Efficient Verification and Synthesis using Design Commonalities

Gitanjali Swamy

Boston Advanced Development Labs

Mentor Graphics, Boston,MA

Abstract

In this paper we solve the problem of identify-
g a “matching” between two logic circuits or “net-
works”. A matching is a functions that maps each
gate or “node” in the new circuit into one in the
old circuit (if a matching does not exist it maps it
to null). We present both an exact and a heuristic
way to solve the marimal matching problem. The
matching problem does not require any input corre-
spondences. The purpose is to identify structurally
wdentical regions in the networks, and exploit the
commonality between them for more efficient ver-
tfication and synthesis.

Synthests and verification tools that recognize
commonalities both between two wversions of the
same design, as well within a single design, may
be able to outperform their counterparts that do not
utilize these commonalities. This work is concerned
with detecting structural "matchings” that may be
re-utilized.

1 Introduction

We address the problem of finding a high qual-
ity matching between two networks. We compare
pairs of networks—combinational logic designs rep-
resented as directed acyclic graphs whose nodes are
generalized (multi-valued, non-deterministic) gates
and whose edges are generalized (multi-valued) con-
necting wires. We look for matchings, functions
M : N — N'"U {0} from each node in a new net-
work N to a node in the old network N’ or to “un-
matched” () such that if M (n) = n’, then the gates
at nodes n and n’ are identical (when their inputs
are permuted) and their fanins match (M (ng) = nj,

for corresponding fanins ny and n)). The qual-

Stephen Edwards Robert Brayton
University of California at Berkeley
Berkeley, CA

ity of a matching is the number of matched nodes
qg(M) = |[{n € N|M(n) # 0}|. We solve the prob-
lem of finding the maximum quality matching.

The ability to reuse parts of the design during
synthesis and verification is our primary motivation
for solving this problem. Our application was in-
cremental design analysis, where we have multiple
versions of the same design (generated by a com-
piler that lost the correspondences) and would like
to share similar information. However, any appli-
cation where input correspondences between design
are not available is a valid application for this tech-
nique. One example is verification under re-timing
[8], where latch correspondences get distorted and
lost. We may want to avoid re-computation of
information shared between the original and re-
timed design, but we do not have 1-1 correspon-
dences between the inputs and outputs. We can still
share functional and structural information between
node n and the corresponding matching node M (n).
Analysis can be done more efficiently by identifying
unchanged portions of a design and reusing the in-
formation computed for them. Our techniques may
also be used to identify common areas within a sin-
gle design, allowing common information to be com-
puted efficiently. This 1s particularly relevant in the
context of circuits generated after high-level synthe-
sis, where we may have multiple instantiations of the
same module that lead to similar structures in the
circuit, and we would like to avoid re-computation
for each instantiation.

This common information can be used to create
more efficient synthesis and verification algorithms.
It must be stressed that even though the experiment
we ran used verification to illustrate this technique,
the focus of this work is how to identify the design
commonalities.

In the context of synthesis and verification, a de-
sign commonality or matching corresponds to struc-

turally identical transitive fanin cones of the design
that start at a node and contain all the nodes and
wires in its transitive fanin. We choose to identify
these because the global function at a node is a func-
tion only of its transitive fanins. An example is the
transition function [12], used frequently in formal
verification and usually computed using BDDs [4].
Identifying matching nodes allows us to compute
the new BDD by substituting variables, which can
be done efficiently. For example, the BDD for f(b)
can be obtained from a BDD for f(a) by substi-
tution, even though a and b are different primary
inputs altogether.

The approach we propose does not require any
additional matching information (e.g., correspon-
dences between the primary inputs). We expect
most designs we compare will be the output of
a compiler that does not usually supply any cor-
respondence information. An alternative would
be to use names to guess correspondences, but
this is insufficient when names are automatically
generated—they are often very sensitive to small
changes in a design. Finally, by not assuming in-
put correspondences, our algorithms can be applied
to more general problems such as identifying iden-
tical structures within the same design. Keep in
mind that if the input correspondences were avail-
able, there are more efficient techniques to solve the
problem.

