 hh(a)=11
Sequences For a non-empty alphabe¥, A* denotes the h(b)=0 and W (b)=01 thenhCh and hHh(b)=001 .
set of allfinite-length sequencesf elements ofA, includ- h(y)=1 h(y)=11 hH (y) =111
ing theempty sequenceavhich is denoted bg. Concatena- (1)

tion of sequences is denoted by juxtaposition. We consider
the usualprefix partial orderingC on sequences. For a se-
guences € A*, we denotgs| € N thelengthof s. For a sub-
setSC A*, we say the sequeneec Sis maximal in Siff

Vs €S:sCS =s=¢.

Definition 2 (Environment) An element of B = (I —
V*) x (O — N) is an environment An environment pro-
vides available input sequences and available output slots
Ife=(e,eo0) € Ejo, we write €c) for either g(c) ifc € | or

eo(c) if c € O.
Channels, Messages, TracesLetV be a non-empty count- One possible environment for the process in Figure 2 is
able set oflata valueslet | be a finite set oinput channels e(a)=010 (asequence of O's and 1's)
letO be a flmte sefc (_)b_utput channelsWe requirel, O, and e(b)=1000 (a sequence of 0's and 1's)
V to be pairwise disjoint and the set of chanr@ls =100 e(y) =5 (an integer)

to be non-empty.
For the or example in Figure 2, which we will use as This environment is willing to supply three events an0,
a running example to illustrate our definitioris= {a,b}, then 1, then 0, the four-event sequence 100Moand is

; For the tracd = (b, 1)(a,0)(y,1)(b,0)(a,1)(y,1){(a,0),
'”pUtStreanﬁconsumed ﬁrStoutputsIotS (b,1)(a,0)(y,1){b,0)(a, 1){y, 1){a, 0)

e . e(a)=011 f(a)=010 f(a)=010
% bDy CIE] e(b)igl f(b)=10 and f(b)=10
e(y) - f()/) -11 f(y) =2

Figure 3: The constructiver gate of Figure 2 placed in an
environment that provides the sequence 011 on iapthe
sequence 01 on inpdt, and will accept four values on
The process will respond by consuming all the inputs and)
produce the sequence 011 on the output, leaving one of theConfluent Languages LetL C Tio be asetof traces, i.e., a
output slots unused. Note that the first value in each input language Fort € L ande< Ejo, we say that saturates e in L
stream is written on the right, the opposite of the conventio and writet[L|eiff t complies witheandvt’ e L:t Ct' At/ C
for sequences. e=t=t/, thatis to say ift is maximal in{t' e L : t' C e}.

In generalt[L|r does not implyf = ebut onlyf C e. That
is, a process may engage in no more events than the environ-
ment allows, but the process may end up performing fewer.

We introduce the notion of saturation to distinguish a tran-
sient state of a process (i.e., one in which additional commu
nication is pending) from a quiescent one. Ultimately, we
want any process, when placed in a particular environment,
to only have one behavior (i.e., produce a single histonyf), b
while a process is running it will pass through other, lesser
histories. However, we are only concerned with the final
outcome—exactly the saturating traces.

Consider a small subset of the traces generated bgthe
example in Figure 2 and two environmesmtande’:

As always, bothe andt itself comply withf, but also
(a,0), (b,1)(a,0)(a,1)(y,1), and many others.

willing to accept up to 5 events on tyeutput channel. See
Figure 3 for a graphical depiction of another environment.

Fore € € E o, we definee C € iff Vcel :e(c) C€(c)and
vce O:e(c) < €(c). We say thag, € € E o arecompatible
and writee < € iff 3s€ Ejo : eC sA€ C s. In addition, we
definee€ as the function irE ;o such thatvc € | : e€(c) =
e(c)é(c) andvce O: eé(c) = e(c) +€(c).

As for histories,e C € means that inputs and output slots
can be added to the environmento givee. Whene < €,
nothing ine is incompatible withe’ and vice versa, so it is
possible to find an environment that has more behavior than
each. In general, this requires eitteéc) C €(c) or €(c) C
e(c) for eachc.

Consider the environments EE: B 1) e(a)=0 €(a)=01
ea)=010 €(a)=01011 €&'(a)=0 L=1 b.1)(a,0)) e<b)f(1) and Z’(b)fil-
e(b)—=1000, €/(b)—10000 and € (b)—10000111. (b.1)(a,0)y1) | Y=)=

e(y) =5 éy)=7 e(y) =4 ,
We have(b, 1)(a,0) [L |e because there is no trace that ex-
We havee C € because 01@ 01011, 1000= 10000, and tends(b,1)(a,0) in L that still complies withe. Note that

5<7,i.e.,ecan be extended to becorde Althoughe’ Z ¢’ although(b, 1) (a,0)(y, 1) extends this trace, it does not com-

ande’ IZ €, & =< € because the environment ply with e, which does not allow any events gnThe trace
s(a)=01011 (p, 1) dogs not saturatein L because it can be extended to
s(b)=10000111 (is a prefix of)(b,1)(a,0) € L.
sy)=7 Because? allows up to 7y events,(b,1)(a,0) does not

saturate? in L, but we do haveb,1)(a,0)(y,1)[L|€. Note
satisfies C sande’ C s. that no trace in this small includes the 2a events, 2b
For h € Hio, we defineh as the function irE;o such that events, and y events allowed by the environment.
vce | :h(c) = h(c) andVc € O: h(c) = |h(c)|. The pro- That we were able to find longer traces that did saturate

jectionh— h abstracts output channel values, only retaining these environments starting from shorter, compliant sase
the number of values per output channel. It is monotonic and no accident, as the following lemma shows:
distributes over concatenation.

