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Abstract—We describe the development of a new programming
language Scoria and its compiler. Scoria is a high-level reactive
real-time language based on the sparse synchronous model
(SSM), designed to produce time- and power-efficient low-level
C code that can run on small IoT devices. While the compiler is
not yet in a state where it is meaningful to measure power usage,
we carefully profile the timing behaviour and identify bottlenecks
that can improve performance. The language and compiler are
implemented as an Embedded Domain-Specific Language (EDSL)
on top of Haskell.

Index Terms—Real-time, IoT, Compilers, Embedded Domain-
Specific Languages

I. INTRODUCTION

Devices for the Internet of Things (IoT) typically contain
hardware for sensors, actuators, and wireless communication,
and often need to run on batteries whose life expectancy
is a couple of years. These peripherals and resources need
to be carefully managed in order to maximize lifetime and
reliability. The devices are typically programmed in C because
of their low-level nature, timing, and power requirements.
They are coded in a reactive style as the software needs to react
to external events, such as a triggered sensor. Such programs
are often written to register a myriad of callback functions to
handle these events and communicate with other parts of the
program. The resulting asynchronous code is often error-prone
and hard to maintain, a situation often dubbed “callback hell.”

Our language, Scoria, eschews callbacks in favor of
lightweight threads that can block on external and internal
events and provides precise control over the time at which code
executes. We embed [1] Scoria in Haskell—which explains its
syntactic idiosyncrasies—to enable rapid development of its
compiler, which generates C code that uses our runtime system
(RTS) to interface with hardware timers and other peripherals.

Figure 1 is a simple Scoria program: a remote-controlled
square wave signal generator whose frequency can be adjusted
by Bluetooth Low Energy (BLE) radio packets. The entry
routine (lines 15–18) expects a BLE receiver and GPIO pin in
the environment (line 15), creates a shared variable hperiod,
and runs sigGen and remoteControl concurrently (line 18).

The sigGen routine (lines 1–4) generates a precisely timed
square wave on the GPIO pin by scheduling future output
events and blocking on them. It takes a reference to the
hperiod variable and enters an infinite loop that schedules
a future toggle update to the GPIO pin (line 3), then blocks
until the update occurs (line 4). The delay between toggle

1 sigGen :: (?out0 :: Ref GPIO) => Ref Word64 -> SSM ()
2 sigGen hperiod = routine $ while true (do
3 after (ns (deref hperiod)) ?out0 (not' (deref ?out0))
4 wait ?out0)
5

6 remoteControl :: (?ble :: BLE) => Ref Word64 -> SSM ()
7 remoteControl hperiod = routine $ do
8 enableScan ?ble
9 while true (do

10 wait (scanref ?ble)
11 if deref (scanref ?ble) ==. 0
12 then hperiod <∼ deref hperiod * 2
13 else hperiod <∼ max' (deref hperiod /. 2) 1)
14

15 entry :: (?ble :: BLE, ?out0 :: Ref GPIO) => SSM ()
16 entry = routine $ do
17 hperiod <- var (time2ns (secs 1))
18 fork [sigGen hperiod, remoteControl hperiod]

Fig. 1: A remote-control signal generator in Scoria. sigGen
produces a square wave on the out0 GPIO pin that cycles
every two hperiod nanoseconds. When a Bluetooth packet
arrives, remoteControl doubles or halves the period.

events is exactly the model time set by the hperiod variable,
regardless of the loop’s execution time—Scoria’s model time
only advances at blocking statements like wait. The after
directive schedules the update according to model time.

The remoteControl routine (lines 6–13) waits for a BLE
packet (line 10), and doubles or halves hperiod in response
(lines 12 and 13). The enableScan call (line 8) enables the
Bluetooth receiver, which then generates events on the variable
given by scanref ?ble.

Figure 2 shows code that runs at compile time to initialize
the signal generator program’s environment. References to a
GPIO pin and the BLE controller are obtained in lines 3
and 4, and added to the environment (indicated by the question
marks) in lines 5 and 6. In lines 7–9, the SSM ready queue
is populated with the entry routine and I/O handlers for the
GPIO pin and BLE. I/O handlers are described in Section IV.

This small example illustrates a key feature of Scoria
needed by most IoT applications: concurrent programming
with lightweight threads that can block on events. In C, it is
easy to write a program that waits for an event from a single
source by entering a polling loop, but waiting for multiple
events is difficult. A central event-handler loop works but
discards control state between events; the programmer must
explicitly maintain any state, i.e., what to do next.



Multiple events are typically handled by OS-provided
threads, which allows the programmer to write sequential code
that only blocks on single events, but IoT devices often do
not have the memory to provide a separate stack per thread.
Protothreads [2] provides an extremely lightweight thread
package in the form of C macros that only require storage
for one additional program counter per thread, but the onus
remains on the programmer to store all other state globally.

The Sparse Synchronous Model (SSM) of Edwards &
Hui [3] integrates this blocking-thread concurrency model with
a model of time that results in programs with deterministic
functional and temporal behavior. A program running under
SSM behaves like a discrete-event simulation: time is divided
into instants in which the program executes. At any time, the
program only knows what instant it is in and may schedule
variable updates for a future instant. The SSM scheduler does
its best to keep model time synchronized with real time, but
the behaviour of the program is not affected by any deviation.
Thread execution within a single instant is totally ordered to
eliminate races and guarantee deterministic behavior.

