
Scheduling-Independent Threads and Exceptions in SHIM

Olivier Tardieu
Department of Computer Science

Columbia University, New York

tardieu@cs.columbia.edu

Stephen A. Edwards
∗

Department of Computer Science
Columbia University, New York

sedwards@cs.columbia.edu

ABSTRACT
Concurrent programming languages should be a good fit for em-
bedded systems because they match the intrinsic parallelism of their
architectures and environments. Unfortunately, typical concurrent
programming formalisms are prone to races and nondeterminism,
despite the presence of mechanisms such as monitors.

In this paper, we propose SHIM, the core of a deterministic con-
current language, meaning the behavior of a program is indepen-
dent of the scheduling of concurrent operations. SHIM does not
sacrifice power or flexibility to achieve this determinism. It sup-
ports both synchronous and asynchronous paradigms—loosely and
tightly synchronized threads—the dynamic creation of threads and
shared variables, recursive procedures, and exceptions.

We illustrate our programming model with examples including
breadth-first-search algorithms and pipelines. By construction, they
are race-free. We provide the formal semantics of SHIM and a pre-
liminary implementation.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and Fea-
tures; F.3.2 [Logics and Meanings of Programs]: Semantics of
Programming Languages

General Terms
Languages, Theory

Keywords
Hardware/software codesign, Deterministic model of computation

1. INTRODUCTION
Embedded systems differ from traditional computer systems in

their need for concurrent descriptions to handle simultaneous activ-
ity in their environment or to exploit parallel, often heterogeneous

∗Edwards and his group are supported by the NSF, Intel, Altera,
the SRC, and NYSTAR.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’06,October 22–25, 2006, Seoul, Korea.
Copyright 2006 ACM 1-59593-542-8/06/0010 ...$5.00.

hardware. While programming such systems in traditional sequen-
tial languages would be convenient, it greatly hinders exploiting
parallelism. Instead, we propose a concurrent language whose con-
structs simply avoid many pitfalls of parallel programming.

We say the behavior of a system is deterministic if and only if
it depends exclusively on external decisions, i.e., on well-defined
inputs of the system (which may include a clock), rather than inter-
nal decisions of the compiler, optimizer, runtime scheduler, debug-
ger, etc. The motivation for our work rests on two central assump-
tions. Most programs (including concurrent programs) are meant to
behave deterministically. However, most programming languages
(including Java and C) do not guarantee determinism but instead
provide constructs designed to help achieve it.

C’s nondeterminism lurks in subtle places, such as function ar-
gument evaluation order, and in “undefined behavior,” such as read-
ing uninitialized memory. Most programmers are careful enough to
avoid calling functions with side-effects when passing parameters,
but the undefined behavior of C produces a whole host of problems
including buffer overflows, which is probably the leading cause of
computer insecurity today. Languages such as Cyclone [24] and the
CCured rewriter [27] have been developed to attack exactly these
sources of nondeterminism in the language.

The design of Java successfully avoids most of the obviously
nondeterministic aspects of C by adding array bounds checking,
fixing expression evaluation order, etc., but its concurrency intro-
duces a whole host of potential sources of nondeterminism, lead-
ing to concurrency-related bugs such as data races and the like. It is
these concurrency-induced sources of nondeterminism that we are
primarily concerned with avoiding.

In this work, we propose SHIM, a deterministic concurrent pro-
gramming language. A program written in SHIM is guaranteed to
behave the same regardless of the scheduling of concurrent opera-
tions. While the restrictions SHIM imposes do make it impossible
to implement certain algorithms that appear nondeterministic but
are actually well-behaved, we believe SHIM is both expressive and
amenable to efficient implementation. We argue for SHIM’s ex-
pressivity in a series of examples and describe a preliminary com-
piler able to generate single-threaded C code.

1.1 The New SHIM
Our first SHIM (Software/Hardware Integration Medium) model

of computation [15, 16] provides deterministic concurrency in a
simple setting: SHIM systems consist of sequential processes that
communicate using rendezvous through point-to-point communi-
cation channels. SHIM systems are therefore delay-insensitive and
deterministic for the same reasons as Kahn’s networks [25], which
they resemble by design, but are simpler to schedule and require
only bounded resources by adopting rendezvous-style communica-
tion inspired by Hoare’s CSP [21].

e ::= L | V | op1 e | e op2 e | (e) expressions
s ::=V = e; | P((V(,V)∗)?); statements

| { b∗ } | if (e) selse s | while (e) s
| spar s | nextV; | try scatch(E) s | throw E;

b ::= T V; | s block statements
d ::= T V | T &V parameter declarations
p ::= void P((d(,d)∗)?) { b∗ } procedure declarations
m::= p∗ void main() { b∗ } programs

L denotes literals,T types (e.g.,int, void), E exceptions,V vari-
ables, andP procedures.par binds most tightly.

Figure 1: The syntax of SHIM

We designed the original SHIM model to capture the mix of
finely scheduled hardware and coarsely scheduled software typical
of embedded systems. However, the programming model we pro-
posed [15, 16] is limited, much better at describing static hardware
components than complex, dynamic software tasks.

In this paper, we present a major extension of the SHIM lan-
guage. The result resembles C and Java (and can be used as such)
while still guaranteeing deterministic concurrency without requir-
ing careful attention to the use of, e.g., the semaphores found in
many concurrent programming languages. Instead of a static net-
work of processes connected by predefined point-to-point com-
munication channels, SHIM now allows the dynamic creation of
threads and “shared variables.” Using recursion, one can instantiate
arbitrarily many threads. We also introduce concurrent, determin-
istic exceptions that resemble those in Java (and have the same se-
mantics in single-threaded code), but also behave deterministically
with concurrency, providing a powerful, structured way to control
the execution of concurrent threads, a major omission in many con-
current languages.

One attribute of SHIM is the ease with which concurrency can
be introduced. For example, here is a typical sequential SHIM pro-
gram that looks for akey in a binarytree depth first throwing ex-
ceptionFoundif it finds thekey.

void depth_first_search(int key, Tree tree) {
if (tree != null) {
if (key == tree.key) throw Found;
depth_first_search(key, tree.left);
depth_first_search(key, tree.right);

}
}

Adding onevoid parameter to the procedure (used as a synchro-
nization barrier) and two lines of code turns this depth-first search
into a concurrent breadth-first search:

void breadth_first_search(int key, Tree tree, void b) {
if (tree != null) {
if (key == tree.key) throw Found;
next b; // synchronize concurrent search threads
breadth_first_search(key, tree.left, b);

par // fork concurrent search threads
breadth_first_search(key, tree.right,b);

}
}

In Section 4, we augment this code to return the value associ-
ated with the key. An obvious pitfall in the concurrent version of
the algorithm would be ignoring what to do when the key appears
multiple times in the tree;SHIM makes it impossible not to include
an arbitration policy for this case.

Overall, we believe its concurrency, determinism, facilities for
dynamic thread creation, and exceptions makes it possible to use
SHIM to program true software components for an embedded sys-
tem and obtain functionality guarantees about complete designs.