We propose a greedy three-phase algorithm to
find a good matching. First, nodes with identi-
cal functions are identified. Next, this information
1s combined with connectivity information to find
nodes that have identical structures in their transi-
tive fanins. Finally, the matchings implied by these
nodes are combined into a high-quality matching.
We use both a greedy heuristic, as well as an exact
formulation.

It is not correct to compare Brand et al’s [1]
work on incremental synthesis with this work, be-
cause they require knowledge of input correspon-
dences and can only detect regions that start at the
inputs and have the exact same function.

Another relevant piece of work by Burch et al [5]
solves a functional matching problem that does not
require input correspondence information. How-
ever, they are only comparing Boolean functions,
and their approach does not generalize to circuit
designs. Note that one sub-problem in our network
matching is node function matching, which could
use Burch’s approach. However, our main objective

is to get a quick matching rather than the exact
node function matching. We adopt a similar notion
of a semi-canonical form, but our form is simpler
(and hence faster) at the expense of some precision.
Also, we deal with more general multi-valued func-
tions [2], rather than just binary.

2 Network Matching

We assume the reader is familiar with the fol-
lowing concepts: A metwork N or netlist of logic
gates is characterized by a set of nodes n or logic
gates with three associated functions: func(n) is the
function of the node, fanins(n) € {0,1,...} is the
number of fanins of the node, and fanin(n, k) €
N,k ={1,...,fanins(n)} is the kth fanin of the
node. The entire set of fanins of fanins etc are de-
noted as the transitive fanins ¢ f(n).

In general, this problem is hard; it is easy to see
that an wnstance of sub-graph tsomorphism can be
reduced to an instance of this problem, making it
NP-hard.

Our aim 1s to find a node in the old network for
each node in the new network, with information we
can use for its analysis. This information, by as-
sumption, is only a function of the node and its
transitive fanin. Thus, the matching node in the
old network must have an identical transitive fanin
(only up to the inputs). In any case, we can use in-
formation computed for a node to get the same in-
formation for its matching node, irrespective of the
primary inputs involved. For example, the BDD for
f(b) can be obtained from a BDD for f(a) by sub-
stitution, even though a and b are different primary
inputs altogether.

We cannot use the technique of using the simu-
lation signatures of nodes to distinguish them, be-
cause we do not have an input correspondence. We
identify the set of all potentially matching nodes
(called candidate pairs) and combine a compatible
subset of these to form the matching. In Section 4,
we show that the problem of finding the best subset
can be reduced to finding a maximal prime compat-
ible. In Section 5, we present a greedy algorithm for
finding a good subset.

The following definition characterizes which
nodes we might consider matching. Informally, two
nodes could match if their functions are identical
and their respective fanins could match.

Definition 1 A pair of nodes

ni,ne is a candidate pair (denoted ny ~ ns) if
func(ny) = func(nz), fanins(ny) = fanins(ns), and
Vi=1,... fanins(n,)fanin(ny, k) ~ fanin(ns, k). Note
that the correspondence between the fanins is de-
termined by reducing the node function representa-
tion to some semi-canonical form, and noting that
in that form, the ith variable for (canonical) node
function for n must correspond with the ith variable
for the (canonical) node function for n'.

This is of course an approximation, since there
may be several permutations of fanins where
func(ny) = func(nz). Note that this definition im-
plies that all primary inputs may match with each
other. We add the caveat that the primary inputs
may match provided they can take the same set of
values, 1.e. a primary input that can take values
0, 1, 2 cannot match with a primary input that takes
values 0,1,2,3,4,5.

Not all candidate pairs lead to consistent match-
ings. Specifically, it may be necessary to match a
node in the new network to two or more nodes in
the old network simultaneously. This is particularly
nonsensical in the case of zero-fanin nodes, which
represent inputs to the network. Figure 1 depicts a
contradictory situation.

NEW OLD

—h

ACHEOIO

Figure 1. A candidate pair (ny ~ nf{) with no
consistent matching.

Formally, the consistency constraint requires a
matching to be a function mapping each node in
the new network either to a matched node in the
old network, or to “unmatched,” represented as (.

Definition 2 Given two networks N (the new
network) and N' (the old network), a match-
ing is a function M : N — N’ U {#}
such that M(n) # O wmplies (n ~ M(n)

and Yk = 1,..