Built atop SSM, Scoria is a programming language designed
to simplify prototyping new language features and experiments
with language design. Our compiler implements concurrency
with C functions that store their state—control state and all
local variables—in heap-resident activation records, instead of
on the stack. Such code is like what a programmer might write
with Protothreads, but Scoria provides more familiar abstrac-
tions such as local variables and blocking wait statements.

This paper describes the current status of Scoria and the
choices we made during its development:

• We implement Scoria as an embedded domain-specific
language (EDSL) in Haskell. It is mature enough that we
can write programs that use I/O peripherals and run them
on SoC-boards, but more work is needed before we can
write complicated examples such as mesh networks.

• Programs in Scoria do not have to explicitly manage
memory; the compiler and RTS allocate and deallocate
memory, sparing us from a garbage collector.

• Scoria’s language interface for interacting with I/O pe-
ripherals is the same as for interacting with regular Scoria
references. Our RTS provides bindings for Zephyr OS [4].

• We test Scoria’s compiler with QuickCheck [5], a
property-based Haskell tester. We check for memory leaks
and errors; compare the behaviour of compiled programs
with an interpreter; and our domain-specific shrinker
reduces errant programs a minimal test case.

• We evaluate the performance of Scoria’s runtime system
and generated code by stress testing it on real hardware.
We precisely measure latencies to identify bottlenecks.

II. MOTIVATION

To motivate real-time programming languages like Scoria,
consider the “blinky” application commonly used as “hello
world” in embedded systems programming. This toggles an
LED at a specified frequency; Figure 3 shows the sample dis-
tributed with the Zephyr real-time operating systems (RTOS).

1 compiler :: Compile ()
2 compiler = do
3 (gpio0, gpiohandler) <- output 0
4 (ble, _, scanhandler) <- enableBasicBLE
5 let ?out0 = gpio0
6 ?ble = ble
7 schedule scanhandler
8 schedule entry
9 schedule gpiohandler

Fig. 2: The top-level of the signal generator program in
Figure 1. This requests a GPIO pin and a BLE radio handler,
then runs the entry routine along with I/O handlers.

#include <zephyr/zephyr.h>
#include <zephyr/drivers/gpio.h>
static const struct gpio_dt_spec led =

GPIO_DT_SPEC_GET(DT_ALIAS(led0), gpios);
void main(void) {
int ret;
if (!device_is_ready(led.port)) return;
ret = gpio_pin_configure_dt(&led, GPIO_OUTPUT_ACTIVE);
if (ret < 0) return;
while (1) {

ret = gpio_pin_toggle_dt(&led);
if (ret < 0) return;
k_msleep(1000); // sleep for 1000 ms

}
}

Fig. 3: The “blinky” example distributed with Zephyr RTOS,
which purports to generate a signal with a 2 s period.

While blinky (written in C) is adequate for showcasing the
basic I/O and timing facilities of an embedded programming
framework, it misrepresents its timing behavior: blinky does
not actually blink once every two seconds! This discrepancy is
due to two sources of latency: the program spends some time
each loop iteration to toggle the LED, between invocations of
k_msleep and once the timer set by k_msleep has expired,
Zephyr takes some time to reschedule and resume the blinky
program. If the time toggling the LED is ∆l , and the time spent
rescheduling the blinky program is ∆s, then each loop iteration
will take 1000+∆l +∆s ms rather than just 1000 ms. Over
time, the latency will accumulate into drift as the program
continues to drag behind its ideal behavior (Figure 4).

To compensate for this latency and eliminate drift, the
blinky program should only sleep for as long as it needs
to keep up with the ideal timing behavior. To do this, our

Fig. 4: The C blinky program of Figure 3 drifts due to latency
from the RTOS (∆s) and the user program (∆l).
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Fig. 5: Blinky without drift.

// include and defines
// declaration of button0, button1, led0 & led1

uint32_t last = -1;
void button_cb(const struct device *dev,

struct gpio_callback *cb, uint32_t pins) {
if (last == button0_pins && pins == button1_pins)

gpio_pin_set_dt(&led0, 1);
else if (last == button1_pins && pins == button0_pins)

gpio_pin_set_dt(&led1, 1);
else {

gpio_pin_set_dt(&led0, 0);
gpio_pin_set_dt(&led1, 0);

}
last = pins;

}

// callback initialization and registration

Fig. 6: While the program above is semantically simple, the
implementation has to install interrupt handlers. Knowledge of
which events have occurred must be lifted to the global scope,
which must then be consulted before an LED can be lit.

“corrected” implementation (Figure A4) maintains a logical
clock of how much time should have elapsed, and shortens
its sleep time according to the difference between that logical
time and the actual time. The resulting temporal behavior,
shown in Figure 5, does not suffer from drift, only incurring
a stable phase error of ∆s.

However, this technique comes at the cost of complexity: the
implementation shown in Figure A4 is 45 LOC, and is deeply
entwined with Zephyr’s API. Though certain configuration
code may be simplified or omitted, the program’s control flow
and timing logic is obfuscated by the need to respond to the
timer via interrupt handlers. Furthermore, this technique alone
does not scale well beyond sequential programs, since any
number of concurrent threads may need to synchronize their
use of a finite number of hardware timers.

Scoria overcomes this complexity by incorporating the
notion of logical time into its concurrent programming model.
In doing so, Scoria allows the programmer to express the
intended timing behavior, abstracting over platform-specific
timer APIs. Scoria relies on its runtime to approximate the
intended behavior to the extent possible by making use of
available and supported timing capabilities. For comparison,
Figure A1 shows blinky in Scoria, which is only 15 LOC.