Projecting the histories in (1) gives the environments Lemma 1. IfL C Tio, t €L, e Ejo, and t compiles with e

then there exists & L such that t_ t’ and t saturates e in

h(@=1 H(a)=1 hi(a)=11 L.
h(b)=0, K(b)=01 and hH(b)=001 . .)
hy)=1 H(y)=2 R (y) =3 Proof. By contradiction. Ift does not saturatein L, there
must exist &’ complying withein L such that Ct’ andt’
If t € Tio thent € Ho, thust € Ejo. Intuitively, T ex- t. By hypothesist’ does not saturatein L. By induction,
presses the resources consumed.byVe say that € Tio starting fromt, there exists i a strictly increasing chain of
complies withthe environmene € Eq iff { C e. traces compliant witle. Contradiction. O

Definition 3 (Confluent language)The language IC Tio (a,0)(b,1)(y,1)[L e, and
is confluentiff it is non-empty prefix-closed and, for all

e € Eo, all traces saturating e in L have the same history: (b,1)(a,0)(y,1)(a)=(a,0)(b,1)(y,1)(a)=0
Vec Eo,Vt,t’ eL:t[L|ent'[Lle=T=t". (b,1){(a,0)(y,1)(b)=(a,0) (b, 1)(y,1)(b)=1
(b,1)(a,0){y, 1)(y) = (& 0) (b, 1)y, 1)(y) =1

Intuitively, a confluent process, when placed in a partic-
ular environment, will always do the same thing, i.e., pro- Again, two traces saturatee in L/, i.e.,
duce and consume the same number (and values) of eventgp, 1)(a,0)(y,1)[L'|e and (a,0)(b,1)(y,0)[L’|e, how-
on each channel. The prefix-closed restriction simply guar- ever, (b,1)(a,0)(y,1)(y) = 1 and (a,0)(b,1){y,0)(y) = O.

antees that the process can proceed by single communicationntuitively, L’ is not confluent because it produces a different
events. As mentioned above, we restrict our considerationt value ony depending on the order in which it sees the same

saturating traces since a process passes through many intelayents ora andb.
mediate states while completing its behavior. In a confluent language, the order of inputs on different

That the confluence restriction considers all possible en- channels may not suppress outputs, but their values may.
vironments lets us recover sequencing. For a particular en-Consider

vironment, the confluence restriction says nothing abagit th
order of events on different channels, suggesting that,asay € €

process that must emit on chanadefore emitting on chan- (b,1) (b,1)
nel b could not be specified. However, by saying thatinan L=14 (b;1){(a,0) andL’= ¢ (b,1)(a,0)
environment where only a communication bris allowed (b,1)(a,0)(y, 1) (b,1){a,0)(y, 1)
that the process will do nothing, such sequential behavior (b,0) (a,0)
can be recovered. . .

We call our processes confluent for the following reason. in the environments
Consider an environmemtand a trace from the language e(a)=0 €(a)=0
that does not saturate Such a trace corresponds to the be- e(b)=1 and €(b)=0 .
havior of a process that has not yet done all it caa iNow, ey)=1 g(y)=1
there may be two or more saturating traces, tsaydt” that
comply witheand extend, i.e.,t’[L |eandt”[L|ewitht Ct’ It turns outL is confluent but that’ is not. InL,
andt C t”. Intuitively, this means the process has a choice only one trace,(b,1)(a,0)(y,1) saturatese and one trace,
of what to do aftet. (b,0) saturates®. However, inL’, both (b,1)(a, 0){y,1)

Our definition of confluence insists that the histories of and (a,0) saturatee, and they have different histories:
these two traces are the same, it~ t”, i.e., that even (b,1)(a,0)(y,1)(y) = 1 yet(a,0)(y) = ¢.
though the process had a choice of what to do dftidwat
it ultimately produce the same behavior, i.e., consumes thegenayiors We now formally establish that the response of
same number of inputs and produces the same number ang confluent process is a function of its environment.
value of outputs. This is a diamond-like confluence prop-
erty: having a choice ultimately does not matter: the behav- Theorem 1. If L is confluent then for all & Ejo, the set

ior must be the same in the end. {heHpo: 3t eTo:t=hAt[L|e} is a singleton, which
Consider the languages we denotd.(e). We say the functioh : Ejo — Hio is the
behaviorof the confluent language L.
£ €
(b, 1) (b, 1) Proof. By definition of confluent languages, this set is at
(b, 1)(a,0) (b, 1)(a,0) most a singleton. By Lemma 1 applied to the empty trace,
L=} (b1)(a0)(y1) pandl'={ (b1)(a0)(y1) . hissetisnon-empty. =
(2, 8> b1 <a,8) b1 In other words, the communications of a confluent process
(2, O> <b’ 1> 1 (a, 0> <b, 1> 0 in a deterministic environment are deterministic in thesgen
(2,0)(b, 1)y, 1 (.0){b, 1){y,0) that the sequence of values exchanged on each channel is

deterministic, regardless of local nondeterministic chei
made by the process.
Moreover, behaviors characterize confluent languages.

