
An Efficient Algorithm for the Analysis of Cyclic Circuits

Osama Neiroukh∗

Intel Corporation

osaman@ichips.intel.com

Stephen A. Edwards†

Columbia University

sedwards@cs.columbia.edu

Xiaoyu Song

Portland State University

song@ece.pdx.edu

Abstract

Compiling high-level hardware languages can produce
circuits containing combinational cycles that can never be
sensitized. Such circuits do have well-defined functional be-
havior, but wreak havoc with most logic synthesis and tim-
ing tools, which assume acyclic combinational logic. As
such, some sort of cycle-removal step is usually necessary
for handling these circuits.

We present an algorithm able to quickly and exactly
characterize all combinational behavior of a cyclic circuit.
It iteratively examines the boundary between gates whose
outputs are and are not defined and works backward to find
additional input patterns that make the circuit behave com-
binationally. It produces a minimal set of sets of assign-
ments to inputs that together cover all combinational be-
havior. This can be used to restructure the circuit into an
acyclic equivalent, report errors, or as an optimization aid.

Experiments show our algorithm runs several orders of
magnitude faster than existing ones on real-life cyclic cir-
cuits, making it useful in practice.

1 Introduction

Cyclic circuits can be produced inadvertently during

high-level synthesis and are also the most compact repre-

sentation for certain circuits such as arbiters [11]. For cer-

tain input patterns, such circuits are well-behaved (func-

tional), i.e., do not exhibit oscillations or state-holding be-

havior. Despite this, most circuit analysis tools forbid the

presence of cycles. The central challenge of cyclic cir-

cuits is their data-dependent evaluation order, meaning their

gates have no topological order. This causes difficulties for

many tools such as static timing analyzers that rely on such

a static order. Furthermore, applying regular logic simula-

tion to these circuits is cumbersome.

∗Neiroukh is sponsored by Intel Corporation
†Edwards is supported by an NSF CAREER award, a grant from Intel

corporation, an award from the SRC, and from New York State’s NYSTAR

program.

ba NM

a b M N

0 0 0 0
0 1 0 1
1 0 X X
1 1 1 1

Figure 1: A trivial cyclic circuit and its truth table

Consider the small cyclic circuit in Figure 1. From its

truth table, we see the circuit is well-behaved unless a = 1
and b = 0. For all other input patterns, the circuit behaves

combinationally because the feedback loop is broken by a

controlling input on one of the gates. A partial assignment
is an assignment to one or more inputs to the loop; {a = 0}
is one such partial assignment. Our algorithm produces

a set of partial assignments that provide a concise repre-

sentation of the conditions under which a cyclic circuit is

well-behaved. For example, the set of partial assignments

{{a = 0}, {b = 1}} constitutes necessary and sufficient

conditions for combinational operation of the circuit in Fig-

ure 1: at least one of these must hold in order for the circuit

to operate functionally.

In this paper, we present a novel algorithm that can

rapidly identify all possible combinational behavior of a

cyclic circuit. The algorithm takes a circuit containing one

or more loops and produces a set of partial assignments that

represent every condition under which the circuit behaves

combinationally. Our algorithm relies on the fact that gates

such as ANDs and ORs have controlling inputs (0 and 1 re-

spectively) that break feedback loops to aggressively prune

the search space. The set of partial assignments our algo-

rithm produces can be used to rule out non-constructive op-

eration of circuits produced by high level compilers such

as Esterel [2], or they can be used to create an equivalent

acyclic circuit [5].

2 An Example

Consider the cyclic circuit in Figure 2. In general, our

algorithm analyzes a circuit one strongly-connected com-

c

g
d

f

e
b

a

U

Z

Y

Q S

R

T

V X

W

(a) A cyclic circuit

Assignment Frontier At Frontier Acyclic
{a = 0} {} √
{b = 0} {V } R = 0
{c = 0} {V } U = 0
{d = 1} {V } U = 0
{e = 0} {Z} W = 1
{f = 1} {Z} X = 1
{g = 0} {Z} Y = 1
{g = 1} {Z} X = 1

(b) First step: applying controlling values to each input in isolation

Gate Assignment Frontier Acyclic
V {b = 0, c = 0} {} √
V {b = 0, d = 1} {} √
Z {e = 0, f = 1, g = 0} {} √

(c) Second step: Merged partial assignments from first step

{a = 0}
{b = 0, c = 0}
{b = 0, d = 1}
{e = 0, f = 1, g = 0}

(d) Final result: A minimal set of partial assignments that produce all

combinational behavior

Figure 2: Illustration of our algorithm.

ponent (SCC) at a time, but this example consists only of a

single SCC.