, M (fanin(n, k)) =
fanin(M (n), k)).

., fanins(n)

Note: This definition implies that if M (n) A¢, then
Vng € tf(n), M(n,) £¢.

OLD

2() ()

Figure 2. A matching with q(M

fZ@ f2
)=3

Our objective is to find a matching that maxi-
mizes the number of matched nodes (called the qual-

ity of the match), i.e. those for which M(n) £¢.

Definition 3 The quality of a matching M is
the number of matched nodes, ie., q(M) =

[{n | M(n) #0}|.
Definition 4 If it exists, the implied matching
of a candidate pair ny ~ no s
M(nl) = N2
Vi M (fanin(ng, k))
M(n) =

B, n¢tf(n)

Theorem 2.1 An implied matching is a matching.
Proof.

1. V& = 1,... /fanins(n), M (fanin(n, k)) =
fanin(M (n), k).

2. M 1s a function.

O

We will be combining implied matchings to
form bigger matchings, but some pairs of implied
matchings—those that map a node in the new net-
work to two different nodes in the old—cannot be
combined. We need a formal definition of which
matchings can be merged:

Definition 5 A pair of matchings My and M5 are
compatible (written My = Ms) if (Mi(n) # 0) A
(M3(n) # 0) = Mi(n) = Ms(n).

fanin(M (ng), k), ng € tf(ny) U {ni}

Note that compatibility is not transitive; i.e.
M, = M,, and M> = Ms, does not imply that
M, = Ms.

Definition 6 The merge of two matchings My
and Ms, written M, + My, s the function

M>(n)

(M1 + Ms)(n) :{ Ml if Mi(n) =10

otherwise

Lemma 2.2 If My = M,, then My + Ms is a
matching and M1 + My = Ms + My, i.e. merging
1s commutative. Moreover, if in addition My = Ms
and M1 = Mg, then (M1 —|—M2)—|—M3 = M1—|—(M2—|—
Ms), i.e. merging is associative.

Proof. My & My < ¥, (Mi(n) £ 0) - (Mz(n) #

M2 n lfM1 n :0
(M + Ms)(n) :{ Mlﬁni if Mlgn; 0
M1 n lfM2 n :0
(M2+M1)(n)={ Mzgn; iszgngyé@

1if My # 0, My # 0.
= M+ My =My = My = My + M.

9. if My = 0, Ms # 0.
= My + My = My = My + M.

3. 0f My £ 0, My = 0.
= My + My =My = My + M.

4. if My =0, My = 0.
I>M1+M2:®IM2—|—M1.

= M + My = Ms 4+ M;. Associativity proved in a
similar manner, i.e. by enumerating all possibilities.
O

Lemma 2.3 Merging only improves quality, t.e., if
M1 ﬁ Mz, then q(Ml),q(Mz) S q(Ml —|— Mz)

Proof. Assume not.

= 3n st (Mi(n) #0) - (M1 + M2)(n) =
Mi(n) # 0 = (My + Mz)(n) = My(n) #
= (My + Ms)(n) # 0.

A contradiction, hence An st (Mi(n)
Ma)(n) = 0.

= q(My) < q(M, + Ms). O

0.
0.

0) - (M +

Partition nodes in both networks by function

Refine this partition s.t. all nodes in a bucket have
fanins in the same buckets

Form all candidate pairs by considering all pairs of
nodes in each bucket

Sort, the candidate pairs by the number of nodes in
their transitive fanin

Figure 3. Identifying compatible nodes.

3 Determining Matchings: A Re-

finement Algorithm

In order to determine the entire set of implied
matchings, we use the following iterative algorithm.
We begin by assuming all nodes whose node func-
tions are matched to be matched. We implement
this algorithm with a hash table. Nodes with the
same node function are put into the same initial
“bucket” in the hash table. The canonical form of
the node function imposes a certain order on the
fanins of the node. If two node functions in canoni-
cal form are equal, then the fanins node correspond-
ing to ¢th variable of the node function, must cor-
respond. We refine the node matchings iteratively,
by “un-matching” two nodes, if some of their cor-
responding fanins are un-matched. We accomplish
this by re-bucketing each node in the hash table. At
each iteration, the new bucket signature of a node
consists of its table signature (canonical form) and
the bucket numbers of its fanins (in the order im-
posed by their node function tables). Thus, if at
some iteration, any nodes in the same bucket have
corresponding fanins in different buckets, then af-
ter that iteration, these nodes get put into different
buckets.