Both L andL’ are non-empty and prefix-closed, but only
L is confluent. To see why, consider the environment

e(@)=0 Theorem 2. If L1,L2 C Tio are confluent and {# L then
e(b)=1. L1 # La.
e(y)=1

Proof. There exist$ € Tip such that € L andt ¢ L, or vice
In L, two traces saturate i.e., (b,1)(a,0)(y,1)[L]e and versa. Let’ be the largest prefix dfcontained ir_,. There

existsm € Mo such that’'mLC t. Hence,t’meljﬁ and
t'[Lo|t/m. As a result; (ﬁ) — t/mwheread, (ﬁ)
t.

O

The following lemma states that if at some point a process
can either emit or receive an evelatv), then if the process
can do anything else at that same point, it must be able to
emit or receive(c,v) in the future. Colloquially, communi-

Confluent processes can be equivalently specified usingCation is “sticky.”
confluent languages or behaviors, as convenient. Not every| o\ 4 | tcv) e L, t € L, and U(c) = ¢ then

function from E,o to H,o, however, encodes the behavior

of a confluent process as behaviors have many distinctive

properties.
Lemma 2. If L is confluent then:
e Lis monotonicve € € Ejp:eC € = L(e) CTL(¢).

o Lis reductive:vee Ep : L(e) Ce.

o Lisidempotentvec Eo : L (L(e)) =L(e).

Proof. If eC € andt[L|e thenf C €, thus, by Lemma 1,
there exists’ € Tio such that Ct’ andt’'[L |€. In particular,
fCt, thatis to say (e) C L(¢).

If t[L]ethent C eandi(e) =, sol(e) C e

vt e L:t[L]t. Inparticular, ift[L|ethent[L |t. Therefore,
t(t(e)) =L (f) —t=0(e). O

While behaviors resemble Kahn’s continuous functions
from input histories to output histories, they differ sifyni

icantly. Our model relies on synchronous communications.

Thus, first, behaviors take into account the environmerit wil

tt’(c,v) € L.

Proof. t' tt’(c,v) andt(c,v) C t{c,v)t’ = tt’(c,v) since
t’(c) = . By Lemma 1, there exigt’ andt” € Tio such
thattt't”[L |tt’(c,v) andt{c,v)t"'[L]tt’(c,v). By confluence,
tt't” = t{c,v)t”’, hencet” = (c,v). As a resulitt’(c,v) €
L. O

The following lemma refines this notion further: if a com-
munication event can be postponed as Lemma 4 allows, then
it does not affect the future.

Lemma 5. If t{c,v) € L, tt’(c,v)t” € L, andt/(c) = € then
t(c,v)t't” e L.

Proof. By induction on the length af. Obvious itt’ = ¢.
Otherwise, there exidd € Cio, w €V, andt” € T such
thatt’ = (d,w)t”’, d # ¢, andt”(c) = . By Lemma 4,
t(d,w){(c,v) € Landt(c,v)(d,w) € L. By induction hypothe-
sis,t(d,w)(c,v)t""t"” € L. By Lemma 3{(c,v)(d,w)t"t" € L
that is to sayt(c,wWt't” € L. O

ingness to receive output events; second, behaviors report This next lemma says that the sequence of data values
the actual sequences of input events they consume. AlsoWwritten on a particular channel is not affected by delays, an
while behaviors are concerned with finite sequences only, important component of our delay-insensitive philosophy.

Kahn considers both finite and infinite sequences.

which we established in a previous work [3].
4 Properties of Confluent Languages

The following four properties hold for any confluent lan-
guagel C Tjo. We introduce them to simplify later proofs

and to provide more intuition about how confluent languages

behave.
It turns out that these four propertiezactlycharacterize

This,
however, is a technical issue of no practical consequence,

Lemma 6. Ift(c,v) € L, tt'{c,w) € L, t/(c) = &, and cc O
then v=w.

Proof. t(c,v) C tt’(c,w) sincec € O. By Lemma 1, there

existst” € Tio such that(c,v)t”[L]tt’(c,w). By confluence,
t(c,w)t"” =tt’(c,w), which impliesv = w. O

The following theorem shows that together, the properties
in Lemmas 3-6 exactly characterize confluent languages.

confluent languages, i.e., any language that has these propAmong other things, this means we could instead have taken

erties (in addition to being non-empty and prefix-closed) is
confluent. We prove this below (Theorem 3).

the properties in Lemmas 3-6 as the definition of a confluent
language and from there derived our notions of compliance,

If a confluent process can consume and produce some sehistories, and so forth. Josephs [6] takes this approach. We
quence of events on its channels, then the order in which it chose to start with our functional characterization of confl

did so is irrelevant in the future. The following lemma for-
malizes this:

Lemma 3. Iftt’ € L, t” € L, andf =t” then f't’ € L.

Proof. By induction on the length of. Obvious ift’ = ¢.
Otherwise, there exisin € Mg andt” € Tjo such that
t’ =t”’m. By induction hypothesig;'t” € L. By Lemma 1,
there existst”” € Tio such thatt”t”t””[L|t"t"’m. Since
tt”’/m[L|t"t"’m, by confluencet”t"t"” = tt"’/m. Hence,
t” = mandt"t’ € L. O

ence because it more closely resembles Kahn’s approach and
is easier to state.

Theorem 3. The language IC To is confluent if it is non-
empty, prefix-closed, and obeys Lemmas 3 to 6.

Proof. Let us choosee € Eo, t3,t2 saturatinge in L and
provef; =t,. We can assumig; | < |t2].
For 0< n < |t1], we establish by induction omthe prop-
ertyP(n) =3to,t3 €L : [to| = nAtg Cti Atg Cta AT =T3.
P(0) is obtained by choosing = ¢ andtz = t.