Our goal is to find a small set of partial assignments of

values to inputs that, together, “cover” all the combinational

behavior of the circuit. That is, we want an input vector to

be combinational if and only if it is a subset of one of our

partial assignments.

Our algorithm begins by considering applying a control-

ling value to each input in isolation. Such a controlling

value—a 0 input on an AND gate, a 1 applied to an OR

gate—by definition forces the output of the gate to a given

value regardless of the other inputs. Such inputs are re-

quired to “cut” the SCC and make it behave combination-

ally. We formalize this later in Theorem 1.

Figure 2b summarizes the results of these initial assign-

ments. First, note that when the a input is 0, the circuit is al-

ways combinational because 0 is a controlling value on gate

Q, effectively breaking the Z → Q feedback loop. We in-

clude the assignment {a = 0} as part of our minimal cover

and will not consider any further assignments that contain

{a = 0} (Theorem 2).

Consider what happens when we set b = 0. Although

this is a controlling value for gate R (its output becomes 0
regardless of Q), by itself this is not enough to force the

whole circuit to behave combinationally because a 0 on R
is a non-controlling value on the OR gate V . We refer to

all such gates as the frontier induced by a partial assign-

ment (see Definition 4) because they define the boundary

between combinational and possibly non-combinational be-

havior. Think of such gates as being the cause of a logjam;

the next step in our algorithm is to break logjams.

The key step in our algorithm, and its main improvement

over Edwards [5], attempts to break these logjams by look-

ing for promising combinations of partial assignments that

affect the same frontier gates. Only two gates, V and Z,

appear in any frontier; we will attempt to set the outputs of

these gates by judiciously combining sets of partial assign-

ments that might completely define values at inputs of these

gates.

To break the logjam at V , we consider subsets of the

three partial assignments that affected its inputs, i.e., {b =
0}, {c = 0}, and {d = 1}. By definition, each of these

set at least one of the inputs to V to a non-controlling value

(0, because V is an OR gate). We can break the logjam by

setting all of V ’s inputs to non-controlling values, i.e., by

setting R = 0 and U = 0. To set R = 0, we need b = 0, but

there are two ways to set U = 0: c = 0 and d = 1. Thus we

decide to consider the partial assignments {b = 0, c = 0}
and {b = 0, d = 1} in the next step.

Similar reasoning about frontier gate Z leads us to want

to set W = 1, X = 1, and Y = 1. There appear to be

two ways to do this by combining existing assignments, i.e.,

through {e = 0, f = 1, g = 0} and {e = 0, g = 1, g = 0}.

However, the latter one is nonsensical because we cannot

set g to be both 0 and 1 simultaneously. We consider the

partial assignments {g = 0} and {g = 1} to be in conflict
and refuse to merge them.

Figure 2c lists the three new partial assignments we con-

sider along with the frontier gate that induced them. Each

partial assignment leads to an empty frontier and (therefore)

an acyclic circuit. Our algorithm terminates and returns the

partial assignments listed in Figure 2d.

3 Prior Work

In 1970, Kautz [7] showed that the minimal form of cer-

tain circuits contained combinational loops. Rivest [11]

came to a similar conclusion, suggesting that combinational

loops are more than just a nuisance. Stok [13] observed how

they can arise from resource-sharing in high-level synthesis,

motivating Malik’s work [8] on analyzing combinational

circuits, a forerunner of our work. Malik showed an equiva-

lence between combinational cyclic circuits and least-fixed-

points in three-valued simulation, an idea that Shiple, Berry,

and Touati [12] applied to the Esterel language [2,3], whose

hardware translation [1] often produces combinational cy-

cles. Their approach uses a symbolic state-space traversal

followed by an O(n2) replication procedure to remove cy-

cles. Our algorithm pays more attention to both the struc-

ture and function of the circuit and, when coupled with the

resynthesis technique of Edwards [5], produces smaller cir-

cuits. The BDD-based algorithm of Halbwachs and Maran-

inchi [6] takes a brute-force approach, ignoring the structure

of the circuit. Namjoshi and Kurshan [9] take a very differ-

ent approach, showing that any fixed-point is interesting,

not just the least. Their analysis merely answers whether a

circuit is combinational.