We first introduce SHIM (Section 2) and exceptions (Section 3).
We develop the breadth-first-search example in Section 4, provide
the formal semantics of SHIM in Section 5, and describe a basic
compiler in Section 6. We discuss related work in Section 7.

2. THE BASIC SHIM LANGUAGE
SHIM, whose syntax is summarized in Figure 1, draws from

familiar sources. Its core is an imperative language with C-style
syntax and semantics that includes local variable declarations and
procedure calls, but not pointers. Our procedures have both pass-
by-value and pass-by-reference parameters (those prefixed with the
C++-style&). Our language does not have functions per se, but pro-
cedures can return values through pass-by-reference arguments.

SHIM adds four constructs to the usual imperative statements:

spar s for concurrency,
nextV; for communication,
try scatch(E) s to define and handle exceptions, and
throw E; to raise exceptions.

2.1 Concurrency
The p par q statement runsp andq concurrently and waits for

both p andq to complete their execution before it terminates. In
other words, it forks two threads responsible for runningp andq
and suspends the current thread until the completion of both. As a
result, a parent never runs when any of its children are running.

By design,par is commutative and associative. For instance,p
par q par r andq par r par pbehave identically. However, because
of variable scope, {p par q} par q may behave differently, just as
{ p;} q and andp; q may be different in C.

The SHIM scheduler may interleave concurrent threads in any
way that does not violate inter-thread communication rules. Con-
current threads thus run asynchronously.

To achieve behavior independent of arbitrary scheduling deci-
sions, we impose restrictions on “shared variables.” In apar, each
variable may be implicitly passed to at most one thread by refer-
ence, but many threads may have the same variable passed by value.

We rely on a syntactic rule to choose which thread (if any) gets
a variable passed by reference: a variable is anlval for a thread and
passed by reference iff it appears on the left of an assignment or is
passed by reference in a procedure call; a variable is anrval for a
thread if it only occurs in expressions after thenextkeyword, or is
only passed by value in procedure calls. A variable must not be an
lval for two or more threads in apar statement. For example,

void f(int &x) {} // pass­by­reference
void g(int x) {} // pass­by­value
void main() {
int a; a = 0; int b; b = 0;
a = 1; par b = a; // OK
a = 1; par a = 2; // Incorrect: a is an lval twice
f(a); par f(b); // OK
f(a); par g(a); // OK
g(a); par g(a); // OK
f(a); par f(a); // Incorrect: a is an lval twice

}

An lval is passed by reference; anrval by value. E.g.,

void main() {
int a; a = 3; int b; b = 5; int c; c = 1;
{ // a is passed by reference

a = a + c; // a = 4, b = 5, c = 1
a = a + b; // a = 9, b = 5, c = 1

} par { // b is passed by reference
b = b ­ c; // a = 3, b = 4, c = 1
b = b + a; // a = 3, b = 7, c = 1

} // a = 9, b = 7, c = 1
}

2.2 Communication
That no variable may be passed by reference to more than one

thread simultaneously prevents a thread from accidentally modify-
ing another thread’s copy of a variable. Instead, thenextinstruction
forces threads to synchronize before performing inter-thread com-
munication.Nexttransmits a variable’s value when it is a pass-by-
reference parameter and receives it otherwise. For example,

void f(int a) { // a is a copy of c
a = 3;
next a; // synchronize with g; a gets c’s value

// a = 5
}
void g(int &b) { // b is an alias for c
b = 5;
next b; // synchronize with f

// b = 5
}
void main() {
int c; c = 0;
f(c); par g(c);

}

Both a andb are incarnations ofc. Thenextinstructions assign the
current value ofc to a andb. Sincec was passed by value tof and
by reference tog, next bbehaves as a send operation ing andnext a
behaves as receive operation inf . Together, these transmitc’s value
to a.

To make communication deterministic, anext instruction forces
all threads sharing the variable to synchronize. E.g., in the previous
example,next aandnext bexecute simultaneously.

Such synchronization may cause deadlocks. For example,

void main() {
void a; void b;
{ next a; next b; } par { next b; next a; }

}

deadlocks because the branches sharea andb, the first branch is
waiting ona, and the second branch is waiting onb.

In SHIM, void variables provide pure synchronization.
A thread is only required to synchronize on a variable it shares.

Moreover, if a thread terminates, it is no longer compelled to partic-
ipate in a synchronization and therefore does not cause a deadlock.
For example,

void main() {
void a; void b;
{ next a; next b; } par { next b; } // no deadlock
{ next a; next a; } par { next a; } // no deadlock

}

does not deadlock.
Pending synchronizations may take place in any order. In

void main() {
void a; void b;
next a; par next b; par next a; par next b; par next a;

}

the synchronization ona may occur before or after the one onb.

2.3 Delegation
If a thread spawn subthreads, the parent thread effectively dele-

gates its ownership of a variable to all of its children that use the
variable, meaning they are required to participate in any communi-
cation on this variable. For example,

void main() {
void a; void b;
{ { next a; next b; } par {} } par { next b; a; }

}

deadlocks. The rightmost branch knows abouta and therefore must
participate in communication ona.

In contrast,
void main() {
int a; a = 0; int b; b = 0;
{ // thread 1: rval: a, b

{ // thread 1a: lval: a
next a; // a = 1, b = 0

} par { // thread 1b: lval: b
next b; // a = 0, b = 2

} // a = 1, b = 2
} par { // thread 2: lval: a, b

b = 2; next b;
a = 1; next a;

} }

does not deadlock. Thread 2 synchronizes with thread 1b first, then
with thread 1a. Althougha andb are passed by value to thread 1,a
is then passed to 1a by reference andb to thread 1b. Consequently,
thenext instructions in threads 1a and 1b behave as receive opera-
tions and return the received values to thread 1.

The pattern “next a; par next b;” is a convenient idiom for
communicating ona andb in any order.

In general, a communication takes place iff all leaf nodes of the
tree of threads that share a common variable, i.e., were passed the
variable by value or by reference, are ready to execute anext in-
struction for this variable or one of its copies. The tree for each
variable evolves dynamically as threads are created and terminate.

2.4 A FIFO Example
The example below is a simple pipeline with feedback consisting

of a procedure that increments its input (f) and two calls of a buffer
procedure (g). The pipeline passed around a 1, then a 2, a 3, etc.
void f(int a, int &b) {
while (true) {

b = a + 1;
next b; // sends b since b is passed by reference
next a; // receives a since a is passed by value

}
}
void g(int b, int &c) {
while (true) {

next b; // receives
c = b;
next c; // sends

}
}
void main() {
int a; a = 0; int b; int c;
f(a, b); par g(b, c); par g(c, a);

}

Using the same buffer procedure (g), the code below uses recur-
sion and concurrency to implement a FIFO of sizen.
void fifo(int i, int &o, int n) {
int c; int m; m = n ­ 1;
if (m) {

g(i, c); par fifo(c, o, m);
} else {

g(i, o);
}

}

3. EXCEPTIONS IN SHIM
The inter-thread communication facility provided bynextcan be

used to pass control messages among threads (e.g., “please termi-
nate”), but doing so can be awkward. SHIM’s exception mechanism
is layered on top of the inter-process communication mechanism to
preserve determinism while providing powerful sequential control.