For n such that 0< n < [t], let us assum@(n), i.e., let
to,t3 € L be such thattp| = n, to C t1, to C t3, andf; =13.
There existc,d € Cio, v,W € V, t],t5 € Tio such that; =
to(c,V)t; andtz = to(d,w)t3. If (c,v) = (d,w) thenP(n+
1) holds. We now assumé&,v) # (d,w) and definet]
(d,wtg.

Sincefz =, andt,[L |e, we havets[L |eby Lemma 3. By
Lemma 4, ift](c) = & thentz(c,v) € L, which contradicts
ts[L]e. Hence,tj(c) # €. In other words, there exist €
V andx,y € Tio such that? = x(c,u)y with X(c) = €. By
Lemma 6, ifc € O thenu =v. Otherwise, ifc € | then
to(c,v) C eandtox(c,u) C ewith X(c) = €, sou=v. Hence,
u=vin all cases.

By Lemma 5,to(c,v)xy € L. Moreover,to(c,v)xy =13 =
f2, which concludes the proof &f(n+1).

Forn = [ty], P(n) reduces tadtz € L 1ty Cta3 ATy =Ta.
In particular,f3 C e. Sincet;[L|r, this impliest; =t3. To
concludef; =tz =1. O

5 Language Constructs
To this point, we have only characterized confluent lan-

Sequence The sequential composition;tL, of the lan-
guaged.;, L, C Tio is defined as follows:

Lemma 7. The “;” operator is associative:vL1,Lp, L3 C

Tio : (L1;L2);Ls = La; (L2; Lg).
Proof. See Van de Snepscheut [21].

dt; €Ly
dt, € Ly

t=t1to

telylos { (tzmaximal inLy) V (t2 = €)

O

Theorem 4. If L1 and Ly are confluent then{; L is conflu-
ent.

Proof. Ly;L, is non-empty and prefix-closed. Let us sup-
posetyt, andtjt; saturatee € Ejp in L1;Lo with t1,t] € Ly
andty, t) € Lo.

If tp # € thenty is maximal inLy, thusty[Lije. Ift,=¢
thent; is maximal in{t € Ly;L, : T C e}, thusty[Lse. In
any casefi[Li]e and similarlyt;[L1|e so thatf; = t; by
confluence of.;.

If t; is maximal inL; butt] is not then there exists# €

suchthatiteL;. Asa resulttl(Lljﬁ andt;t [Lljﬁ. Since

guages, but have not provided a practical way to constructLa is confluent,f; = tjt. Contradiction. Therefore, either

them. In this section, we provide a series of operators for
building languages that guarantee confluent behavior.

We construct confluent languages starting with pure
events and combining them sequentially (;), through rep-
etition (Kleenet), in parallel (|), and through “confluent
choice” (). Each of these constructs is confluence-closed
(i.e., combining two confluent languages with any of these
operators gives a confluent language). Furthermore, theey ar

botht; andt; are maximal irL; or neither is.
In the first case, both andt) saturate? in L, where€' €
Eio is such thae=T€. Sincel; is confluentf; =t}. In the
second casé; = € =t5, which impliest; = g as well.
To concludefif; = tjt5. HenceLy; Ly is confluent.

O

The next construct is the obvious infinite extension of se-
guencing: Kleene’s operator. It simply restarts whenever

complete in the sense that they can be used to construct any- terminates.

confluent language.

We propose these operators as the building blocks of aKleene Closure For L C Tio, we define(L")n>1 by in-

more user-friendly language for specifying confluent pro-

duction onn: L1 =1L, vyn>1:L"1 =L"L. We define

cesses. A practical language would also include constructsL* = | J-4 L".
such as variables, conditional statements, scoping, and sq

forth; we will address this in future work.

Empty Trace We start with the most basic language.
Whatever andO, we define the languagéo = {€} C Tio.

Message For (c,v) € Mo, we denot€(c,v)),q the conflu-
ent languagée, (c,v)} C Tio.

Theorem 5. If L is confluent then tis confluent.

Proof. L1 CL?C-.-CL"C--- CL* Ift[L* |eandt’[L*|e
then there exists > 1 such that € L" andt’ € L". Therefore,
t[L"Je andt’[L"|e. By Theorem 4" is confluent, thus
t=t. O

The next construct—the restriction operator—hides
events on output channels, which is useful to hide inter-

This language expresses the willingness to engage in aprocess communications. Indeed, we shall see later that
single communication. Because confluent languages mustinter-process communication channels in a network of pro-
be prefix-closed, this language includes the empty teace cesses (assembled by means of parallel compositions and

The next construct is the familiar sequencing operator on confluent choices) can be observed by the environment with-
traces. The only technical point here is that in in the con- out harm, i.e., are by default treated as output channekseof t
structLq; L, we wantL, to start only aftel.; has “termi- network. On the other hand, a similar operator that hid in-
nated” [21]. We say.1 has terminated when it has reached puts would not be confluent.

a maximal trace, i.e., a point at which the process cannot We start with the restriction of traces w.r.t. both inputslan
engage in any more communication. As a result, the sequen-outputs as this will be useful for defining the parallel oper-
tial composition differs from the concatenation of langegg ator, then define the restriction of languages w.r.t. owtput
which typically does not preserve confluence. only.

Restriction Forl’ ClUuOandO’ C Osuchthat’'uQ’ #0
andl’N O’ = 0, we define theestrictionof the trace € T
to Channels:yo/ as the trace‘yo/ - T|/012

€
(ev)(tlvo)
tlro

Ero =
((evt)liro

(evtlro

Note that an output channel may be turned into an input
channel in the process (as required for the parallel composi
tion).