Recently, Riedel and Bruck [10] applied Rivest’s obser-

vations to synthesize very compact combinational circuits

that contain cycles. As part of their synthesis step, they

check whether the circuit they generated is combinational

using a fairly expensive BDD construction; our algorithm

could potentially be used in that setting. More practically,

the cyclic combinational circuits they generate have topolo-

gies complex enough to stymie the de-cyclification algo-

rithm of Edwards [5], which our work builds on.

Our algorithm is a drop-in replacement for the first half

of Edwards [5], which enumerates all the conditions under

which a circuit is combinational then merges the resulting

circuit fragments. Edwards’s algorithm gets mired in con-

sidering using every input to an SCC to break a cycle; our

algorithm is much more shrewd. When it finds a gate that

might participate in a non-combinational cycle, it uses the

behavior of simulations it performed earlier to work back-

ward to identify primary inputs that will break the cycle.

This reduces the number of input patterns the algorithm

considers and hence greatly reduces its running time.

4 Notation and Definitions

This section defines the basic terminology necessary for

explaining material in this paper.

We represent circuits with a directed graph (digraph). A

digraph G is a pair (V,E) where V is a set of vertices and

E is a set of edges. An edge is an element of V × V with

distinct vertices. We represent a circuit as a digraph whose

vertices correspond to gates and whose edges correspond

to nets. A controlling value for a gate G is the value that

applied to any input of G uniquely determines G’s output

independent of other inputs. To simplify our exposition, we

only consider simple logic gates: NOT, AND/NAND, and

OR/NOR. This is not a limitation as more complex gates

can be represented as combinations of these gates.

Definition 1. A strongly connected component (SCC) of a

a

b

c

Z

X

W

V
Y

Figure 3: Cyclic circuit for illustrating definitions

digraph G = (V,E) is a maximal subset of vertices C ⊆ V
such that any vertex in C is reachable from any other vertex
in C. Inputs of an SCC are inputs of gates that are part of
the SCC that are not driven by gates inside the SCC.

Figure 3 shows a circuit with a single SCC. Nets a, b, and

c are inputs to the SCC. When analyzing a circuit, we first

decompose it into SCCs using a standard algorithm [4]. If

the input circuit contains more than one SCC, we consider

each SCC separately in a topological order.

Our analysis methodology and logic simulation use a

ternary domain consisting of {0, 1, X} where X denotes an

unknown digital value.

Definition 2 (Malik [8]). A circuit is combinational for an

input assignment if three-valued simulation starting with all
internal nodes set to X resolves the output of every gate in
the circuit to either 0 or 1 under the assignment.

Literature on cyclic circuits also refers to this behavior

as “well-behaved” and “constructive” [12]. Combinational

behavior is equivalent to stating that the circuit behaves as

if it were acyclic with no X’s and no oscillations.

Definition 3. A partial assignment (PA) is a set of assign-
ments to one or more nets of a circuit.

In this work, we shall be only concerned with partial

assignments to inputs of SCCs. A valid PA for the cir-

cuit in Figure 3 is an assignment to one or more of the

inputs {a, b, c}, such as {a = 0}, {b = 0, c = 1}, or

{b = 1, c = 1}.

Definition 4. The controllability frontier of a PA, or frontier

for short, is the set of gates that have at least one input
assigned but whose output is X .

The frontier captures the notion of a boundary between

gates whose output is defined and those whose output is not.

When calculating the frontier for a PA, we use ternary sim-

ulation to propagate the SCC inputs as far as possible then

check for cyclic behavior. For example, for Figure 3,

Partial Assignment Frontier
{a = 1} {V }
{a = 0, b = 1} {Y,W}
{c = 0} {}

5 Our Algorithm

Here, we describe our algorithm for rapidly extracting a

cover for all combinational behavior of a cyclic circuit.

5.1 Theoretical Background

We start with a set of theorems that are key to the cor-

rectness and efficiency of our algorithm. The first two are

due to Edwards [5].

Theorem 1 (Edwards [5]). For a circuit with a strongly-
connected component (SCC) to behave combinationally, at
least one input to a gate in the SCC must be driven to a
controlling value.