Exceptions are scoped, caught, and handled by thetry-catchcon-
struct and raised by thethrow instruction. Exception declarations
may be nested. Exceptions do not carry values.

In sequential code, SHIM’s exceptions are classical: thethrow
instruction behaves as a jump to the matching handler, unrolling
the stack as necessary. For example,

void main() {
int i; i = 0;
try {
i = 1;
throw T;
i = i * 2; // is not executed

} catch(T) { i = i * 3; } // i = 3
}

Exceptions may be raised from inner threads. Whether concur-
rently running threads in the scope of the exception are affected
depends on communication. For example,
void main() {
int i; i = 0;
try { // thread 1
throw T;

} par { // thread 2
while (true) { i = i + 1; } // runs forever

} catch(T) {}
}

never terminates. The two threads never communicate and hence
never synchronize, so thread 1 has no way to interrupt thread 2 at a
deterministic point in its execution (e.g., at a particular value ofi).
Thread 2 runs forever. The compiler warns about such patterns.

A thread ispoisonediff it raises or propagates an exception. If
a thread attempts to communicate with a poisoned thread, it also
becomes poisoned, thus propagating the exception. For example,
void main() {
int i; i = 0; int j; j = 0;
try { // thread 1: shares i
while (i < 5) {
i = i + 1;
next i;

}
throw T;

} par { // thread 2: shares i and j
while (true) {
next i; // is eventually poisoned by thread 1
j = j + i;
next j;

}
} par { // thread 3: shares j
while (true) {
next j; // is eventually poisoned by thread 2

}
} catch(T) {} // i = 5, j = 15

}

terminates. Thread 1 poisons thread 2 that in turn poisons thread 3,
even though no variable is shared between threads 1 and 3.

We say a thread isdying iff it is in the scope of an exception
raised or propagated by one of its subthreads but is still alive be-
cause another of its subthreads is still running, being unaffected
by the exception. An attempt to communicate with a dying thread
poisons the thread attempting the communication. For example,
void main() {
void a; void b; void c;
try { // thread 1: shares a, b, and c
{ // thread 1a: shares a
a;

} par { // thread 1b: shares b
b;
throw T;

} par { // thread 1c: shares c
while (true) { // runs forever
next c; // synchronize with thread 4

}
}

} par { // thread 2: shares a
next a; // is poisoned by thread 1

} par { // thread 3: shares b
next b; // is poisoned by thread 1b

} par { // thread 4: shares c
while (true) { // runs forever
next c; // synchronize with thread 1c

}
} catch(T) {}

}

Here, thread 3 gets poisoned while attempting to communication
with thread 1b. Thread 4 communicates with thread 1c, which runs
normally. Thread 2 attempts to communicate first with thread 1a
then with thread 1 itself since, upon the completion of thread 1a,
thread 1 resumes responsibility fora. Thread 1 is dying due to ex-
ceptionT in thread 1b. Therefore, thread 2 gets poisoned. Here
again, we observe that thread 1, while “dying,” never actually dies
since thread 1c never returns.

3.1 Scopes and Priorities
The rules for our exceptions deliberately follow those in Es-

terel [7, 6]. Poison does not flow outside the scope of the exception:
void main() {
int i; i = 0; int j; j = 0;
{ // thread 1

try { // thread 1a
i;
throw T;

} par { // thread 1b
i = i + 1; // is executed
next i; // is poisoned by thread 1a
i = i + 1; // is not executed

} catch(T) {}
} par { // thread 2

j = j + 1; // is executed
next i; // executes normally
j = j + 1; // is executed

} // i is 1, j is 2
}

Here, exceptionT preventsi from being incremented a second time.
However, it does not poison thread 2, which is outside the scope of
the exception. Thenext instruction in thread 2, which would syn-
chronize with thenext instruction in thread 1b ifT had not been
raised, instead blocks until the completion of thetry-catchblock,
at which point it may take place as usual, since thread 2 is then the
only remaining thread sharingi.

Second, when exceptions are raised in parallel, the outermost
exception takes priority and defines the exit point. For example,
void main() {
int i; i = 1;
try {

try {
throw T;

} par {
throw U;

} catch(T) { i = i * 2; } // handler is not executed
i = i * 3; // is not executed

} catch(U) { i = i * 5; } // i = 5
}

3.2 The FIFO Revisited
An exception allows us to elegantly terminate our FIFO example.

void source(int &a) {
while (a > 0) {

a = a ­ 1;
next a; // sends a

}
throw T;

}
void sink(int b) {
while (b != 0) {

next b; // receives b
}
// do something else

}
void main() {
int a; a = 5; int b; b = ­1; int n; n = 3;
{

try {
source(a); par fifo(a, b, n);

} catch(T) {}
} par {

sink(b);
}

}

The sourceprocedure sends 4, 3, 2, 1, and 0 to the three-place
FIFO, which delivers them to thesink. Thanks to poisoning rules,
the exceptionT poisons each one of the three one-place buffers of
the FIFO only after it has finished transmitting the five values and
becomes receptive again to a sixth value. In other words, the FIFO
completes its transmission before terminating. Because the sink is
not part of the scope ofT, it is unaffected byT.

Exceptions make it unnecessary to add an explicit termination
condition or end-of-stream data token in our FIFO.

4. BREADTH-FIRST SEARCH EXAMPLE
We combine recursion, concurrency, and exceptions to imple-

ment two breadth-first-search algorithms in binary trees.
While there are no pointers or objects in the language we have

described, SHIM could easily accommodate a type for binary trees:

class Tree {
int key;
int value;
Tree left;
Tree right;

};

Each node associates an integervalueto an integerkey.
In general, pointers can break the determinism of SHIM. How-

ever, in the examples below we shall only read from binary trees,
avoiding any races. We plan a more complete discussion of data
structures and pointers in SHIM in future work.

4.1 The Membership Algorithm
First, consider a sequential algorithm for deciding membership

of a key in a tree.

void mem(int key, Tree tree) {
if (tree != null) {
if (key == tree.key) throw Found;
mem(key, tree.left);
mem(key, tree.right);

}
}

This explores the leftmost branch first, reports success through the
Foundexception, and terminates normally on a finite tree that does
not contain the key.

To turn this procedure into a concurrent breadth-first search in
SHIM, we add avoid variable for synchronization, anext instruc-
tion, and apar.

void mem(int key, Tree tree, void b) {
if (tree != null) {
if (key == tree.key) throw Found;
next b;
mem(key, tree.left, b);

par
mem(key, tree.right, b);

}
}

Thepar runs the two recursive calls concurrently. Thenextstate-
ment allows a branch that finds thekey to interrupt concurrently-
running branches by forcing them to synchronize.

Consider finding the 5 key in the tree below.