Another example that illustrates how using interrupt han-
dlers can complicate code unnecessarily is shown in Figure 6.
It is an interrupt handler of a simple program that lights up
one of two LEDs depending on which sequence of presses

seq :: Ref SW -> Ref SW -> Ref GPIO -> Ref GPIO -> SSM ()
seq b0 b1 l0 l1 = routine $ do

wait (b0, b1)
if changed b0 -- was b0 the button that was pressed?

then do wait b1
l0 <∼ ON -- we know the sequence was b0, b1

else do wait b0
l1 <∼ ON -- we know the sequence was b1, b0

Fig. 7: This Scoria routine implements the same behaviour as
Figure 6, but each branch knows the source of its event and
which LED to light without consulting a global “last” variable.

routine -- Define a Scoria routine body
var :: Exp a -> SSM (Ref a) -- New local var
deref :: Ref a -> Exp a -- Access value
(<∼) :: Ref a -> Exp a -> SSM () -- Assignment
after :: Time -> Ref a -> Exp a -- Delayed

-> SSM () -- assignment
changed :: Ref a -> Exp Bool -- Was written?
wait :: Waitable a => a -> SSM () -- Block on write
if-then-else :: Exp Bool -> SSM () -> SSM ()

-> SSM () -- Conditional
while :: Exp Bool -> SSM () -> SSM () -- Loop
fork :: [SSM ()] -> SSM () -- Concurrency

Fig. 8: The Core API of Scoria.

from two different buttons is registered. This program needs to
remember which button was pressed previously, so that when
the next press arrives it can inspect the complete sequence
and decide which LED to light up. In order to remember
the previous press, the program needs to use global variables,
opening itself up to the possibility of complicated control flow
where global variables are modified by several concurrently
running threads. (Robert: this last part needs to be rephrased)

The Scoria version of this does not rely on global variables;
it knows which events happened based on which code is
executing and thus uses local information rather than global.

III. OVERVIEW OF SCORIA

Scoria is an embedded domain-specific language for IoT
applications. It is domain-specific in that it is tailored to the de-
mands of IoT applications through its facilities for concurrency
and timing control. This makes the language easier to learn,
compile, and optimize at the expense of making programming
tasks outside its scope more difficult. It is embedded in a host
language, Haskell, which allows us to benefit from the existing
Haskell tools and compilers while presenting a convenient,
new abstraction for the user. Haskell provides e.g the parser
and a type checker, and we use host-level evaluation as a kind
of macro system (see Section V). Such an approach enabled
us to develop Scoria much more rapidly, making it easy to
experiment with new language features.

We modeled Scoria on the proposal by Edwards & Hui [3],
with adaptations to embed it in Haskell.

Figure 8 lists the core API of Scoria. These may be
thought of as Scoria’s primitives, but each are actually Haskell
functions composed using Haskell’s do-notation. Values that
are embedded (Scoria values) are of type Exp a, while values
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that belong to the host language are of type a. Host-level
values are evaluated at Scoria compile-time.

The routine keyword introduces the body of a Scoria
procedure. The Scoria compiler simply executes any Haskell
code outside a routine block. See Section V for details.

A reference to a variable is created with the var keyword,
can be assigned a new value with the <∼ (“assign”) operator,
and can be read with deref. The changed function returns true
if a given variable (reference) has been written in the current
instant, e.g., by an assignment in a concurrent thread.

The after operation schedules an assignment to a reference
in a future instant. Its first argument is the time delay (relative
to the current instant) before performing the assignment, and
the other two arguments are the variable to update and the fu-
ture value it should receive (which is evaluated immediately).

The wait statement blocks until at least one of the given
variables (references) have been written, either by an im-
mediate assignment <∼ or a scheduled assignment (after).
wait takes either a single reference or tuples of references of
varying sizes. Haskell’s type classes [6] allow us to overload
the operator to accept either.

if-then-else and while are the usual conditional and
looping constructs. The code in their branches may block or
call functions that do.

Lastly, fork is a parallel function call construct that spawns
concurrently running child processes and blocks until all
children have terminated (and not just blocked). The order
of children is significant: it prescribes the order in which the
children run in any instant, enforcing deterministic concur-
rency with a total execution order. In particular, an earlier
child may write to a shared variable that a later child may
read in the same instant, but not vice-versa (earlier children
may only read data from a later child that was assigned in an
earlier instant or in a scheduled update).

As shown in Figure 2, Scoria also provides a Compile
monad that runs code at compile time. This is used to
perform static initialization of e.g peripherals, and make them
accessible to the rest of the Scoria program. As an example,
a user might want to create a global variable gv and supply
a reference to it to the main routine. This can be done as
follows:

program :: Compile ()
program = do

gv <- global @Word64
let ?gv = gv
schedule main

main :: (?gv :: Ref Word64) => SSM ()
main = routine $ ?gv <∼ 5

To start the Scoria program, at least one routine must be
added to the ready queue with the schedule directive, which
populates the ready queue when the program begins. Each
successive invocation of schedule adds another routine at a
lower priority level: those scheduled first will run first in any
instant, much like a fork.

a) Code generation from Scoria: Edwards & Hui [3]
provide an SSM RTS coded in C. We have written a code

SSM runtime libSystem tick driver

Input ISR

Input ISR
Input queue

Tick 
loop

Semaphore

set alarmTimer

External  
Inputs 

Event queue

wait

post

Alarm ISR

schedule

post

1:351:271:24 1:36

tick

1:42 1:49

Fig. 9: The SSM runtime’s input handling architecture.

generator that takes the abstract syntax of a Scoria program
and produces C code that calls this RTS. The generated C
code is platform agnostic; additional platform-specific code is
necessary, e.g., to set a future wake-up alarm. We have written
such bindings for Zephyr OS [4] and for something we call
the trace platform, which we describe in Section VI.