This algorithm is similar to the algorithm for the
computation of equivalent states in an FSM [6], [12].
After this refinement, all pairs of nodes in a bucket
are candidates. The algorithm is shown in Figure 3.

Note that at th ith iteration of this algorithm,
nodes that match up to at least ¢ levels of fanin are
identified. Thus, though we have described a proce-
dure that matches entire cones, this procedure can
be modified to match sub-regions by restricting the
number of iterations of the refinement procedure, or
keeping track of all buckets seen during the refine-
ment process.

4 An Exact Formulation

Once we have a set of consistent matchings (Sec-
tion 3), we address the problem of finding a maxi-
mum compatible matching exactly.

Lemma 2.3 indicates that merging compatible
matchings gives higher quality matchings. In this
section, we use this idea to exactly characterize the
problem of finding the maximal quality matching.
We show that the maximal matching is a “prime”
matching—one for which merging in other match-
ings is either impossible or unproductive.

Lemma 4.1 If M s the sum of a finite number of
compatible implied matchings then it is a matching,
€., Vi,jMz’ = Mj and M = My +Ms+---+ M, =
M is a matching .

Proof. Follows from the definition of matching,
implied matching, and Lemmas 2.2. O

We can define a dominance relation [7] [11] as
follows:

Definition 7 A matching M; dominates
a matching Ms (written My > M) if M1 = M,
and M1 —|—M2 = Ml.

Definition 8 A prime matching is one that is not
dominated by any other matching.

Lemma 4.2 If My is a prime matching, and My >
Ma, then q(My) > q(M2)).

Proof. Since My > My, M1 = My = M, = My +

M.

Lemma 2.3 implies q(M2) < q(M1 + Ms). Since

My 4+ My = My, it follows that q(M2) < q(M;). O
We can reduce maximal or prime matching to a

prime generation problem in the following manner.

1. Associate a Boolean variable u; with each
matching M;. u; = 1 implies M; is part of
the given matching.

2. For each pair of matchings M; and M; that are
not compatible M; /~=Mj, construct a clause
(W + u;). This means either M; must not
be in the partition or M; must not be in the
partition.

3. logically AND all such clauses to get a func-
tion f(u).

4. A prime of function f(u) corresponds to a
compatible set of matchings. The maximal
prime corresponds to a maximal matching.

Theorem 4.3 A mazimum matching is a prime
matching and can be built from a set of compatible
implied matchings.

Proof. Follows from Lemmas 4.1 and 4.2. O

Thus, from the above the problem of finding the
maximum matching is one of finding the maximum
quality prime. We can do this naively by enumerat-
ing each prime matching and calculating its quality
(in actuality, we implement a slightly more efficient
procedure). However, since the number of primes
of a set of n elements is O(3"/n) [10] and n can
be O(N?), where N is the number of nodes in each
network, 1t is often impractical to explicitly search
the entire set of primes. This worst case comes when
the network consists of a set of zero-fanin nodes with
identical functions.

5 A Greedy Algorithm

The exact method cannot handle large examples;
we extend the scope of the examples by using the
following heuristic algorithm. Our heuristic algo-
rithm finds the set of all candidate pairs with im-
plied matchings and merges them greedily, trying
the highest quality ones first.

First we used the refinement procedure of Sec-
tion 3 to identify candidate pairs. Once the can-
didate pairs are identified, we build a matching
by merging together compatible implied matchings.
We consider candidate pairs one at a time, start-
ing with those with the largest number of nodes in
their transitive fanins, and “grow” a matching by
merging each compatible implied matching.

The entire algorithm is shown in Figure 4. In
Section 7, we report the performance of our imple-
mentation of this algorithm against the exact algo-
rithm.

6 Table Matching: Matching Node
Functions

In this section, we discuss how to identify
whether two node functions are identical if we do
not have an input correspondence. This is known
as Boolean matching, and is a well studied problem.