Restrictions of histories and environments can be simi-
larly defined. Restriction commutes with projections (from

if ce CVO’
if c % C|’O’

a— L . d a d
b—| L1 [~ f L1
b } f
e—[-9
b—| Ly [—f Lo g
C— — h [h
(@) (b)

Figure 4: (a) Two confluent processes with their inputs and
outputs. (b) The result of combining them in parallel or with

traces to histories and from histories to environments) and confluent choice; the behavior of the split and merge opera-

distributes over concatenation.

ForO' C Oandl UQ' # 0, therestriction Uy C Tjor of the
languagd. C To to the set of output channe® is defined
byt eljg & Jtel:t' =t|o.

Theorem 6. If L C To is confluent, OC O, and IUOQ' #£ 0
then Uy is confluent.

Proof. If t][L|o]€ andt;[L|x]€ for some€ € Eo then
there existy, t; € L such that] =t1],or andt), =ts|,or. More-
over,f; < f; sincet; andt, may only differ on output mes-
sages. As aresult, there exists E|p suchthat; Ce i, C e,
ande = e],o. Hence, there exisf,t € L such thatyt{[L |e
andtstj[L]e. By confluence of, we obtaintit] = tt},
which impliest; (t/],o/) = t5(t5]i0). Sincetst{|or C € and
tt) o C €, we have alsd}| o = € = t5],o.. Therefore,
=1 O

We now come to the two key constructs for com-
posing confluent processes. The first construct—parallel

composition—interleaves the execution of two processes

tors (the triangular objects) distinguishes the operatbrs
putbis shared, as is outpat Inputse andg are connected to
the identically-named outputs on the other process, but are
no longer inputs of the whole system, only outputs.

the value. If the two processes agree that an event should
occur on a particular channel but disagree on the value, no
event is generated and the merge effectively preventsreithe
process from ever producing an event on that channel again.

Lemma 8. The “||” operator is associative.

Proof. See Van de Snepscheut [21]. O

In general, we define the parallel composition of the
potentially infinite set{Ln}ncs Of languages of respective
channelsC o, as the language with output channéls=
Unes{On} and input channels= {J,cs{In} \ O that exactly
contains the tracds= Tjo such that’ne€ S: t|;, o, € Ln. This
extends the earlier definition for finite parallel compasis.

and requires them to agree on events on shared input and outTheorem 7. If vn € S: L, is confluent then their parallel

put channels—a sort of “logicalND” concurrency. Later,
we will introduce “logicaloRrR” concurrency in the form of a
confluent choice operator.

Figure 4 illustrates how two confluent processes behave
when combined using both the parallel and confluent choice

composition L is confluent.

Proof. ¥n € S: L, contains the empty trace and is prefix-
closed. As a result, the parallel composition is non-empty
and prefix-closed. Let us show it obeys Lemmas 3-6.

operator. Both operators make the two processes run in par- If tt' € L, t” € L, andf =t” thenvn € S t|,0,t'|1,0, =
allel; the difference comes in how shared input channels arett’|, 5. € Ly, t’|;,0, € Ln, andt|;.0, = t"]i,0,- SinceL, is

split and how shared outputs are merged.

Parallel Composition Theparallel composition k||L, of
the languagek; C Tj,0, andL, C Tj,0, is the language with
input channeld =1, U2\ (01 U0O,) and output channels
O =01UO; such that € L4||L; iff t];;0, € L1 andt|i,0, €
L.

Parallel composition combines processes as shown in Fig-

ure 4 and insists that both processes participate in angghar
events. When an input channel is split, parallel composition

insists that both processes receive the event for it to hap-
pen. Similarly, when an output channel is merged, an output then (t{c,wWt't")|,0, = (tt’(c,V)t")|i,0, € Ln.

confluent, by Lemma 3/|;,0,t'|1,0, € Ln for all n. There-
fore,t"t’ € L.

If t{c,v) €L, tt' €L, t'(c) = ¢, andc € CJ;,0, then
t)1.0,(C,V) € Ln, t)i,0.t'1,0, € Ln, @andt’[; o,(c) = €. Since
Ly is confluent, by Lemma 4], 0,t']1,0,(C,V) € L. Other-
wise, ifc ¢ CJ;0, then(tt’(c,v))|i,0, = tt'|i,0, € Ln. There-
fore,tt’(c,v) € L.

If t(c,v) €L, tt'{c,Wt” € L, t/(c) = ¢, andc € C|;,0,
then t‘|non<C,V> € Ln, t||n0nt,||n0n<CaV>t”‘|nOn € L, and
t’|1,0,(C) = €. Sincel, is confluent, by Lemma 5, we ob-
tain t);,0,(C, VWt'|i,0,t" 1,0, € Ln. Otherwise, ifc ¢ C|i,0,
Therefore,

event occurs only if both processes participate and agree ort{c,v)t't" € L.

If t(c,v) €L, tt’(c,w) € L, t’(c) = & andc € O then let Confluent Choice For two languageks,L, C Tio, if L1 U
us choosen € S such thatc € O,. Sincet|;,0,(C,V) € Lp, L, is consistent, we define tlwnfluent choice {]L, as the
tli,ont’ 1,0, (C, W) € Ln, andt’|;.0,(c) = €, we concludes = w least confluent language containingandL.
by applying Lemma 6 td.,.

Thanks to Theorem 3, the parallel composition is conflu-
ent.