7

6

2 5

1

5 1

The horizontal dashed lines indicate where recursive calls at the
same depth synchronize. As a result, all breadth-first search proce-
dures terminate at depth 3 either by raising exceptionFound (the
square nodes) or by getting poisoned (the diamonds). Nodes at
depth 4 and below are not visited.

Incidentally, because all threads share the key without modifica-
tion, we could instead synchronize on it, allowing us to write:
void mem(int key, Tree tree) {
if (tree != null) {

if (key == tree.key) throw Found;
next key; // synchronizes on key
mem(key, tree.left); // shares key

par
mem(key, tree.right); // shares key

}
}

4.2 The Lookup Algorithm
We now augment the search algorithm to return the value associ-

ated with the key. The obvious thing is to add a pass-by-reference
parameter for returning the value:
void assoc(int key, Tree tree, int &value) {
if (tree != null) {

if (key == tree.key) {
value = tree.value;
throw Found;

}
next key;
assoc(key, tree.left, value); // lval: value

par
assoc(key, tree.right, value); // lval: value

}
}

But this code is rejected becausevalue is passed by reference to
both parallel recursive calls, which may cause a race. Consider
again the example in the previous section. It contains the key in two
nodes at depth 3. Which value should be returned? The leftmost or
the rightmost value? The above piece of code does not specify a
deterministic behavior and consequently our compiler rejects it.

However, carefully combining concurrency, recursion, and ex-
ceptions allow us to implement a deterministic concurrent breadth-
first-search algorithm:
void assoc(int key, Tree tree, int &value) {
if (tree != null) {

if (key == tree.key) {
value = tree.value;
throw Found;

}
next key;
int tmp;
try {
assoc(key, tree.left, value);

} par {
try {
assoc(key, tree.right, tmp);

} catch(Found) { throw Right; }
} catch(Right) { value = tmp; throw Found; }

}
}

This introduces a variabletmpto hold the value returned by the re-
cursive call for the right subtree. An assignment fromtmp to value
may only occur in the handler of theRightexception, whose scope
contains the parallel recursive calls. Hence, the assignment is in
sequence after the parallel composition. This is correct.

Second, nested exceptions implement priorities. There are four
cases to consider:
1. Neither branch raises exceptionFound: the procedure terminates

normally or runs forever if the tree is infinite.

2. Only the left branch raisesFound: the exception kills the right
branch and propagates upwards. The variablevaluecontains the
value returned by the left branch.

3. Only the right branch raisesFound: the exception is caught and
Right is raised. ExceptionRightkills the left branch. The excep-
tion handler forRight assignstmp to value. ExceptionFound is
raised and propagates upwards. The variablevaluecontains the
value returned by the right branch.

4. Both branches raiseFound: the exception propagates upwards, in
particular preempting the execution of the handler for theRight
exception. The variablevaluecontains the value returned by the
left branch.

Therefore, theassocprocedure always returns the value associated
with the leftmost node among those nodes that match the key and
have the shortest distance to the root of the tree.

5. THE SEMANTICS OF SHIM
Here, we provide a formal operational semantics of SHIM. We

express the execution of a program as a set of rules that specify
possible transitions between program states. For simplicity, we first
present SHIM without exceptions and add them later in Section 5.4.

Choosing an appropriate notion of state is fundamental. We be-
gin with an informal description of the components of a state, then
describe our state encoding, explain our semantic rules, and finally
show how they execute an example.

In our semantics, we express the state of a program as a pair
consisting of aresidue, which specifies the code remaining to be
executed in each thread and the hierarchy of threads; and astore,
which describes the current memory layout and content. The initial
state consists of the body of themainprocedure and an empty store.

The store maps locations to values. A variable declaration allo-
cates a fresh location in the store and binds it to the name of the
variable being declared. An assignment to a variable updates the
value of its location in the store.

Since SHIM is concurrent, we define the residue to be a tree
of code fragments that encodes the hierarchy of threads. Only the
leaves of a residue run concurrently; the execution of a non-leaf
node only proceeds when its children have terminated and disap-
peared from the tree. Apar statement augments the tree by adding
concurrently-running children under the node of the current thread.

Each node in the residual tree maintains aview. Each view binds
the variable identifiers visible to the thread to locations in the store.
This is a single location for a local variable; each parameter is ac-
tually a pair of locations: one that holds the current value of the
parameter; another that tracks the shared variable location, i.e., the
source location of the data copied in anextoperation.

Although our semantics refers to a shared global store for sim-
plicity, access to the store is disciplined enough to allow it to be
implemented in a distributed, message-passing style. Our views
capture data locality—a thread may only access data in its view.
Information may only flow between concurrently-running threads
atnextinstructions that perform a sort of message passing.

5.1 Notation
We assume the parameters, local variables of a thread, and proce-

dure names are distinct. We only consider well-scoped, well-typed
programs. In particular, we assume that all procedures calls are
matched by declarations with matching arities.

For a procedurep, param(p) are the formal parameters ofp;
param(p)i is theith parameter ofp. We write byref(p) and byval(p)
for the sets of by-reference and by-value parameter indices respec-
tively. body(p) denotes the sequence of statements inp.

Our semantics holds the values of variables in a store. A store is
a partial functionσ : Λ → V . Λ = {λ ,µ , . . .} denotes an infinite
set of abstract locations andV denotes values. Dom(σ) denotes

the domain of the storeσ , which we require to be finite. By design,
uninitialized locationsλ ∈ Dom(σ) have value⊥. We often use a
set-like notation to define the function of a store, e.g.,{λ 7→ 0,µ 7→
⊥} denotes a storeσ whereσ(λ) = 0 andσ(µ) = ⊥.

A view can be thought of as a symbol table that maps vari-
able names to locations in the store. Technically, a viewv : V →
Λ +(Λ×Λ) is a partial function from a finite set of variable iden-
tifiers to locations (for local variables) or pairs of locations (for pa-
rameters). Ifv(x) = λ then we definevloc(x) = vglb(x) = v(x), oth-
erwise we definev(x) = vloc(x),vglb(x). By design,vloc(x) points
to the current value of namex, whereasvglb(x) retains the shared
variable location associated with namex. We denote by Glb(v) the
image ofvglb and by Def(v) the locations of the local variable iden-
tifiers in Dom(v), i.e., the locationsλ such that∃x ∈ Dom(v) :
v(x) = λ . For instance{x 7→ λ ,y 7→α ,β} denotes a viewvsuch that
vloc(x) = λ , vloc(y) = α , vglb(x) = λ , vglb(y) = β , Dom(v) = {x,y},
Glb(v) = {λ ,β}, Def(v) = {λ}.

A state—the main object manipulated by the semantics—is a
pair r/σ , whereσ is a store andr a residue such that all loca-
tions appearing inr are in Dom(σ). A residuer is a tree whose
nodes are pairss∗|v that combine a sequence of statements with a
view. 0 denotes the empty list of statements. We denote byR⊲s∗|v
compound residues wheres∗|v is the root of the tree andR is a non-
empty multiset of residues that denotes the branches of the tree. For
instance, the state marked with(∗) in Figure 3 has root0|{c 7→ λ}
and leavesf(c);|{c 7→ µ ,λ} andg(c);|{c 7→ λ ,λ}. Branch or-
dering is irrelevant. The store is{λ 7→ 0,µ 7→ 0}.