Controlling assignments to SCC inputs for the circuit in

Figure 3 are a = 0, b = 0, and c = 0. Theorem 1 tells us

that at least one of these is required for combinational be-

havior. We use this property to seed our search space with a

pool of PAs, each corresponding to a controlling assignment

to an SCC input. Any combinational behavior is guaranteed

to be present in combinations of one or more of these PAs.

Theorem 2 (Edwards [5]). If a partial assignment p is com-
binational, then any further assignments that do not contra-
dict any in p can also be computed combinationally by the
circuit fragment implied by p.

Consider the PA {c = 0} applied to Figure 3. This

breaks the connectivity of the SCC, making the circuit be-

have combinationally. This theorem indicates that addi-

tional assignments beyond {c = 0} cannot reverse the com-

binational behavior already implied by this PA. This theo-

rem allows us to avoid further consideration of acyclic PAs

once we have identified them. This supports one of our ob-

jectives for the algorithm: generation of minimal PAs that

capture all combinational behavior. We explain the notion

of minimal PAs in Section 5.3.

This relates frontiers and combinational behavior:

Theorem 3. A PA makes a circuit combinational if and only
if its frontier is empty.

Proof. If part: If the frontier is empty, then either no gates

have any inputs assigned or none have an output of X . From

Theorem 1, we know that at least one gate must be driven

by a controlling value for combinational behavior. If none

have an output of X , then the circuit under that PA is com-

binational by definition.

Only if part: This follows directly from definition of

combinational behavior.

Our algorithm records the frontier associated with each

PA and uses them to look for opportunities to merge PAs to

extend their frontiers.

Algorithm 1 Given a circuit, return a minimal set of PAs

that together cover all combinational behavior.

1: A = ∅ � Set of acyclic PAs, the eventual result

2: K = ∅ � All known cyclic PAs, used for merging

3: Clear F � A map from frontier gate → set of PAs

4: while circuit has SCCs

5: Find next SCC

6: P = controlling values for SCC inputs � Initial PAs

7: while P �= ∅
8: G = ∅ � Frontier gates for this iteration

9: foreach p ∈ P � Consider each candidate PA

10: simulate p
11: if circuit is combinational under p then
12: add p to A
13: else
14: add p to K � Remember the PA for merging

15: foreach gate g in the frontier induced by p
16: add g to G � Record the frontier gate

17: add p to F (g) � Remember p induced g

18: P = ∅ � Compute new candidate PAs

19: foreach frontier gate g ∈ G
20: if |F (g)| > 1 then � Need ≥ 2 PAs to merge

21: add each PA from mergeAtGate(K, g) to P

22: return A

5.2 Searching for combinational behavior

Algorithm 1 is our technique for identifying all combi-

national behavior. The algorithm takes a circuit with any

number of SCCs and produces a set of PAs under which the

circuit is combinational. These PAs control SCC inputs.

The algorithm attacks one SCC at a time (line 4), finding

a minimal set of covering partial assignments for each. For

each SCC, it begins by considering partial assignments that

place a single controlling value on each SCC input (line 6),

then enters into a loop (lines 7–21) in which it alternates be-

tween testing whether any of the currently-considered par-

tial assignments (the set P) induce combinational behav-

ior (lines 10–17) and attempting to merge already-observed

partial assignments (the set K) to generate a new set of PAs

(lines 18–21). Its goal in this second phase is to break log-

jams by combining PAs to set the outputs of the latest set

of frontier gates it has discovered. The map F records par-

tial assignments that affect frontier gates: if g is a gate, then

F (g) is the set of all partial assignments that put at least one

non-controlling value at an input of g.

Algorithm 1 is guaranteed to find all combinational be-

havior within in the subject circuit. Starting from individ-

ual controlling inputs into SCCs, our frontiers allow us to

identify all opportunities where PAs can merge to extend

controllability over more gates in an SCC. As we merge

these PAs and continue the searching, other acyclic PAs are

explored. We continue this cycle of search and merge ter-

minating when we fail to generate new PAs.