Partition nodes in both networks by function
Refine this partition s.t. all nodes in a bucket have
fanins in the same buckets
Form all candidate pairs by considering all pairs of
nodes in each bucket
Sort, the candidate pairs by the number of nodes in
their transitive fanin
M (n) = 0, the empty matching
for M, largest to M; smallest
it M= M;
M =M+ M,
RETURNM

Figure 4. The greedy matching algorithm.

For our experiment, we are looking for a quick es-
timator of whether two node functions, represented
as node function tables match.

The nodes in our networks have discrete-valued
functions (a generalization of Boolean functions) as-
sociated with them. These are represented in BLIF-
MV-style tables [2], such as that in Figure 5. Each
column on the left represents an input variable, and
each row is a pattern that, when the inputs match
it, produces the output in the rightmost column.
Each entry is either a single value (e.g., 3), a set
of values (e.g., 1,2,5), or the set of all values (i.e.,
“~). Note that BLIF-MV permits symbolic values
of the form red, blue, greeen, which are represented
as the values 0,1, 2.

Figure 5 represents a function f(xy,z2, #3) that
18 3 when zy = 0 and x5 = 2 or 3, or when z, = 1;

18 0 when z; = 1, 22 = 0, and #3 = 1; and is 1
default.
r1 w3y w3 f
0 23 -3
- 1 - 13
1 0 110
default 1

Figure 5. A multi-valued table. zi, x5, and
x3 are the input variables.

We want to be able to quickly identify tables
that compute the same function. Transforming each
table into a permutation-invariant canonical form
is an approximate approach to solving this prob-

lem; different tables that are not equivalent modulo
permutations may also compute the same function.
Computing a canonical form (modulo all permuta-
tions) is much more expensive([5]); in the interests
of quick computation, we have opted for this sim-
pler semi-canonical form. For example, the tables
shown in Figures 5 and 6 are essentially identical
modulo a row column permutation, and there is an
identical permutation semi-canonical form for both
of them, which can be used to identify this.

vi vz ys f
- - 1 3
- 0 2313
1 1 0 0

default 1

Figure 6. A multi-valued table. v, y», and
ys are the input variables.

Definition 9 Two
permutation equivalent if one can transformed
to the other by permuting the rows and columns.

tables are

We assume that the values in each entry are always
ordered, so that we do not have to distinguish be-
tween 2,3 and 3,2. To make this entry compact,
we use ordered lists of ranges, i.e. 2 —5,7— 8, to
represent each entry.

Definition 10 A function is canonicalizing iff it
maps all permutation-equivalent tables to a single
table, which s called the permutation-invariant
canonical form of the table.

A function is canonicalizing if it imposes a
permutation-invariant total order on rows and
columns and then sorts the rows and columns based
on this. Finding such a total order is difficult and
expensive, so we resort to an order that is partial
for certain tables. We count the number of times
a particular value appears in the entries in a row
or column and order the rows and columns based
on this sum. The reason we use this “addition” of
the number of times a value occurs in a column as
a hash function is because we need a permutation
invariant canonical form.

Consider the table in Figure 7. If we order the
rows and columns according the number of 1’s that

HM[\DT

L = = =
N O ==
—_O = O

So=

Figure 7. A simple table annotated with the
number of 1's in each row and column.

appear in each row and column, we obtain the table
in Figure 8. We were fortunate in this example,
since the number of 1’s in each row and column is
different, but in general, this strategy only produces
semi-canonical tables.

0 0 1 1

01 1 2

1 1 1 3
= 1 2 3

Figure 8. The table in canonical form

We can extend these ideas to tables with set-
valued entries by converting each entry to an in-
teger. First, each set 1s transformed to a vector
of 0’s and 1’s. Each 1 represents the presence of
a value in the set; each 0 represents the absence,
e.g., the entry 2,3 would be represented as a vector
(1100). A bitwise sum of all such vectors in a row
or column (zero-extending them if necessary) gives
a vector than can be used to impose a partial or-
der. E.g. The bitwise sum of (2,3) = (1100) and
(0,1,2) = (0111) is (1211). (1211) denotes that in
the given column there is one 0 value, one 1 value,
two 2 values and one 3 value.

These vectors can be transformed to integers to
make them easier to manipulate.