If residue r has a root node with viewv we define Glb(r) =
Glb(v) and Def(r) = Def(v).

5.2 Formal Semantics
In Figure 2, we formalize the semantics of SHIM without excep-

tions as a set of deduction rules in a structural operational style [29].
In addition to what we previously described, we add an extra

piece of information atop⊲ symbols, which relates to exception
scopes. It can be ignored for now; we shall discuss it in Section 5.4.

The rules forif andwhile statements and assignments are stan-
dard. An auxiliary functionE , which we do not define here, com-
putes expression values. It implements a deterministic Java-like
evaluation order. It resolves local variable and parameter names to
values using the functionσ ◦vloc.

At a local variable declaration, we bind the name of the variable
to a new location whose value starts at⊥. As usual, the semantics
is defined up to alpha-renaming of locations.

Theblock rule uses a trick to correctly scope additional variable
declarations: it forks a single child node that contains the body of
the block and copies the current view.

Thecontextrule derives a step for a node from a step of one of
its children.⊎ denotes the union of multisets.

The join and return rules take care of the completion of pro-
cedure calls, blocks, and parallel branches. Rulejoin handles one
branch at a time so that a branch releases its shared variables im-
mediately upon termination. When the last branch terminates, the
execution of the parent thread is resumed thanks to rulereturn.

The next, gather, and sync rules handle synchronization. The
next rule specifies that a leaf code fragment starting with anext
instruction for variablex may synchronize on locationvglb(x) and
expectsvloc(x) to be updated to reflect the current value ofvglb(x).
Thanks to thegather rule, an inner node may synchronize on lo-
cationλ provided all its child nodes that know aboutλ agree on
such a synchronization. Rulesyncproceeds with the synchroniza-
tion at the node whereλ was initially allocated: all local copies of
the shared variable are atomically updated.

E (e,σ ◦vloc) 6= 0

if (e) p else q s∗|v
/

σ −→ p s∗|v
/

σ (if)

E (e,σ ◦vloc) 6= 0

while (e) p s∗|v
/

σ −→ p while (e) p s∗|v
/

σ (while)

true

x=e;s∗|v
/

σ −→ s∗|v
/

σ{vloc(x) 7→ E (e,σ ◦vloc)}
(assign)

λ /∈ Dom(σ)

t x;s∗|v
/

σ −→ s∗|v{x 7→ λ}
/

σ{λ 7→ ⊥}
(declare)

r
/

σ −→ r ′
/

σ ′

{r}⊎R
m
⊲ s∗|v

/

σ −→ {r ′}⊎R
m
⊲ s∗|v

/

σ ′
(context)

I 6= /0 ∀i ∈ I : r i
λ
−−→
Mi

r ′i ∀ j ∈ J : λ /∈ Glb(r j)

{r i}i∈I ⊎{r j} j∈J
m
⊲ s∗|v

λ
−−−−→
⋃

i∈I Mi

{r ′i}i∈I ⊎{r j} j∈J
m
⊲ s∗|v

(gather)

p0|v
/

σ 7−→ r0

/

σ0 . . . pn|v
/

σn−1 7−→ rn

/

σn

p0 par . . . par pn s∗|v
/

σ −→ {r0, . . . , rn}
0
⊲ s∗|v

/

σn

(par)

E (e,σ ◦vloc) = 0

if (e) p else q s∗|v
/

σ −→ q s∗|v
/

σ (else)

E (e,σ ◦vloc) = 0

while (e) p s∗|v
/

σ −→ s∗|v
/

σ (wend)

R 6= /0

{0|v′}⊎R
m
⊲ s∗|v

/

σ −→ R
m
⊲ s∗|v

/

σ (join)

true

{0|v′}
m
⊲ s∗|v

/

σ −→ s∗|v
/

σ (return)

v′ : Dom(v) → Λ×Λ
x 7→ vloc(x),vglb(x)

{p∗} s∗|v
/

σ −→ {p∗|v′}
0
⊲ s∗|v

/

σ
(block)

true

next x;s∗|v
vglb(x)

−−−−−→
{vloc(x)}

s∗|v (next)

r
λ
−−→
M

r ′ λ ∈ Def(r)

r
/

σ −→ r ′
/

σ{µ 7→ σ(λ)}µ∈M

(sync)

∀x∈ Rval(p) :λx /∈ Dom(σ)
∀x,y∈ Rval(p) :x 6= y⇒ λx 6= λy

v′ : Lval(p)∪Rval(p) → Λ×Λ
x 7→ λx,vglb(x) ∀x∈ Rval(p)
x 7→ vloc(x),vglb(x) ∀x∈ Lval(p)

p|v
/

σ 7−→ p|v′
/

σ{λx 7→ σ ◦vloc(x)}x∈Rval(p)

(branch)

∀i ∈ byval(p) :λi /∈ Dom(σ)
∀i, j ∈ byval(p) : i 6= j ⇒ λi 6= λ j

v′ : param(p) → Λ×Λ
param(p)i 7→ λi ,vglb(ai) ∀i ∈ byval(p)
param(p)i 7→ vloc(ai),vglb(ai) ∀i ∈ byref(p)

p(a0, ...,an);s∗|v
/

σ −→ {body(p)|v′}
0
⊲ s∗|v

/

σ{λi 7→ σ ◦vloc(ai)}i∈byval(p)

(call)

Figure 2: The semantics of the exception-free fragment of SHIM.