IV. I/O IN SCORIA

A Scoria program communicates with its environment
through variables. The Scoria runtime collects input events
from interrupt service routines (ISRs)—effectively the callback
functions of traditional asynchronous C implementations—
and delivers them to the SSM event queue. Writes to output
variables are observed by special I/O handler routines that
typically call external C functions to perform the output.

a) Handling External Inputs and Time: Figure 9 shows
the structure of the Scoria runtime that handles input events,
manages the system timer, and runs the system in each instant.
The main tick loop (Figure 11) retrieves events enqueued by
ISRs (Figure 10), calls the SSM runtime’s tick() of Edwards
and Hui [3] to run the system (i.e., the code generated by the
Scoria compiler) for a single instant, sets an alarm to wake
it up at the next scheduled event, and then sleeps until it is
awakened by the alarm or input from a peripheral.

Input events are gathered by ISRs and ultimately appear
as scheduled variable updates to the Scoria program, but this
process operates in several steps for safety and efficiency.

The Scoria runtime maintains two distinct event queues
to avoid excessive synchronization costs. The input queue is
loaded asynchronously by ISRs and emptied by the main tick
loop, but it is a simple ring buffer that is easy to make thread-
safe. By contrast, the main event queue is a priority queue
to which events are added and sometimes removed out-of-
order by both the tick loop and the various concurrent routines.
However, because these run synchronously, the event queue is
never accessed asynchronously and need not be thread-safe.

There are several reasons why we need two queues instead
of just one. The synchronous hypothesis states that computa-
tions are instantaneous, meaning that an invocation of tick
returns instantly. In reality this is not the case, and physical
time will progress. If an external event is delivered to the
system as soon as it arrives, tick() would look into the future,
determinism would break, and we would be susceptible to data
races. Furthermore, without time stamping external events, a
second external event might arrive and overwrite the previous
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void input_isr(device *dev) {
int key = irq_lock();
ssm_time_t input_time = timer_read();
ssm_input_event *input = ssm_input_alloc();
irq_unlock(key);
if (input == NULL) // No space in input queue
return;

input->time = input_time;
input->data = ssm_input_read(dev); // Device-specific
input->ref = ssm_input_binding(dev);
ssm_input_commit(); // Enqueue input queue
sem_post(ssm_sem); // Wake up tick thread

}

Fig. 10: The structure of an input interrupt handler, which
enqueues an event in the input queue. Each peripheral has its
own device-specific handler.

struct semaphore ssm_sem;
void alarm_isr(void) { sem_post(&ssm_sem); }
void ssm_tick_loop(void) {

ssm_init();
ssm_tick();
for (;;) {

real_time = timer_read();
model_time = ssm_next_time();
ssm_input_event *input = ssm_input_peek();
if (input && input->time <= model_time) {

ssm_schedule_input(input); // Add to event queue
ssm_input_release(); // Remove from input queue

} else if (model_time <= real_time) {
ssm_tick(); // Run system; advance model time

} else if (model_time == NO_EVENT_SCHEDULED) {
sem_wait(ssm_sem); // Wait for input

} else {
if (timer_set_alarm(model_time, alarm_isr))

continue; // Alarm already expired
sem_wait(ssm_sem); // Wait for alarm or input
timer_cancel_alarm();
sem_reset(ssm_sem);

}
}

}

Fig. 11: The Scoria runtime’s main tick loop, which gathers
events from the input queue, runs tick() to advance SSM
model time, then sleeps until the next scheduled event or an
interrupt.

event before the system has had a chance to observe the first
one, leading to events essentially being dropped. The SSM
runtime allows only one outstanding event per reference at a
single time.

Figure 10 shows an input interrupt handler. It first records
the current system time, then attempts to enqueue an event
with that timestamp and any new data from the peripheral in
the input queue: a ring buffer large enough to accommodate
a modest backlog of input events before having to drop
or overwrite events. Enqueue and dequeue operations are
performed in-place via an allocate/commit and peek/release
protocol to minimize copying.

In an ISR, recording the current system time as quickly
as possible and allocating space in the input queue is critical
to ensure enqueued input events appear with nondecreasing
timestamps. Other higher-priority interrupts may occur while

processing a lower-priority interrupt, but only after the times-
tamp of the lower priority interrupt has been captured.

Figure 11 shows the main tick loop, which waits on a OS-
provided semaphore (ssm_sem) that is posted by an interrupt
service routine from either a peripheral or the system clock.
At each iteration of the tick loop, the runtime checks the input
queue for events to schedule in the SSM event queue. Events
in the input queue will be in increasing order since we assume
the system timer advances monotonically. However, if the
logical time of the SSM program is running behind physical
time when some external input is received—input->time >
model_time—or if there is no pending input event, the runtime
executes the SSM program by calling ssm_tick(). Finally, if
there are neither input events to process, nor internal events
ready to execute, the main thread goes to sleep, blocking on
a semaphore until either its timer expires or some fresh input
appears.

b) Handling External Outputs: Just as with inputs, out-
put peripherals are bound to regular Scoria references; writes
to those references are emitted to the environment as output.
Under the hood, those writes eventually trigger a call to some
system-provided C output function that actualizes the output.