Lemma 9. The “|” operator is associative.VLj,Ly, L3 C
Tio : (L1]L2)|Ls and Ls1|(Lz|L3) are either both defined or
both undefined, and equal if defined.
Importantly, if all L, share the same input and output
channels then their parallel composition is their intetisec
Our final challenge is to define confluent choice. The 77 X
usual choice operator in regular expressions does not usu{&in€d inL. Therefore, both(Li|Lz)[Ls and Ly|(Lz|Ls)
ally produce confluent languages because it suppresses th@'€ defined. Moreover, C Lz C (La[Lo)[Ls. L2 C
untaken alternative. L1|L2 - (Ll‘L2)|L3. L3 C (L1|L2)|L3. Hence,Ll\(Lz\Lg) -
Instead, we define the confluent choice of two languages (Ll‘LZ)“‘? ano! vice versa.))
as the least confluent language that contains the behavior of Otherwise, if.i UL, ULg is inconsistent, then eitheés |Lo
both. This can be thought of as the usual choice operator fol- 1S Undefined ofL1|L2) ULs is inconsistent. Similarly, either
lowed by a closure operation that adds the behavior required 213 S undefined ot; U (L2|Ls) is inconsistent. U

by confluence. _ In general, we consider the unigf,.s{Ln} of a poten-
First, we prove a theorem that ensures us that if we take 5y infinite set of languages of respective chani@ls, to
a subset of a confluent language, there is always a uniquey, {1 language with output chann@ls= | J,,.s{On} and in-

least way to “grow” if[pgck into a confluent .Ianguage. We put channel$ = Uy.s{In} \ O that contains the traces Tio
need this for the definition of confluent choice because we suchthaBne S:te Ly,

need to ensure that there is such a confluent language.

Proof. If LyULoULg is contained in the confluent lan-
guagelL then bothL;|L, and Ly|Ls are defined and con-

If this union is consistent, we define the confluent choice

Theorem 8. If L C L’ C Tio and U is confluent then there Of the set of languages as the least confluent language con-
exists a least confluent languagg € To that contains L: taining the union. This extends the earlier definition foitén
YLy C Tio : L C Ly ALy confluent= Lo C L. confluent choices.

Proof. The set of all confluent languages containings 5.1 Comparison

non-empty thanks tb’. Let Lo be the intersection (i.e., the ~Once again, the basic idea behind confluent choice is to
parallel composition) of all such languages. By Theorem 7, merge the languages, provided they are not inconsisteat, th

Lo is confluent. By construction, it is contained in any con- add whatever behavior is necessary to make the result con-
fluent language containirlg] fluent. Lemmas 3-6 suggest the sort of behavior that must

be added. For example, if an input or output is allowed at a
Another challenging aspect of confluent choice is that it certain point then it must also be allowed later.

?I’lSiStS on_a form of Compatibility between th_e proce'_sses _be- When two processes do not share any inputs or outputs,
ing combined. Indeed, not every language is contained in aconfluent choice is the same as parallel, i.e., the same as

confluent language. For instance, for valites- {0,1} and interleaving; it is only when processes share input or outpu
channeld = 0 andO = {c}, there exists no confluent lan- channels that the difference arises.

guage containing the two traces,0) and (c,1) since any Intuitively, the parallel operator imposes “logicaNp”

such language would violate Lemma 6. concurrency, meaning that both processes must participate

Intuitively, two languages are compatible if they do not in all events on shared channels. By contrast, the confluent
contradict each other when generating shared output eventschoice operator is something like “logicak” concurrency:
Technically, we insist that the combination of the traces in it allows either process to consume or produce an event on
the languages we want to combine via confluent choice area shared channel, but to maintain confluence, the event is

consistent in the following sense. still available to the other process, which may ignore this
event forever (and stop using the corresponding channel) or

Consistency We say that a language t®nsistentff it is consume it eventually.

contained in a confluent language. Like parallel composition, confluent choice combines pro-

Intuitively, a consistent language may be missing behavior cesses as shown in Figure 4, but the split and merge behavior
that would be required to make it confluent (e.g., the processis very different than the parallel case.
stops even though it is obligated to generate addition out- Splitting an input in confluent choice effectively buffers
puts in compliance with Lemma 4) but it does nothing that it. The same sequence is fed to both processes, but the two
prevents confluence (e.g., produces a conflicting output in are not required to remain synchronized. Specifically, one

response to a different order in which inputs arrived). process is allowed to get arbitrarily far ahead of the other i
The language consisting of the empty trace is the shortestreading the sequence; both processes see the same sequence
consistent language. of events on the channel.

10

Confluent choice, then, is a potentially dangerous oper-
ator in that it can require unbounded resources. However,
this is not always the case. For example, if the length of the
sequences accepted by the two processes is bounded, it fol-
lows that the size of the splitter buffer is bounded. While thi
seem overly restrictive, observe that enclosing such agbair
processes in a Kleerfeeonstruct does not require an infi-
nite buffer. In general, unbounded buffers are only reqlire

when one process can get arbitrarily far ahead of the other, Figure 5: Two automata generating the traces of the (a) par-
which we do not expect to be very common in practice. allel composition and (b) confluent choice of the languages

Merging outputs in confluent choice is similar. The pro- {e,a,ac} with channels{a,c} and{g,b,bc} with channels
cesses can get arbitrarily out-of-sync, but must agree en th {b,c}.

values being sent on the channel. This is guaranteed if the
union of the two languages is consistent, so the behavior of
the merge is simply to keep track of how many events the composition, by contrast, always insists that the two pro-
two processes have generated on the merged output channglesses agree on events before they are visible to the eaviron

o
" 'peo

¥

‘o

Ck%q
&c»d

@) (b)

and transmit the longer sequence. Again, this may require ment.

unbounded resources (i.e., to keep track of a potentialy un
bounded difference in the number of events), but if the two
processes have bounded-length traces, itis possible tawbou

the maximum number that the merge operation must track.