int c; c=0; f(c); par g(c);| /0
/

/0
declare
−−−−→ c=0; f(c); par g(c);|{c7→λ}

/

{λ 7→⊥}

assign
−−−→ f(c); par g(c);|{c7→λ}

/

{λ 7→0}
branch branch

par
−−−−−−−→

{

f(c);|{c7→µ ,λ}, g(c);|{c7→λ ,λ}
}

⊲0|{c7→λ}
/

{λ 7→0,µ 7→0} (∗)
call

context−−−→
{

{a=3;next a;|{a7→ν ,λ}}⊲0|{c7→µ ,λ}, g(c);|{c7→λ ,λ}
}

⊲0|{c7→λ}
/

{λ 7→0,µ 7→0,ν 7→0}
call

context−−−→
{

{a=3;next a;|{a7→ν ,λ}}⊲0|{c7→µ ,λ},{b=5;next b;|{b7→λ ,λ}}⊲0|{c7→λ ,λ}
}

⊲0|{c7→λ}
/

{λ 7→0,µ 7→0,ν 7→0}
assign
context
context−−−−→

{

{next a;|{a7→ν ,λ}}⊲0|{c7→µ ,λ},{b=5;next b;|{b7→λ ,λ}}⊲0|{c7→λ ,λ}
}

⊲0|{c7→λ}
/

{λ 7→0,µ 7→0,ν 7→3}
assign
context
context−−−−→

{

{next a;|{a7→ν ,λ}}⊲0|{c7→µ ,λ}, {next b;|{b7→λ ,λ}}⊲0|{c7→λ ,λ}
}

⊲0|{c7→λ}
/

{λ 7→5,µ 7→0,ν 7→3}
next

gather
next

gather
gather
sync

−−−−−−−→
{

{0|{a7→ν ,λ}}⊲0|{c7→µ ,λ}, {0|{b7→λ ,λ}}⊲0|{c7→λ ,λ}
}

⊲0|{c7→λ}
/

{λ 7→5,µ 7→0,ν 7→5}
return
context−−−→

{

0|{c7→µ ,λ}, {0|{b7→λ ,λ}}⊲0|{c7→λ ,λ}
}

⊲0|{c7→λ}
/

{λ 7→5,µ 7→0,ν 7→5}
return
context−−−→

{

0|{c7→µ ,λ}, 0|{c7→λ ,λ}
}

⊲0|{c7→λ}
/

{λ 7→5,µ 7→0,ν 7→5}
join
−−→

{

0|{c7→λ ,λ}
}

⊲0|{c7→λ}
/

{λ 7→5,µ 7→0,ν 7→5}
return
−−−→ 0|{c7→λ}

/

{λ 7→5,µ 7→0,ν 7→5}

Figure 3: An example of execution.

Thecall rule handles procedure calls. It allocates new locations
for by-value parameters, which are initialized with the values of
the actual parameters. It also expands the body of the callee and
creates a view for it. This view binds the formal parameters of the
procedure to their actual values.

Thepar rule iterates thebranchrule to handle parallel composi-
tions. Thebranchrule resembles thecall rule except it relies on the
Lval and Rval sets obtained by static analysis to decide which vari-
ables are passed by reference to the thread. Importantly, variables
that do not occur in the thread are not part of the view of the thread.

5.3 Example
Figure 3 shows one possible execution of the example in Sec-

tion 2.2. We decorate each transition with a skeleton of its proof
tree. Starting from the body of themain procedure, the execution
first proceeds with the variable declaration, the assignment and the
concurrent procedure calls that fork two parallel threads. Since par-
allel branches may execute asynchronously, several transitions may
in general be taken from a given program state. In particular, the
two transitions for the two concurrent assignments may occur in
any order. After the assignments, the threads synchronize and the
value at locationν receives the value at locationλ . Finally, both
procedures and both branches return and the program terminates.

5.4 Exceptions
In Figure 4, we provide additional rules to handle exceptions in

SHIM. Combined with the rules of Figure 2, they form the opera-
tional semantics of our language.

To track exceptions scopes in the semantics, we augment the
residual structure. We add an extra piece of informationm atop⊲
symbols, wherem is either an exception identifiere if the ⊲ results
from a try-catchconstruct for exceptione and 0 otherwise (block,
call, andpar rules).

We also introduce the placeholder instructionhandlerto denote
pending handlers in the residual tree. Thehandlerinstruction does
not appear in the SHIM language itself.

Rule try forks a new child node for the bodyp of the try-catch
construct, decorates the⊲ with the exception identifiere, and in-
sert the handlerq. The view of p is a copy of the current view.
Rules throw, throw2, and throw3 handlethrow statements. First,
rule throw replaces the body of the thread with a specialX state-
ment that marks it as poisoned. Second, rulethrow2marks enclos-
ing threads with the sameX to indicate they are dying. Finally, the
throw3rule stops the poison at the boundary of the exception scope.
Rule exit handles the completion of poisoned threads. When all
subthreads of a thread are poisoned, they are deleted. Ruleshandler
andskip-handlertake care of exceptions handlers. Rulesexception,
exception2, andexception3decide when a locationλ is poisoned by
a threadr: λ ∈ Exc(r). Rulesnext-fail, gather-fail, sync-failpropa-
gate poison from poisoned or dying threads to threads that attempt
to communicate with them.

5.5 Determinism
We claim our semantics are deterministic in Kahn’s sense:com-

putationsandcommunicationsare the same for allfair executions.
Intuitively, this follows from our processes following the Kahn prin-
ciple: each thread of control can block on at most one communica-
tion at once and cannot retreat from an attempt to communicate.

Informally, whenever several transitions are possible from one
program state, they commute: they may be applied in any order
and all permutations will result in the same final state. However,
due to the size of the semantics, we do not have a formal proof.

6. A BASIC IMPLEMENTATION
Our compiler, which is roughly 2000 lines of OCAML, generates

single-threaded C code from SHIM programs. It produces function-
ing code for every example we presented in this paper except those
with non-scalar types.

Our implementation of SHIM is similar to the basic software
translation we presented elsewhere [16]: each procedure is trans-
lated into a single C function that uses a state variable and a leading
switchstatement to permit the function to block and resume atnext
statements. A central scheduler executes ready-to-run functions in
a nondeterministic order that does not affect the overall system be-
havior in accordance with the SHIM semantics.

Although threads in SHIM are properly nested, procedure ac-
tivation records cannot always be stored on a stack. Instead, our
runtime system maintains a tree of activation records on the heap
(usingmallocandfree). Each record has pointers to its child, next
sibling, and parent (caller) records that allow the tree to be traversed
when procedures communicate, terminate, or throw exceptions.

Each activation record includes a pointer to the C function that
implements its SHIM procedure, a field that holds the control state
(equivalent to a program counter) between invocations of the func-
tion, an indication of the exception that was thrown, if any, and the
control state for the function if an exception is caught.

Finally, each activation record contains an array of information
about the channels the procedure is connected to (knows about).
Each entry has a pointer to the value of the corresponding variable,
a flag that indicates whether the procedure is blocked on the chan-
nel, and a reference to its parent channel.

The central scheduler is straightforward: it simply takes a pointer
to an activation record off a stack of runnable threads and calls the
function whose pointer is in the activation record.

The behavior of thenextandthrowstatements are more complex.
Nextchecks if all threads connected to the given channel are ready
to communicate on the channel and performs the communication if
they are.Throwwalks up the stack to find where the given excep-
tion is caught and poisons and terminates what threads it can. When
a thread terminates, it removes itself from the activation record tree
and unblocks any threads that were waiting for it to communicate.

7. RELATED WORK
We discuss how SHIM relates to work on data races in concur-

rent systems, then compare it to other concurrent languages.

7.1 Data Races
There is a growing literature on data races in concurrent pro-

gramming languages, including work on type systems and static
analysis tools to detect races [17, 19, 9], dynamic checkers [30, 13,
18], and language constructs and restrictions [3, 32].

A race condition occurs when two threads simultaneously access
the same data variable and at least one of the accesses is a write.
SHIM simply prohibits such races. First, concurrent accesses to the
same data variable must be guarded bynext instructions that force
the accesses to be synchronized, thus deciding the sequence of read
and write accesses. Second, at most one thread owns each shared
variable at a time: only the owning thread may set the value of the
variable.