Name Assignment

p0 {a = 1}
p1 {b = 0, c = 1}
p2 {c = 1, d = 1}
p3 {e = 0}
p4 {b = 1, f = 1}

(a) PAs

g

Controlling PAs

p0 p1 p2

p1 p3

p0 p4

(b) How these PAs control the in-

puts of this gate

p0 ∪ p1 = {a = 1, b = 0, c = 1}
p0 ∪ p3 = {a = 1, e = 0}

p2 ∪ p3 ∪ p4 = {b = 1, c = 1, d = 1, e = 0, f = 1}
(c) New PAs generated by merging

Figure 4: Merging PAs at a gate. If the five PAs in (a) con-

trol the three inputs on the gate (b), the merging algorithm

(Algorithm 2) will generate three new partial assignments

(c) by merging the five existing ones. By construction, each

controls all three of the gate inputs.

5.3 Merging partial assignments

Here, we describe a key algorithm used by Algorithm 1:

the generation of new partial assignments to break the log-

jam at a frontier gate. Given a set of PAs and a gate, Al-

gorithm 2 generates a set of PAs that apply non-controlling

values to every input of the gate, thus setting its output.

We store PAs in a simulated state that captures all as-

signed nodes and their values. Algorithm 1 only tries to

merge PAs for a gate when at least two PAs set an input on

the gate. Merging attempts to produce new PAs by prop-

agating known values across these frontier gates to extend

the set of gates whose output is not X .

Consider the example in Figure 4. This shows a 3-

input gate g that is a frontier gate for partial assignments

p0, p1, . . . , p4. Note that a gate can only be a frontier for a

PA if that PA puts a non-controlling value on one or more

of the gate’s inputs. We wish to consider merging these PAs

in order to extend the frontier beyond g. A desirable merge

of PAs at a gate g must satisfy the following:

i) Gate Cover: The PAs to be merged must define every

input of g.

ii) Consistency: The PAs to be merged must not contain

conflicting assignments to inputs. In the example in

Figure 4, partial assignments p1 and p4 cannot be com-

bined due to a conflicting assignment for b.

iii) Completeness: PAs must be merged such that all per-

missible combinations are considered. The example in

Figure 4 provides some degrees of freedom to cover ev-

ery input that must all be considered. This ensures that

our final PAs encapsulate both necessary and sufficient

conditions for combinational behavior.

Algorithm 2 Return a set of PAs that apply non-controlling

values to every input of a gate

1: function MERGEATGATE(K, g)

2: R = ∅ � Generated set of PAs

3: foreach input i of gate g
4: pi = PAs in K that set i and induce g as a frontier

5: if pi = ∅ then return ∅ � Cannot control some input

6: foreach P ∈ p1 × p2 × · · · × pk � All combinations

7: if the partial assignments in P do not conflict then
8: add minimize(merge(P)) to R

9: return R

iv) Minimality: The merged PAs must not contain any PA

that can be removed while satisfying the previous con-

ditions. For example, the merge candidate p0 ∪ p3 ∪ p4

is rejected since p0 dominates p4 (i.e., p0 controls both

the first and third gate input; p4 only control the third).

This condition is important for two reasons: it keeps

the final output PAs as concise as possible by not in-

cluding redundant conditions. Such redundancy bur-

dens subsequent stages of the algorithm as it increases

memory usage and makes testing of merge conditions

against other candidate PAs more tedious.

We note that merging PAs is a sort of Binate Covering

Problem (BCP) (it is covering because we must cover all

gate inputs; it is binate because conflicts between PAs pre-

vent certain combinations). However, the need for a com-

plete enumeration is not a usual requirement in traditional

BCP applications. In the context of merging PAs, the do-

main of the problem is rather small and makes enumeration

tractable. We use an explicit enumeration algorithm with

provisions for removing conflicts and minimizing merged

PAs to eliminate any dominated PAs (Algorithm 2).

6 Experimental Results

We implemented our algorithm in C++ using the Stan-

dard Template Library and tested it on a number of cyclic

circuits. We report execution times and the number of par-

tial assignments considered compared to Edwards [5] in Ta-

ble 1. The first four circuits come from Esterel programs [2]

and contain simple loops. The rest are outputs of Riedel’s

cyclify [10] and are more complex. Our algorithm consis-

tently runs more than two orders of magnitude faster than

Edwards [5]. Also, our program is able to process many

more candidate PAs in less time, which we attribute to re-

moving the more expensive operations in Edwards, includ-

ing the superset check against known-combinational PAs.