Note that unlike the split, which must store the data values,
the merge only needs to maintain a count.

Examples To illustrate confluent choice and parallel com-
position, first consider the two languag&® andA||B with
A= ((a,0)) (530 andB = {(b,0)) (1), that it to say A has one
input channehl and no output channel and similarly fBr

To simplify the notation, we will drop the angle bracket
notation and denoté, 0) by a and(b,0) by b. Hence A =
{¢,a} andB = {¢g,b}.

The confluent choice and parallel compositiorAaindB
are equal:

AB=A||B={¢,a,b,abba}

The parallel operator requires that any tracéjjB, when
restricted to the channels iy, must be a trace i\, and
similarly for B.

ForA|B, first note thahUB = {&,a,b}. This is not conflu-
ent, but it is consistent because it is contained|iB, which
is confluent. Moreover, neithdig, a,b,ab} nor {¢,a,b,ba}
is confluent. Therefored|B = A||B.

Now, to see the difference between confluent choice
and parallel composition, consider the languagey
and X|[Y with X = ((a,0))(ac0: (C.0)(acjo and Y =
((@,0)) p,cyor ((€,0)) jp,cjor that is to sayX = {&,a,ac} with
input channels{a,c} and no output channels and =
{€&,b,bc} with input channelgb, c} and no output channels.
Here, the result is quite different as illustrated in Figbre

X|Y ={¢,a,b,ac,abc ach bc,bca bac}
X||Y = {€,a,b,ab,ba,abc bac}

Intuitively, the confluent choice operator allows thke

Last example, consider the languagésandAd for p,q e
N, that is to sayAP is the set of traces containing up o
eventsa, and similarly forA9. Then,

AP U AT = Amax(p.g)
AP|AY = Amax(p.q)

AP: A — AP+
AP||Ad = AMIN(p.0)

Constructive OR gate With the confluent choice opera-
tor, we are able to succinctly express the behavior of the
constructiveor gate in Figure 2, for instance as:

({(a,1); {{y, D1 {(o, 1)); {{y, 1) (@, 0)); (b, 0)); ((y, O} [(b, O)))"

deciding the “;” operator binds tighter thaif,and consid-
ering that all the combined languages have input channels
{a,b} and output channelg/}.

This specification consists of the Kleene closure {dhaf
the confluent choice among four little languages. The first
two languages((a, 1)); {(y, 1)) and {(b,1)); {(y, 1)), are sym-
metric and handle the early generationyofEach waits for
a 1 onaor b, then generates a 1 grin response. Because
they are combined using confluent choice, only a single
event is ever generated, i.e., if the environment proviaess b
(a,1) and (b, 1), both processes generdiel), and conflu-
ent choice merges them.

The confluent choice between the third and fourth lan-
guages{(a,0)); ((b,0)); {(y,0)) and{(b, 0)), waits for zeros on
botha andb, then produces a 0 gn Indeed, while the third
language require&, 0) to be read first, the fourth language
allows (b,0) to come first. In fact, this confluent choice is
equivalent to each of the following languages:

o ({(2,0)); (b,0)); ((:0)) [(((b, 0)); (&, 0)); (v, 0)))
o ({((8,0)) gy 1D, 0)) gy 1) (% O) oy 1

e (((a 0>>{a}{y}; (. 0>>{a}{y}) (b, O>>{b}{y}i (47 O>>{b}{y})

event to be generated independently, i.e., before the other The confluent choice operator insists that the languages

process has also decided to accept or generate it.

11

Parallebeing combined are consistent.

It is less obvious that the

third language is consistent with the first two, since theiwal Kleene closure, and parallel composition preserve conflu-
generated ow is different, but a simple case analysis shows ence, we introduce the confluent choice operator, which pro-
thatitis: only when the environment provides b@#h0) and vides a way to deterministically merge both inputs and out-
(b,0) does the third language generdye0). However, the puts and proves to be somehow fundamental for specifying
first two languages do not accept this pattern and thereforeprocesses that cannot otherwise be specified by Kahn's se-
do not generate any value gnwhich is consistent. guential language plus parallel composition.

Although only the third language explicitly says that Our goal in starting this work was to build the formal
events must be consumed on batandb, confluent choice underpinnings of a flexible language for describing delay-
insists that exactly one event must be consumed on eachinsensitive hardware and software systems based on the
channel before the whole block terminates. Kahn principle, but removing some of its drawbacks such
as undecidability and scheduling challenges. Our ongoing
work involves building a user-level language around these
We now establish that confluent choice and sequential pro- primitives and incorporating them into a hardware/softvar

5.2 Completeness

cesses are expressive enough somehow. codesign environment that avoids many usual problems
Whatever finite, O finite, | UO non-empty, an¥ count- in concurrent systems, such as races and nondeterminism

able non-empty, the s@jo is infinite and countable. Leg brought on by shared variables.

be the empty trace. For alle (N'\ {0}), there exists a trace At a more theoretical level, we have observed that con-

th = (L, Vi) ... <c‘,§”‘,vl§”‘) € Tio such thaflio = {tn}nen- fluent choice does not preserve regularity. Hence, we want
Let Lo be thedjo. For alln e (N\ {0}), let L, be the to further analyze confluence w.r.t. regularity, so as torgua

language((ct, Vi) o - <<C|r§”‘,vlr§”‘>>|o sothatl, isthe lan- antee both confluence and regularity and specify processes

guage of all prefixes df,, thus the least confluent language Poth regular and confluent effectively.

containingt,. References

[1] Gérard Berry and Georges Gonthier. The Esterel syn-
chronous programming language: Design, semantics,
implementation. Science of Computer Programming
19(2):87-152, November 1992.