Concurrent writes in SHIM require the owning thread to imple-
ment a deterministic arbiter that gathers tentative write orders from
other threads and deterministically decides what to do. Designing
arbiters typically requires some careful, domain-specific thinking,
but it can be done. We presented one such arbiter in Section 4. In
fact, such an arbiter is exactly what is required from, say, a Java
programmer to make his program behave predictably. Hence, the

v′ : Dom(v) → Λ×Λ
x 7→ vloc(x),vglb(x)

try p catch(e) q s∗|v
/

σ −→ {p|v′}
e
⊲ handler q s∗|v

/

σ
(try)

true

{X|v0, . . . ,X|vn}
m
⊲ handler q s∗|v

/

σ −→ q s∗|v
/

σ (handler)

true

handler q s∗|v
/

σ −→ s∗|v
/

σ (skip-handler)

I 6= /0 ∀i ∈ I : r i
λ

−−−→
fail

r ′i ∀ j ∈ J : λ /∈ Glb(r j)

{r i}i∈I ⊎{r j} j∈J
m
⊲ s∗|v

λ
−−−→

fail
{r ′i}i∈I ⊎{r j} j∈J

m
⊲ X|v

(gather-fail)

r
λ

−−−→
fail

r ′ λ ∈ Exc(rλ)

{r}⊎{rλ }⊎{r i}i∈I
m
⊲ s∗|v

/

σ −→ {r ′}⊎{rλ }⊎{r i}i∈I
m
⊲ s∗|v

/

σ
(sync-fail)

true

next x;s∗|v
vglb(x)
−−−−→

fail
X|v

(next-fail)

true

{X|v0, . . . ,X|vn}
m
⊲ X|v

/

σ −→ X|v
/

σ (exit)

true

throw e;s∗|v
e
−→ X|v

(throw)

r
e
−→ r ′ m 6= e

{r}⊎R
m
⊲ s∗|v

e
−→ {r ′}⊎R

m
⊲ X|v

(throw2)

r
e
−→ r ′

{r}⊎R
e
⊲ s∗|v

/

σ −→ {r ′}⊎R
e
⊲ s∗|v

/

σ
(throw3)

λ ∈ Glb(v)
λ ∈ Exc(X|v)

(exception)

λ ∈ Glb(v)\Glb(R)

λ ∈ Exc(R
m
⊲ X|v)

(exception2)

λ ∈ Glb(v)∩Exc(r)

λ ∈ Exc({r}⊎R
m
⊲ X|v)

(exception3)

Figure 4: The semantics of exceptions in SHIM.

distinction between SHIM and Java is that in the absence of a de-
terministic arbiter, the SHIM compilers reject the program, whereas
a Java compiler produces a nondeterministic program.

Many authors argue that the absence of data races does not im-
ply the absence of concurrency-related bugs [12, 19, 2, 32], and
we agree. All these projects hold that the execution of a concur-
rent program may produce undesirable behaviors arising from the
interleaving of execution steps in concurrent threads (not necessar-
ily reads and writes to the same data variable). They draw lines
between acceptable and unacceptable interleavings and address the
latter. SHIM not only enforces mutual exclusion in concurrent ac-
cesses to shared data, it prohibits all interleaving-dependent behav-
ior: a simpler but more restrictive approach.

This does not solve all problems, however. For instance, in an
example due to Vaziri et al. [32], updates to thezipcodeandcity
fields of acustomerobject should be constrained so that concur-
rent updates may not end up with an inconsistent state: the zipcode
from the first update with the city from the second. In SHIM, such
atomicity can be enforced by ensuring a single thread is responsible
for updating both fields, necessitating an arbiter. We have no doubt
such higher-level concerns are very relevant to the “correct” behav-
ior of concurrent programs. Determinism as such is only a tool that
can contribute to correctness. It cannot automatically enforce all
high-level atomicity constraints assumed by the programmer, but
does make their implementation easier.

7.2 Concurrent Programming Languages
SHIM is hardly the first concurrent language to be proposed [1],

but most others use more error-prone communication mechanisms.
For example, the shared-memory-and-monitors style used in Java
and C# first appeared in the mid-1970s in Brinch Hansen’s concur-
rent Pascal [10]. Evolving as they did from the desire for a high-
level language for programming operating systems, monitors were
designed as a universal synchronization mechanism, not the least
error-prone. Even Brinch Hansen states “first-in, first-out queues
are indeed more convenient to use [than monitors]” [11, p. 39].

Hoare’s CSP [21] inspired us, in particular its rendezvous com-
munication, which has been adopted by such languages as OC-

CAM [23] and Ada [22]. Both, however, provide nondeterministic
selection among multiple events, which can create a race.

Our style of determinism was inspired by Kahn’s little language,
which prohibits nondeterministic merges and therefore provides
race-free concurrency [25]. Our original SHIM language [15] was
very closely based on Kahn’s ideas, albeit with rendezvous-style
communication to avoid the challenges of scheduling Kahn net-
works in bounded memory [28].

Aspects of SHIM were inspired by the now-large body of work
on synchronous languages [4, 5], especially the imperative Esterel
language [7]. But the execution model in SHIM is asynchronous
and designed to handle widely varying execution rates; only com-
munication is synchronous.

Exceptions in SHIM, while closely matching the priority rules
of concurrent exceptions in Esterel [6], are very different because
of the absence of a master clock. In SHIM, exceptions only propa-
gate with communications if and when they take place, rather than
unconditionally at clock cycle boundaries. In particular, in Sec-
tion 3.2, note that an exception in SHIM typically kills a FIFO only
after it has emptied, whereas similarly structured code in Esterel
would kill the FIFO “now,” discarding all values in transit.

Fair threads [8] address concerns similar to ours but require an a
priori choice of scheduling policy, rather than providing behaviors
independent from it.

To a lesser degree, SHIM was also inspired by the join calcu-
lus [20], which tries to force data-locality amenable to efficient im-
plementation into Milner’sπ-calculus [26].

8. CONCLUSIONS AND FUTURE WORK
We have presented SHIM, a practical imperative language that

provides Kahn-like deterministic concurrency. In addition to arith-
metic expressions and classical control-flow constructs, we provide
recursive procedure calls, synchronized shared variables, and ex-
ceptions, all in a concurrent setting. We proposed a core syntax,
defined the semantics of this language, and described an unopti-
mized implementation of our language as a translation to C.

The syntax we propose, while rich enough to express interesting
programs, is just a skeleton on which we are building a complete

language. In particular, we shall address the lack of data structures
in SHIM. Because pointers may introduce inter-thread aliasing and
the potential for races, adding them is not straightforward. We plan
to use a mix of user-specified annotations and inference; aliasing
analysis and ownership types [14] will be the basic building blocks.

Making our language practical will also require a proper module
or package system for encapsulating libraries. By nature, however,
the design of this aspect of the language is largely orthogonal to
the semantics we have presented here. We expect a system from
another successful language can be employed with few problems.

From a more theoretical viewpoint, we would like to formalize
and prove that our language is deterministic. Our adherence the
Kahn principle in the design of our language strongly suggests this
should be true and possible to prove.