One of the design considerations we faced when implement-
ing outputs was deciding exactly when in an instant the system
output function should be invoked. The SSM model says all
the code of an instant executes in zero time, but in practice any
execution takes time and the code for an instant is effectively
spread out over a finite time interval. If an output function is
invoked too early, subsequent updates to the output variable
in the same instant might be ignored, whereas if it is invoked
too late, there will be output latency and perhaps even jitter
arising from the execution speed of unrelated computation. For
instance, consider the following three concurrent processes,
shown in order of decreasing priority:

w1 :: Ref Button -> Ref LED -> SSM ()
w1 button led = routine $ do

while true (do
wait button
led <∼ true)

w2 :: Ref Button -> Ref LED -> SSM ()
w2 button led = routine $ do

while true (do
wait button
led <∼ false)

r :: Ref Button -> SSM ()
r button led = routine $ do

while true (do
wait button
-- some expensive computation

)

If the LED is lit immediately when it is first assigned—
after the assignment of true’ by w1—then the assignment of
false’ by w2 will be missed, leading to a stale value being
emitted. But if the LED is lit as late as possible—at the end
of the instant—the system must wait until r has completed
executing, incurring some delay. Depending on the particular
application, either one of these outcomes may be unacceptable.
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Our design leaves it to the user to decide when the physical
output should take place by encapsulating it within an output
handler process that the user must schedule. This handler
is obtained when the user asks for the output device. If a
process performs an immediate assignment to a reference, that
assignment will only be visible to lower-priority processes.
Note that delayed assignments do not have this behaviour;
they always wake up every waiting process. For instance, if
the user would like to schedule the handler after any possible
assignments by w1 and w2, but before r, the user may specify:

initProgram :: Compile ()
initProgram = do

button <- input 0
(led, handler) <- output 0

schedule $ w1 button led
schedule $ w2 button led
schedule $ handler
schedule $ r button led

While this precludes r from performing any effectful instan-
taneous assignments, it still accommodates effectful delayed
assignments by r.

This gives the developer some control over two sources
of jitter. The first is due to varying computation time—if
an output handler is scheduled to run after a higher priority
process in the same instant, then the actual output time will
depend on the speed of the first process. This source of jitter
can be eliminated by scheduling the output handler so it runs at
the beginning of the instant at the expense of any instantaneous
assignments—it is up to the user to balance the reliability
versus the expressiveness of their application.

Discrepancies in input response times is a second source
of jitter. The runtime system is able to handle inputs slightly
faster when it is already awake than when it is asleep. If output
is to be instantaneously triggered by some input, then the
input-to-output latency will differ depending on whether an
input is received when the system is asleep or awake.

V. LEVERAGING THE HOST LANGUAGE

Scoria is implemented as a Haskell library that exposes
an embedded language interface which allows us to reuse
Haskell’s parser and type checker, and otherwise take advan-
tage of Haskell language features for rapid language devel-
opment. In this section, we describe some of the embedding
techniques we use to ensure that our language interface is
robust, expressive, and easy to use.

a) Type Checking: Function Application in Haskell is
checked to guarantee the type safety of the application. The
value routine body has the same type as body, so Scoria
procedures still look like ordinary Haskell functions and are
invoked by performing normal Haskell function application,
with the effect that the Haskell compiler will type check
Scoria procedure invocations for us, for free. This kind of
type checking happens in every corner of the language API,
making it harder to construct illegal programs.

b) Providing New Abstractions: The host language of
an embedded language can be used as a macro system,
enabling effortless experimentation with language design. As
an example, consider the delay statement, which blocks for a
fixed period of time. This operation is not primitive to Scoria
or SSM, but the behaviour can be recovered using existing
primitives.

delay :: Exp Time -> SSM ()
delay x = do

sync <- var event
after x sync event
wait sync

Because this Haskell function is not decorated with the
routine keyword, it is not treated as a callable Scoria routine.
Instead, when a program invokes delay, Scoria will inline
delay’s body.

Yet this implementation has the downside of introducing a
new local variable sync in the activation record of its call site
each time delay is invoked. An alternative implementation
which turns delay into a Scoria procedure might look like:

delay' :: Exp Time -> SSM ()
delay' x = fork [ delayRoutine x ]

delayRoutine :: Exp Time -> SSM ()
delayRoutine x = routine $ delay x

When a program invokes delay’, the inlined statement
will instead be a fork statement that calls the auxiliary
delayRoutine routine.

c) Plugin for Source-to-Source Transformations: Scoria
uses the routine keyword to distinguish between a Haskell
function and a Scoria procedure. This distinction is neces-
sary because in the latter case, the compiler must construct
AST nodes corresponding to the routine definition, rather
than directly evaluating its body. It is this indirection that
allows Scoria programs to perform recursion without endlessly
inlining the routine body.