Intuition

Note that in a table with n rows and m columns,
the total number of 1’s in a position in a column
cannot exceed n. Similarly, the total number of 1’s
in a row cannot exceed m. By transforming these
vectors to base b = max{m,n} + 1 integers, we can
sum the integers in a row or column, and still en-
sure that each column sum only includes informa-
tion about that column (no carry between (value)

110
10 1
Figure 9. Identical tables

positions). For example, if each entry in a column
is the entry 2 = (0100), and there are 15 columns.
The bitwise sum for the column is 0F'00; F' denotes
15 in base 16. If we were to represent the number in
base 10, then the sum would be (1500), and due the
carry we cannot distinguish between fifteen 2 entries
versus one 3 and five 2 entries. Under this repre-
sentation permutation equivalent rows or columns
have the same sum. This may result in some ambi-
guity. Consider the two tables shown in Figure 9;
both rows of the given tables have the same sum,
and hence are indistinguishable. If this ambiguity
1s never resolved, then these two rows will never be
interchanged. Thus, the fact that the two tables
are identical will not be detected. This issue can be
resolved by using a secondary tie breaker like the
position of the first 1 entry. In general, this prob-
lem is part of a larger problem of ”symmetries” [9].

Definition 11 For a table with n rows and m
columns, let m; be the mazimum value of the in-
put variable in column j, and let E;;(k) be 1 if the
entry in row ¢ and column j contains the value k
and 0 otherwise. The numerical representation of
this table is an n x m matriz T with entries

tij =Y U Eij(k)
k=0

It is clear that each subset of values at a table
entry has unique encoding ¢;;. Figure 10 shows the
table of Figure 5 converted to a matrix of natural
numbers. For this table, (1 + max{m,n}) = 4. As
an example, the entry 2,3 i1s converted to a base
four number: ¢ 5 = 490441 0447-1443-1 = 80.

Definition 12 In an m x n table (t;;), a row i is
before row k if Z;:l ti; < 2;21 ty;. A column j
is before a column k if S0 ti; < S0t tik.

O = O
oo oo
S s
= = OO
—
s

Z: 1

Figure 10. The table converted to a matrix
of natural numbers.

4 4 1
5 5 4
1 5 80

Figure 11. The tablein semi-canonical form

Definition 13 The semi-canonical form of a ta-
ble t;; 15 a permutation of the rows and columns of
t;; such that if row © is before row k then i < k, and
of column j is before column k then j < k.

Figure 11 shows the table in Figure 10 converted
to semi-canonical form.

Theorem 6.1 A table in semi-canonical form rep-
resents the same function as the original table under
some permutation of variables.

Hence two tables with the same semi-canonical
form represent the same discrete function.

7 Experiments and Results

We have implemented the algorithms described
in the VIS [3] environment.

In order to to test our procedure, we designed the
following experiment. We assume that the design
has been read in, and the designer has computed the
output function BDDs of each node (as functions
of the primary inputs). At this point the designer
modifies the original design by either changing the
functionality, or just re-optimizing the hardware for
some other objective. The designer would like to
use the BDDs computed for the old network to effi-
ciently compute the BDDs in the new network. Ob-
viously, we assume that there is a sufficient amount
of structural similarity between the old and the net-
work design. To emulate a design change, we took

Example | Non-Inc Inc Match Total
Time | Time Time Time

bigkey 1| 0.183 1.65 1.883
cordic_latches 2.367 | 0.066 1.7 1.766
clma 11.6 0.8 11.78 12.68

clmb 11.45 0.8 10.45 11.25

des 2.884 | 0.017 1.967 1.984

110 13.334 | 0.067 1.867 1.934
minmax10 | 800.734 0.2 0.35 0.55
minmax12 | 352.634 0.25 0.467 0.717
mm9Y9a 27.034 | 0.033 0.35 0.383
mm9b 526.0 0.2 0.367 0.567
pair 1.434 | 0.884 0.466 1.35
$13207 1.6 | 0.217 18.734 18.941
$1423 1.783 | 0.133 0.317 0.315
s15850 31.617 | 0.267 12.317 12.584
$38584 10.85 1.35 | 138.434 | 139.784

Table 2. Incremental Vs. Non_Incremental
Update

MCNC, ISCAS and VIS benchmark examples and
modified them to obtain a circuit called “new”. The
original benchmark spec corresponds to the “old”
design.

