
R-SHIM: Deterministic Concurrency with Recursion and Shared Variables
Olivier Tardieu and Stephen A. Edwards∗

Department of Computer Science, Columbia University, New York

Abstract
Concurrent programming languages are good for em-

bedded systems because they match the parallelism of their
environments, but most concurrent languages are nondeter-
ministic, making coding in them unwieldy.

We present R-SHIM, the core of a language with con-
current recursive procedure calls and disciplined shared
variables that remains deterministic—the behavior of a pro-
gram is scheduling-independent.
1. Introduction
We extend our SHIM model [1], based on CSP-style ren-
dezvous [2] with Kahn-like [3] determinism, with concur-
rent, recursive procedure calls and disciplined shared vari-
ables while guaranteeing its overall behavior remains inde-
pendent of scheduling decisions. R-SHIM provides famil-
iar by-value and by-reference mechanisms for passing in-
formation to called procedures and augments it with multi-
way rendezvous for communication among concurrently-
running procedures. The result is a Java-like language that
provides deterministic concurrency without requiring care-
ful attention to the use of semaphores or monitors found in
many concurrent programming languages.

2. The R-SHIM Language
R-SHIM consists of an imperative C-like language that in-
cludes local variable declarations and procedure calls, but
not pointers, augmented with concurrent procedure calls
(the par keyword) and rendezvous-style inter-process com-
munication through the next statement.
e ::= L | V | op1 e | e op2 e | (e) expressions
c ::= P(V (,V)∗) procedure calls
s ::= V = e; | next V; | c (par c)∗; statements

| { s∗ } | if (e) s else s | while (e) s | T V;

d ::= T V | T &V parameter declarations
p ::= void P(d(,d)∗) { s∗ } procedure declarations
p ::= p∗ void main() { s∗ } programs

L are literals, T types, V variables, and P procedures.
Parameters are normally passed by value; parameters

prefixed by an & are passed by reference. Each procedure
receives its own copy of a pass-by-value variable that it can
modify independently. To avoid aliasing problems, each
variable may be passed by reference at most once per group
of concurrent procedures.
void f(int a) { a = a + 1; } // a passed by value
void g(int &a) { a = a + 5; } // a passed by reference
void main() {
int a; a = 5;
f(a) par g(a); // a is 10 after the call

}

∗{tardieu,sedwards}@cs.columbia.edu Edwards and his group are sup-
ported by the NSF award, gifts from Intel and Altera, an award from the
SRC, and by New York State’s NYSTAR program.

Passing a variable to multiple concurrent procedures al-
lows it to be used to communicate among the procedures.
Concurrently-running procedures normally execute asyn-
chronously, but when a procedure executes next v on a vari-
able v, it waits for all other procedures that “know about”
v to synchronize before copying the master value of v to all
local copies. This is one-to-many rendezvous communica-
tion that can deadlock but remains deterministic.
void f(int a) { a = 3; next a; /* receive 5 */ }
void g(int &b) { b = 5; next b; /* send 5 */ }
void main() {
int c; c = 0; f(c) par g(c); /* c = 5 afterward */

}

Recursion is a key contribution of R-SHIM over the ear-
lier SHIM formalism. Concurrent, recursive procedure calls
can be used to spawn an arbitrary number of threads under
algorithmic control. The example below puts this to practi-
cal use by creating an n-place buffer by repeatedly calling
the buffer procedure. Arguments to fifo are the input chan-
nel, output channel, and the desired buffer size.
void buffer(
int i, int &o) {
while (1) {
next i;
o = i;
next o;

}
}

void fifo(int i, int &o, int n) {
int c; int m = n - 1;
if (m) {
buffer(i, c) par fifo(c, o, m);

} else {
buffer(i, o);

}
}

3. Semantics and Implementation
We have formalized R-SHIM’s semantics in the form of
SOS rules to express transitions between program states. A
state is a pair consisting of a residue—the code remaining to
be executed—and a store with variable values. The residue
is a tree of code fragments whose leaves run concurrently.
Calling concurrent procedures adds children, which disap-
pear on termination. Each tree node maintains a view that
binds variable identifiers to locations in the store. Proce-
dure parameters have a pair of locations—one for its current
value and one for the “shared” variable, i.e., copied by next.

We also have an R-SHIM compiler that generates single-
threaded C code. One challenge is that activation records
must be stored on a heap instead of a stack because of the
concurrency. The activation records contain links that are
used to determine when and where to communicate.

References
[1] S. A. Edwards and O. Tardieu. SHIM: A deterministic model

for heterogeneous embedded systems. IEEE Transactions on
Very Large Scale Integrated (VLSI) Systems, 2006. To appear.

[2] C. A. R. Hoare. Communicating Sequential Processes. Pren-
tice Hall, Upper Saddle River, New Jersey, 1985.

[3] G. Kahn. The semantics of a simple language for parallel
programming. In Information Processing 74: Proceedings of
IFIP Congress 74, pages 471–475, Stockholm, Sweden, Aug.
1974. North-Holland.