Yet routine definitions cannot be trivially embedded in
Haskell, because it requires functions to reflect on their name
and the names of their arguments. Case in point: an early
iteration of our compiler used make_routine to construct
routines, which expects additional arguments conveying the
names of the routine and its arguments. This led to an awkward
language interface with plenty of syntactic redundancy:

f = make_routine "f" ["x", "y"] $ \x y -> body

To overcome this burden, Scoria leverages plugin support
from the Haskell compiler, GHC, to infer the arguments for
make_routine. Our plugin looks for invocations of routine
and replaces it with an invocation of make_routine with the
necessary source information. For example, this source-to-
source transformation produces the above boilerplate from the
following:

f x y = routine body

VI. TESTING

a) Interpretation: Following Edwards & Hui [3], we
implemented an interpreter in Haskell that steps through
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Bug location Number of bugs

RTS 1
C generator 8
Interpreter 11

TABLE I: Breakdown of the bugs we identified developing of
our compiler.

Randomly generated
program

Interpret

Compile >>
Execute

Check semantic
equivalence of

execution traces

Shrink program

Passed property or
minimal failing test

case

Fig. 12: Overview of how the second property is tested,
asserting the semantic behaviour of SSM programs.

instants of model time but does not attempt to synchronize
with wall-clock time. We use our interpreter as a reference to
validate our compiler’s output; see below.

b) Testing: To debug the Scoria compiler, we used
QuickCheck [5] (QC), a property-based testing framework that
generates random values and tests them against a property. If
the property is falsified, QC shrinks the test to find a smaller
failing case. The QC-generated random programs are typically
too large to diagnose without shrinking.

We test two properties: the first is that generated C code
compiles and runs without memory errors or leaks, according
to Valgrind. This helped us find a bug related to our event
queue: when a variable was deallocated, scheduled events were
not being unscheduled and the RTS would attempt to perform
updates using these stale pointers, corrupting the program
state. We fixed this bug by ensuring that all routines unsched-
ule outstanding updates to local variables before returning.

We also test semantic correctness of the generated program
as shown in Figure 12. When testing, our compiler adds
print statements to the generated code to produce an event
trace, which we compare to one from the reference interpreter.
This property helped us identify C generation problems. Most
notably, we initially implemented Scoria signed integers with
C’s signed integers. Our tester found cases that branched on
overflowing arithmetic to produce different behaviour because
of the undefined overflow behavior of C’s integers. We fixed
this by switching to C’s better-defined unsigned integers.

We documented 20 bugs, mostly semantic errors (Table I).

VII. EXPERIMENTAL RESULTS

We test the performance of our Zephyr-based runtime
system by subjecting Scoria programs to varying loads. All
experiments are performed using a Nordic Semi NRF52840-
DK board with a 64 MHz Cortex-M4 processor, 256 kB RAM,
1 MB flash, BLE support, and a 16 MHz crystal time base. We
apply loads with a pulse generator driving a GPIO input pin
and measure the results with an oscilloscope on an output pin.

a) Frequency Counter: To assess our implementation’s
resilience to high input load, we test a small Scoria fre-
quency counter, shown in Figure 13. This program measures
the frequency of button presses by counting the number of

freqCount :: Ref GPIO -> SSM ()
freqCount sw = routine $ do

count <- var $ u32 0
gate <- var event
after (secs 1) gate event
while true (do
if changed gate

then do
-- Print count to console
if changed sw

then count <∼ 1
else count <∼ 0

after (secs 1) gate event
wait gate -- Sleep for 1 sec
after (secs 1) gate event

else
count <∼ deref count + 1

wait (gate, sw))
freqCountProg :: Compile ()
freqCountProg = input 0 >>= schedule . freqCount

Fig. 13: A frequency counter program.

input events each second. The reported count is double the
frequency, corresponding to the two input events of a single
button press. For benchmarking purposes, we insert a print
statement in the generated code to report the frequency; the
program alternates between counting and reporting to ensure
that the overhead of reporting the frequency does not interfere
with the frequency counting at high loads.

The reference sw is bound to input 0 on the NRF52840-
DK; we connect a function generator to the corresponding
GPIO pin and generate pulses at various frequencies. We found
that our frequency counter is capable of measuring up events
of up to 29 kHz (input frequency of 14.5 kHz, each rising
or dropping edge creates one event), with error within 2 Hz.
Beyond this, the input queue fills up faster than inputs are
consumed, leading to events being dropped and the program
thrashing. The frequency counter is able to recover from
thrashing after we lower the input frequency below 14 kHz.

To measure the overhead of SSM event scheduling, we com-
pare our Scoria frequency counter to the functionally equiv-
alent manually coded C in Figure 14. The C implementation
omits the SSM scheduler and directly manages synchronous
control flow in main_loop using the same semaphore API
provided by Zephyr OS. We also forego the input queue and
directly increment count in the input ISR.

We find that this optimized version can accurately measure
input frequencies of up to 34 kHz with 5 Hz of error, but is
more verbose and error-prone, and less expressive and flexible.

b) Button-to-blink: To better understand the system sans
synchronous logic, we first evaluate the “button-to-blink”
program in Figure 15. This lights an LED when a button is
pressed and turns it off when released. We schedule the LED
handler after the main b2b program so that this instantaneous
assignment is written to the LED at the end of the instant.