As an experiment we built the function BDDs
associated with the “old” design. This is done re-
cursively, by building the BDD at each node as a
function of the BDDs of its fanin nodes. Next, we
ran the matching algorithm on the old and new de-
signs. If there existed a match from a node in the
new network, to the old, we re-used the BDD for
the old node by merely substituting the old net-
work BDD variables with the corresponding BDD
variables in the new network. If there was no match,
we re-computed the BDD by using the BDDs com-
puted for the fanin nodes of the new node. We re-
ported time for this incremental computation (Inc
Time) as well as the time for computing the match-
ing (Match Time). We also built the BDDs for the
new network from scratch, and reported this non-
incremental time (Non-Inc Time).

Table 1 reports the quality of the matching Vs.
the time to match the examples. Columns 2 and 3
list the number of inputs and outputs in the circuit
respectively. The outputs include both the primary
outputs and latch inputs for non-combinational cir-

Example il # | t Nodes | f Nodes | Initial | Refine | Match
Inputs | Outputs Total | in Match | Time | Time Time

bigkey 262 197 1369 791 | 0.317 | 0.033 1.567
clma 382 115 11382 10973 | 4.766 | 3.534 | 11.783
clmb 382 33 10842 10407 | 4.634 | 3.416 10.45
cml163a 16 38 68 11] 0.017 0 0.017
cordic_latches 23 2 3468 2873 0.35 | 0.267 1.617
110 257 224 2754 2750 | 0.284 0.6 1.734
minmax10 13 40 723 87 | 0.033 | 0.117 0.15
minmax12 15 48 914 104 | 0.066 0.15 0.233
mm9Ya 12 36 830 637 0.05 0.05 0.316
mm9b 12 35 714 106 | 0.067 | 0.083 0.167
s13207 31 790 10065 8713 0.75 | 1.333 | 18.583
s1423 17 79 1199 298 0.1 | 0.083 0.317
s1488 8 25 711 97 | 0.084 | 0.083 0.184
51494 8 25 658 34| 0.083 | 0.083 0.183
s15850 14 683 11591 10272 | 0.933 | 1.684 | 12.183
s38584 12 1730 23775 20839 | b.767 | 7.267 | 138.434

Table 1. Quality and Time to Match

cuits. Columns 4 and 5 list the total and matched
number of nodes in the network respectively. The
matching times are listed by its component; i.e.
time to get the initial matching(Initial Time), time
to refine the partition(Refine Time), and time to
generate matching in Column 6, 7 respectively, as
well as the total time to match (Match Time = ini-
tial 4+ refine +time to generate and evaluate the
quality of the entire matching cones), in Column 8.
Since we used an explicit matching algorithm, it is
rightly observed that as the size of the matching in-
creases so does the time to match. The dominant
portion of the time appears to be spent in gener-
ating the matching rather than the refinement or
initial time.

Table 2 reports the times for the non-incremental
BDD computation (Column 2) Vs. the incremental
BDD computation (Column 3) and total matching
time (Column 4). The times for incremental BDD
computation alone were always better than the non-
incremental time (obviously using previously com-
puted information is better than no information).
However, when we add in the matching time, this
1s not always the case.

Of the reported example (we only considered
those with more than 1 sec of CPU time for non-
incremental BDD building), most have significantly

better total times for the incremental procedure
(match time 4 incremental time) as compared to
the non-incremental procedure. Only 2 had signif-
icantly worse time for the incremental method, 3
had approximately equal times and the rest always
reported better times (incremental + matching) for
the incremental method.

We also report the results on the exact compu-
tation (Section 4)as compared to the heuristic (Sec-
tion b). The exact method ran out of memory much
faster, and hence we were only able to deal with
small examples with the exact method. However,
Table 3 shows that for examples where the exact
method could complete, the heuristic answers were
almost always the same.

We only report examples with significant time
to build BDDs with the given order. Though our
techniques extend to multi-valued examples. We
were not able to find multi-valued examples in our
set, with large enough BDD time, so their results
are not significant and have not been reported.