Circuit Netlist Gates SCC Gates Edwards [5] Our Approach Acyclic PAs
PAs considered runtime PAs considered runtime

arbiter5 213 25 257 1.3 25 0.1 14

arbiter6 248 30 745 8 29 0.1 16

arbiter7 283 35 2205 69 33 0.2 18

arbiter8 318 40 6581 656 37 0.3 20

exp 124 69 54517 2868 23260 2 338

ex1 150 47 43777 2341 232 1 10

gary 177 32 - - 290 0.6 11

planet 253 51 - - 1489 0.3 22

s1488 272 61 - - 588 0.2 89

table3 311 49 - - 3604 1 38

Table 1: Experimental Results: Runtimes are in seconds; a dash indicates the algorithm did not terminate after one hour.

7 Conclusions

We presented a new algorithm for identifying all the

combinational behavior of a cyclic circuit. The algorithm

is useful for evaluating cyclic specifications that often arise

from high-level synthesis [2, 3]. One application of our al-

gorithm is transforming cyclic combinational circuits to an

acyclic equivalent; it replaces the first half of the procedure

described by Edwards [5].

The chief contribution of our work is a speed improve-

ment of several orders of magnitude over Edwards [5] due

to much more clever pruning of the search space. It is there-

fore able to deal with practical-sized cyclic circuits.

Our algorithm analyzes all possible inputs into SCCs

without considering whether such patterns can in fact oc-

cur in the original circuit (i.e., whether they are controlla-

bility don’t-cares). This saves us from performing an image

computation on the surrounding circuit, making the analy-

sis much faster. However, it is possible that considering the

don’t-care set would reduce the number of PAs we consider

and further speed the search. We have yet to explore the

trade-off between computing don’t-cares and reducing the

number of PAs.

Although our algorithm performs quite well, it can be

improved further. The current performance bottleneck

arises when merging PAs at a frontier gate to produce more

PAs to consider. Most of our PAs are generated here and

most are later discarded. A more clever approach, perhaps

Espresso-based, might reduce both the number of new PAs

generated and the time it takes to derive them.

Independent of these further refinements, we have pre-

sented a practical algorithm that is able to quickly character-

ize all the combinational behavior of a realistic-sized cyclic

circuit. Our intended application is the construction of an

acyclic equivalent of a cyclic circuit to make it palatable to

existing synthesis tools, but we believe our algorithm has

other important applications in analysis and formal equiva-

lence verification of cyclic circuits.

References

[1] G. Berry. Esterel on hardware. Philosophical Transactions
of the Royal Society of London. Series A, 339:87–103, Apr.

1992. Issue 1652, Mechanized Reasoning and Hardware De-

sign.

[2] G. Berry. The constructive semantics of pure Esterel. Draft

book, 1999.

[3] G. Berry. The foundations of Esterel. MIT Press, 2000.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. In-
troduction to Algorithms. MIT Press, second edition, 2001.

[5] S. Edwards. Making cyclic circuits acyclic. In Proc. Design
Automation Conference, pages 159–162, 2003.

[6] N. Halbwachs and F. Maraninchi. On the symbolic analy-

sis of combinational loops in circuits and synchronous pro-

grams. In Proc. Euromicro, pages 345–348, 1995.

[7] W. Kautz. The necessity of closed circuit loops in minimal

combinational circuits. IEEE Trans. Comput., C-19:162–

164, Feb. 1970.

[8] S. Malik. Analysis of cyclic combinational circuits. IEEE
Trans. Computer-Aided Design, 13(7):950–956, July 1994.

[9] K. S. Namjoshi and R. P. Kurshan. Efficient analysis of

cyclic definitions. In Computer Aided Verification, volume

1633 of LNCS, pages 394–405, Trento, Italy, July 1999.

[10] M. Riedel and J. Bruck. The synthesis of cyclic combi-

national circuits. In Proc. Design Automation Conference,

pages 163–168, 2003.

[11] R. L. Rivest. The necessity of feedback in minimal mono-

tone combinational circuits. IEEE Trans. Comp., 26(6):606–

607, 1977.

[12] T. Shiple, G. Berry, and H. Touati. Constructive analysis of

cyclic circuits. In Proc. European Design and Test Conf.,
pages 328–333, 1996.

[13] L. Stok. False loops through resource sharing. In Proc.
International Conference on Computer-Aided Design, pages

345–348, 1992.