The instantaneous assignment in b2b incurs a practically
avoidable but theoretically significant amount of latency,
which we call the at-rest input latency, δr. This value rep-
resents the time it takes for the system to wake from sleep
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struct semaphore sem;
void alarm_isr(void) { sem_post(&sem); }

uint32_t count = 0;
// Executed each time button is pressed or released
void input_isr(void) { count++; }

void main_loop(void) {
for (time_t time = timer_read(); true; count = 0) {

timer_set_alarm((time += secs(1)), alarm_isr);
sem_wait(&sem);
printk("frequency␣*␣2:␣%u␣Hz\r\n", count);
timer_set_alarm((time += secs(1)), alarm_isr);
sem_wait(&sem);

}
}

Fig. 14: Frequency counter program implemented in C.
b2b :: (?sw :: Ref Switch, ?led :: Ref GPIO) => SSM ()
b2b = routine $ while true $ do

wait ?sw
?led <∼ deref ?sw

b2bc :: Compile ()
b2bc = do

sw <- input 0
(led, handler) <- output 0
let ?sw = sw

?led = led
schedule b2b
schedule handler

Fig. 15: Button-to-blink in Scoria; generated C in Figure A11

and respond to external input. From profiling, we find that δr
for our NRF52840-DK is approximately 60 µs.

When the system receives inputs at a frequency beyond
1/δr, the system will not be able to process an input before
receiving the next, making δr a significant number. As the
system falls farther and farther behind wall clock time, its
behaviour will degrade into an asynchronous system with none
of the temporal behaviour of the underlying Scoria program.

A related metric is the in-flight input latency, δ f : the time
it takes for a busy system to respond to external input. When
events arrive separated by an amount of time within δ f , the
input queue will be populated with new events by the time the
main tick loop thread checks it again, meaning it can resume
ticking without putting itself to sleep. δ f is shorter than δr
because it eliminates the time spent sleeping and waking. We
measured δ f on our board to be about 45 µs.

Sparse bursts of events do not overload the system if it can
catch up between bursts. The system may even be able to keep
up if it is consistently stimulated with a period between δr and

Frequency (kHz) Latency (µs) Jitter (µs)

2 60.0 0.7
4 60.6 0.7
6 49.7 0.5
8 52.1 13.1

10 47.3 34.0
12 45.6 24.0

TABLE II: Latency and jitter of button-to-blink (Figure 15)

User code

Tick loop

Input ISR

Zephyr18.3
3.3 5.8

6.0

14.3 11.6
2

11.8

ISR dispatch

enqueue post

context switch schedule tick 

step 

sleep

60μs latency
button press LED blink

Fig. 16: Timeline in µs of a single button press of “button-to-
blink” (Figure 15), reconstructed from GPIO profiling.

δ f . As shown in Table II, the “button-to-blink” program is able
to sustain activity when stimulated by a pulse generator with
frequencies of 12 kHz; beyond 12 kHz, the program begins
to thrash and drop input events. However, when the delay
between successive events is less than δr, the computation
time per instant becomes less predictable, even as the system
remains responsive. In Table II, this manifests in increased
jitter at input frequencies beyond 8 kHz, at which a square
wave has a half-period of 62.5 µs.

To determine the source of our system’s δr of 60 µs, we
profile a single button press of b2b to obtain the timeline
in Figure 16. We add code that emits 4-bit codes on GPIO
pins for certain events and record them with a logic analyzer.
Analyzing the recorded data determines time between events.
While this approach is intrusive, we found each GPIO write
took only 60 ns, negligible compared to what we are measur-
ing. We find that 24.3 µs is directly introduced by Zephyr’s
own ISR and process scheduling facilities. A further 5.8 µs is
introduced by Zephyr’s semaphore implementation, when we
call sem_post from the ISR to wake up the tick loop thread.
The δr of 60 µs is from Table II; Figure 16 shows slightly
different numbers from a different Zephyr version.

We also measure δr for two Zephyr programs written in
C to compare with our Scoria implementation. One of our
implementations, Figure A2, unrealistically constantly polls
for button presses, and represents the lowest theoretical at-rest
response time for any Zephyr program. Our other implemen-
tation is more realistic, responding to input via an interrupt
handler that reports the button press event by placing it in
a ring buffer identical to the one in the Scoria runtime and
resuming the main thread by releasing a semaphore. The main
thread then unblocks, retrieves the event from the ring buffer,
and updates the LED. Figure A3 shows this version, which
models the Scoria runtime without the SSM “tick” scheduler.
We standardized the input event frequency at 2 kHz across all
implementations; our results are shown in Table III.

The Scoria version is the slowest of the three. Figure 16
shows the amount of time spent by Zephyr locating and
running the input ISR was roughly 33 µs. This is comparable
to the response time measured by the more realistic Zephyr
example (Table III). The overhead imposed by the Scoria
runtime system is mainly the parts in green (the Tick loop
bar), where the Scoria runtime is retrieving the event from

8



Program Mean δr (µs) Min. δr (µs) Max. δr (µs)

Polling 1.519 0.88 2.17
Interrupt + sem 31.46 31.32 31.59
Scoria 57.96 57.86 58.07

TABLE III: The at-rest response time of three button-to-blink
implementations fed a 2 kHz input. Data gathered with a logic
analyzer sampling at 100 MHz.