We have shown that for small examples the exact
answer 1s almost identical to our heuristic. This
demonstrates the effectiveness of our heuristic.

We examined the one example where the match-

ing time far exceeded the non-incremental time, and
found that the cause of this problem was the large

Example | Heuristic § Nodes | Exact § Nodes
in Matching in Matching

apex7 12 12
bbsse 23 23

c8 15 16
cml63a 11 11

12 48 48

markl 18 18
minmax10 87 87
minmax12 104 104
mult32b 253 253
term1 62 62

Table 3. Exact Vs. Heuristic Common Sub-
structures

symmetry in the circuit coupled with the large size
of the circuit. There were many possible matchings,
and examining them all, while determining the qual-
ities of matchings was expensive. As part of future
work, the work of Malik [9] to detect symmetries
could be used to speed up our computation. We
found that as we increased the size of the example,
the matching time increased significantly. This is
due to our explicit formulation of the matching al-
gorithm. As future work an implicit formulation of
the matching algorithms can used to overcome some
of the size limitations (implicit prime generation).

Our techniques could be extended to deal with
matching arbitrary sections of the network, rather
than the entire transitive fanin cone. One applica-
tion would be finding structurally identical sections
within a single network, so that information com-
puted at one section may be re-used for another
structurally identical portion.

References

[1] D. Brand, A. Drumm, S. Kundu, and P. Narain.
Incremental Synthesis. In Proc. Intl. Conf. on
Computer-Aided Design, pages 14-18, Nov. 1994.

R. K. Brayton, M. Chiodo, R. Hojati, T. Kam,
K. Kodandapani, R. P. Kurshan, S. Malik,
A. L. Sangiovanni-Vincentelli, E. M. Sentovich,
T. Shiple, K. J. Singh, and H.-Y. Wang. BLIF-
MV: An Interchange Format for Design Verifica-
tion and Synthesis. Technical Report UCB/ERL
M91/97, Electronics Research Lab, Univ. of Cali-
fornia, Berkeley, CA 94720, Nov. 1991.

(2]

10

[3] R. K. Brayton et al. VIS: A System for Verification
and Synthesis. In Proc. of the Conf. on Computer-
Aided Verification, pages 428-432, 1996.
R. Bryant. Graph-based Algorithms for Boolean
Function Manipulation. ITEEF Trans. Comput., C-
35:677-691, Aug. 1986.
J. Burch and D. Long. Efficient boolean function
matching. In Proceedings of IEEE/ACM Inter-
national Conference on Computer-Aided Design,
pages 408-411, November 1992.
J. Hopcroft. An nlogn algorithm for minimizing
In Z. Kohavi and
A. Paz, editors, Theory of Machines and Computa-
tions. Proceedings of an International Symposium
on the Theory of Machines and Computations.,
pages 189-196, Haifa, [sreal, 1971. Academic Press.
T. Kam, T. Villa, R. Brayton, and A. Sangiovanni-
Vincentelli. A Fully Implicit Algorithm for Exact
State Minimization. In Proc. of the Design Au-
tomation Conf., pages 684—690, June 1994.
C. E. Leiserson and J. B. Saxe. Optimizing Syn-
chronous Systems. Journal of VLSI and Computer
Systems, 1(1):41-67, Spring 1983.
S. Malik, J. Mohnke, and P. Molitor.
of Using Signatures for Permutation Indepedant
Boolean Matching. In Proc. Intl. Workshop on
Logic Synthesis, Tahoe, May 1995.
E. J. McClusky. Minimization of Boolean Func-
tions. Bell System Technical Journal, 35, 1956.
G. M. Swamy, P. Mcgeer, and R. K. Brayton. An
Exact Logic minimizer using BDD based Methods
Technical Report ”Masters Thesis” UCB/ERL
M93/94, Electronics Research Lab, Univ. of Cali-
fornia, Berkeley, CA 94720, 1993.
H. Touati, H. Savoj, B. Lin, R. K. Brayton, and
A. L. Sangiovanni-Vincentelli. Implicit State Enu-
meration of Finite State Machines using BDD’s. In
Proc. Intl. Conf. on Computer-Aided Design, pages
130-133, Nov. 1990.

[4]

states in a finite automaton.

Limits

[10]

[11]

[12]