Theorem 9. If L C Tp then there exists S N such that L=
{tn}nes. Moreover, if L is confluent then L is the confluent
choice of the set of languagékn }nes.

Proof. If L is confluent and containls, for all n € Sthen
their union is consistent and their confluent choice is well
defined. Let it bd’. To start withL’ C L sincel’ is the least
confluent language containifg for all n € S Reciprocally,

[2] Gérard Berry and Ellen Sentovich. An implementation
of constructive synchronous programs in POLFSr-
mal Methods in System Desighr(2):165-191, Octo-

forallne Sty €L, C L. HencelL C L. O ber 2000.
. [3] Stephen A. Edwards and Olivier Tardieu. SHIM: A
Every confluent language can be obtained as the conflu- geterministic model for heterogeneous embedded sys-
ent choice of a finite or infinite collection of sequentialdan tems. InProceedings of the International Conference
guages. on Embedded Software (Emspfipges 37—44, Jersey
6 Conclusions City, New Jersey, September 2005.

We have presented a characterization of confluent processes [4] C. A. R. Hoare.Communicating Sequential Processes

When these processes are combined, they guarantee the prentice Hall, Upper Saddle River, New Jersey, 1985.
overall behavior of the system—the number and sequence

of values communicated on each channel—is the same re- [5] Mark B. Josephs. Receptive process theokgta In-
gardless of local nondeterministic decisions made by each formatica 29(1):17-31, February 1992.

process. Such behavior can model, for example, the differ-
ences in execution time that comes from different implemen-
tations.

Our key definition is that of a confluent process, which

behaves functionally: when placed in an environment char-
acterized by the sequence of inputs it is willing to provide

and the number of output events it is willing to accept, the [7] Mark B. Josephs and Jan Tijmen Udding. An overview

6] Mark B. Josephs. An analysis of determinacy using
a trace-theoretic model of asynchronous circuits. In
Proceedings of the Ninth International Symposium on
Asynchronous Circuits and Systems (ASY,N2pes
121-130, Vancouver, BC, Canada, May 2003.

process will generate a unique number and sequence of out- of D-I algebra. InProceedings of the 26th Hawaii In-
puts. By insisting that this is a function, our processesaglh ternational Conference on System Scienvetume |
to the Kahn principle and guarantee overall system behavior pages 329-338, Hawaii, January 1993. ’

Our main contribution is a series of operators that guar-
antee confluence and can be used to specify any confluent [8] Gilles Kahn. The semantics of a simple language
process. In addition to proving that classical sequencing, for parallel programming. Iinformation Processing

12

74: Proceedings of IFIP Congress ,/jdages 471-475, [21] Jan L. A. Van de Snepschellrace Theory and VLSI
Stockholm, Sweden, August 1974. North-Holland. Design volume 200 ot ecture Notes in Computer Sci-

ence Springer-Verlag, 1985.
[9] Paul G. Lucassen.A Denotational Model and Com-

position Theorems for a Calculus of Delay-Insensitive
Specifications PhD thesis, University of Groningen,
May 1994.

[10] Nancy Lynch and Eugene Stark. A proof of the Kahn
principle for Input/Output automatadnformation and
Computation82(1):81-92, July 1989.

[11] Sharad Malik. Analysis of cyclic combinational cir-
cuits. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and System43(7):950-956,
July 1994,

[12] Robin Milner. A Calculus of Communicating Sys-
tems volume 92 ol_ecture Notes in Computer Science
Springer-Verlag, 1980.

[13] Robin Milner. Communication and Concurrency
Prentice Hall, Upper Saddle River, New Jersey, 1989.

[14] Thomas M. ParkBounded Scheduling of Process Net-
works PhD thesis, University of California, Berkeley,
1995. Available as UCB/ERL M95/105.

[15] Thomas Robert Shiple. Formal Analysis of Syn-
chronous Circuits PhD thesis, University of Califor-
nia, Berkeley, October 1996. Memorandum UCB/ERL
M96/76.

[16] Scott F. Smith and Amy E. Zwarico. Correct compi-
lation of specifications to deterministic asynchronous
circuits. Formal Methods in System Desigi(3):155—
226, November 1995.

[17] Jan Tijmen Udding. A formal model for defining and
classifying delay-insensitive circuits and systeiDss-
tributed Computing1(4):197-204, 1986.

[18] Kees van Berkel. Handshake Circuits: An Asyn-
chronous Architecture for VLSI ProgrammingCam-
bridge University Press, 1993.

[19] Kees van Berkel, Joep Kessels, Marly Roncken,
Ronald Raeijs, and Frits Schalij. The VLSI-
programming language Tangram and its translation
into handshake circuits. IRroceedings of European
Design Automation (EDACpages 384—-389, Amster-
dam, The Netherlands, February 1991.

[20] Kees van Berkel and Martin Rem. VLSI program-
ming of asynchronous circuits for low power. In
G. Birtwistle and A. Davis, editor@&synchronous Dig-
ital Circuit Design Workshops in Computing, pages
151-210. Springer-Verlag, 1995.

13