Boundedness was a goal of the original SHIM language [15] that
the language in this paper does not guarantee since it permits un-
bounded recursion. While this is very convenient for certain soft-
ware systems, it makes a hardware implementation difficult. To
ensure the decidability of type-checking, proof assistants such as
Coq [31] require functions be provably terminating, total, and de-
terministic. We plan a mechanism for hardware implementation of
SHIM that will involve similar constraints and techniques.

In short, we believe we have a solid, powerful foundation for
expressing concurrent algorithms for both software and hardware.
However, much remains to be done.

9. REFERENCES
[1] G. R. Andrews and F. B. Schneider. Concepts and notationsfor

concurrent programming.ACM Computing Surveys, 15(1):3–43,
Mar. 1983.

[2] C. Artho, K. Havelund, and A. Biere. High-level data races. In
Proceedings of the Workshop on Verification and Validation of
Enterprise Information Systems (VVEIS), pages 82–93, Angers,
France, Apr. 2003.

[3] D. F. Bacon, R. E. Strom, and A. Tarafdar. Guava: A dialect of Java
without data races. InProceedings of the Conference on
Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), pages 382–400, Minneapolis, Minnesota,
Oct. 2000.

[4] A. Benveniste and G. Berry. The synchronous approach to reactive
real-time systems.Proceedings of the IEEE, 79(9):1270–1282, Sept.
1991.

[5] A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. L. Guernic,
and R. de Simone. The synchronous languages 12 years later.
Proceedings of the IEEE, 91(1):64–83, Jan. 2003.

[6] G. Berry. Preemption in concurrent systems. InProceedings of the
13th Conference on Foundations of Software Technology and
Theoretical Computer Science, volume 761 ofLecture Notes in
Computer Science, pages 72–93, Bombay, India, Dec. 1993.
Springer-Verlag.

[7] G. Berry and G. Gonthier. The Esterel synchronous programming
language: Design, semantics, implementation.Science of Computer
Programming, 19(2):87–152, Nov. 1992.

[8] F. Boussinot. FairThreads: mixing cooperative and preemptive
threads in C. RR 5039, INRIA, 2003.

[9] C. Boyapati and M. Rinard. A parameterized type system for
race-free Java programs. InProceedings of the Conference on
Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), pages 56–69, Tampa Bay, Florida, Oct.
2001.

[10] P. Brinch Hansen. The programming language Concurrent-Pascal.
IEEE Transactions on Software Engineering, 1(2):199–207, June
1975.

[11] P. Brinch Hansen. Monitors and concurrent Pascal: A personal
history. InHistory of Programming Languages II, pages 1–35,
Cambridge, Massachusetts, Apr. 1993.

[12] M. Burrows, K. Rustan, and M. Leino. Finding stale-value errors in

concurrent programs. Technical Report 2002-004, Systems Research
Center, Compaq, May 2002.

[13] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and
M. Sridharan. Efficient and precise datarace detection for
multithreaded object-oriented programs. InProceedings of the ACM
SIGPLAN Conference on Program Language Design and
Implementation (PLDI), pages 258–269, Berlin, Germany, June 2002.

[14] D. G. Clarke, J. M. Potter, and J. Noble. Ownership typesfor flexible
alias protection. InProceedings of the Conference on
Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), pages 48–64, Vancouver, British Columbia,
Canada, Oct. 1998.

[15] S. A. Edwards and O. Tardieu. SHIM: A deterministic model for
heterogeneous embedded systems. InProceedings of the
International Conference on Embedded Software (Emsoft), pages
37–44, Jersey City, New Jersey, Sept. 2005.

[16] S. A. Edwards and O. Tardieu. SHIM: A deterministic model for
heterogeneous embedded systems.IEEE Transactions on Very Large
Scale Integrated (VLSI) Systems, 2006. To appear.

[17] C. Flanagan and S. N. Freund. Type-based race detectionfor Java. In
Proceedings of the ACM SIGPLAN Conference on Program
Language Design and Implementation (PLDI), pages 219–232,
Vancouver, British Columbia, Canada, June 2000.

[18] C. Flanagan and S. N. Freund. Atomizer: A dynamic atomicity
checker for multithreaded programs. InProceedings of the
Symposium on Principles of Programming Languages (POPL), pages
256–267, Venice, Italy, Jan. 2004.

[19] C. Flanagan and S. Qadeer. A type and effect system for atomicity. In
Proceedings of the ACM SIGPLAN Conference on Program
Language Design and Implementation (PLDI), pages 338–349, San
Diego, California, June 2003.

[20] C. Fournet and G. Gonthier. The join calculus: a language for
distributed mobile programming. InApplied Semantics. International
Summer School (APPSEM), volume 2395 ofLecture Notes in
Computer Science, pages 268–332, Caminha, Portugal, Aug. 2002.
Springer-Verlag.

[21] C. A. R. Hoare.Communicating Sequential Processes. Prentice Hall,
Upper Saddle River, New Jersey, 1985.

[22] J. D. Ichbiah, B. Krieg-Brueckner, B. A. Wichmann, J. G. P. Barnes,
O. Roubine, and J.-C. Heliard. Rationale for the design of the Ada
programming language.SIGPLAN Notices, 14(6b):1–261, June 1979.

[23] INMOS Limited.occam 2 Reference Manual. Prentice Hall, 1988.
[24] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and

Y. Wang. Cyclone: A safe dialect of C,. InProceedings of the
USENIX Annual Technical Conference, pages 275–288, Monterey,
California, June 2002.

[25] G. Kahn. The semantics of a simple language for parallel
programming. InInformation Processing 74: Proceedings of IFIP
Congress 74, pages 471–475, Stockholm, Sweden, Aug. 1974.
North-Holland.

[26] R. Milner.Communicating and Mobile Systems: the Pi-Calculus.
Cambridge University Press, 1999.

[27] G. C. Necula, S. McPeak, and W. Weimer. CCured: Type-safe
retrofitting of legacy code. InProceedings of the Symposium on
Principles of Programming Languages (POPL), pages 128–139,
Portland, Oregon, Jan. 2002.

[28] T. M. Parks.Bounded Scheduling of Process Networks. PhD thesis,
University of California, Berkeley, 1995. Available as UCB/ERL
M95/105.

[29] G. D. Plotkin. A structural approach to operational semantics.
Technical Report DAIMI FN-19, Aarhus University, Åarhus,
Denmark, 1981.

[30] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson.
Eraser: a dynamic data race detector for multi-threaded programs.
ACM Transactions on Computer Systems, 15(4):391–411, Nov. 1997.

[31] The Coq Development Team.The Coq Proof Assistant Reference
Manual. INRIA. http://coq.inria.fr/doc/main.html.

[32] M. Vaziri, F. Tip, and J. Dolby. Associating synchronization
constraints with data in an object-oriented language. InProceedings
of the Symposium on Principles of Programming Languages (POPL),
pages 334–345, Charleston, South Carolina, Jan. 2006.