Program Generated Frequency (kHz) LOC

C 12.2 54
Scoria 6.57 32

TABLE IV: Implementations’ maximum frequencies and sizes

the input queue, inserting it in the Scoria environment, and
scheduling processes to invoke the Scoria tick loop.

c) Signal Generator: With these measurements made we
can return to the signal generator from Figure 1. We measure
the highest frequency (shortest period) it can generate. For the
purposes of evaluation, we adapted the example to adjust the
half-period hperiod in linear increments of 2 µs by the press
of a button. Figure A10 shows the complete code. We find that
the signal generator from Figure 1 can reliably generate signals
with half-period as low as 76 µs, corresponding to a frequency
of about 6.6 kHz, with less than 500 ns of jitter—within the
level of precision of our oscilloscope. At half-periods between
70 µs–76 µs, we observe degradation in signal accuracy and
consistency: the output signal’s half-period fluctuates between
60.2 µs–83.4 µs. At lower half-periods, the system ceases to
output any signal as it is overwhelmed by the computation
load. Once the half-period is increased beyond 76 µs, the
system eventually recovers after a burst of high-frequency
output, emitted as it catches up with wall-clock time.

Table IV compares our Scoria implementation with a com-
parable signal generator written in C (Figure A9). We measure
the maximum frequency for each implementation. Like the
Scoria runtime, the C implementation populates a ring buffer
when the alarm goes off; the main thread is then unblocked
by a semaphore release, after which it toggles the LED.

The Zephyr program outperforms the Scoria program, as
can be seen in table IV. As soon as the half period becomes
lower than the time it takes for the program to handle one
wave event, the signal becomes unstable. Since the Scoria
runtime adds some overhead when reacting to events, as can
be seen in Figure 16, the Scoria program can not handle as
low half periods as the Zephyr program. The Zephyr program
can generate about twice as high of a frequency.

d) BLE Frequency Mime: As a slightly more complicated
example, we wrote an application where two boards commu-
nicate over BLE. One board will advertise varying frequencies
using BLE, and the other board will scan for such messages.
When a message is intercepted, the board will generate a signal
of the detected frequency as it continues to scan for messages.

The C version needs to manage such things as callbacks,
clocks, counters, and global state. Any of these areas could
hide bugs, and they are all absent from the Scoria version. The
Scoria version specifies only application logic, not the details
of how it is realized. Figures A5 to A8 show both versions.

VIII. RELATED WORK

a) Synchronous Languages: Scoria’s programming
model SSM [3] adopts the synchrony hypothesis: concurrent
execution proceeds as a sequence of synchronized, zero-time
instants [7]. While digital hardware designers have used
this model for over half a century, French researchers
in the 1990s brought the concept to software languages
Lustre, Esterel, and Signal [8]–[10]. Synchrony simplifies
reasoning about concurrent timing behavior by eliminating
the non-determinism of asynchronony, and has since featured
in languages such as Timber [11] and Lingua Franca [12],
and EDSLs like Haski [13] and Copilot [14].

Despite their application in real-time programming, the
“French school” of programming languages—Lustre, Esterel,
and Signal [8]–[10]—do not include time as a first-class
language construct. Instead, they specify computation through
successive instants, and compile to tick functions that must be
invoked periodically by a cyclic executive for every instant,
even those where no computation takes place. Meanwhile,
Scoria’s after statement allows users to specify (or compute)
concrete time delays, and its sparse execution model does not
obligate its runtime to compute inert instants.

Many of the synchronous languages are dataflow-oriented,
including Lustre, Signal, and Lingua Franca [8], [10], [12],
where programs specify a static, finite dataflow graph where
processes (nodes) communicate along fixed channels (edges).
In contrast, Scoria is imperative (programs specify control
flow); processes are spawned dynamically using fork, and
the dataflow between them is implicit. Though Esterel is also
imperative and includes concurrent control-flow constructs like
Scoria’s fork and wait, it lacks function calls, limiting Esterel
programs to a finite number of processes [9].

Like Scoria, Haski [13] and Copilot [14] are deeply em-
bedded Haskell DSLs [15] that generate C code for microcon-
trollers. Haski is an embedding of Lustre in Haskell for secure
IoT programming; Copilot is an EDSL for monitoring software
that promises constant-time and -space C code. Both are
dataflow languages, so their embedding in Haskell constructs
abstract streams instead of Scoria’s syntax trees.

b) Compiler Testing: While manually written regression
test suites remain the standard for compiler development,
many have also considered randomly generating and shrinking
compiler test cases [16], [17]. Our work is most similar to
RandIR [18], which uses ScalaCheck [19] to test LMS [20], a
code generation framework for embedded DSLs. RandIR uses
Scala as its test oracle, translating its test candidates to Scala
to compare against other language backends; in comparison,
Scoria’s test oracle directly interprets generated Scoria IR.

For well-established languages, differential testing can take
advantage of multiple compiler implementations, e.g., CSmith
for C [21], or multiple optimization levels, e.g., Palka et
al. [22] for the Glasgow Haskell Compiler. While Scoria
cannot afford such an opportunity as a nascent language, we
look forward to adapting our test-driven compiler development
to help identify bugs as we begin to implement optimizations
that take advantage of Scoria’s synchronous semantics.
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c) Discrete-Event Systems: Ptides [23] is a programming
model used to implement discrete-event real-time systems that
inspired SSM and Scoria. Unlike Scoria/SSM, however, Ptides
implements a distributed discrete-event system that cautiously
determines when it is safe to process a timestamped message,
i.e., when a message with an earlier timestamp cannot appear.
We plan to implement distributed Scoria following Ptides.

IX. FUTURE WORK

a) Types: Scoria currently only supports a limited, prede-
fined set of data types. We will add support for more complex
types, such as arrays and user-defined algebraic data types
(ADTs). Building on McDonnell et al. [24], we can expose a
pattern-matching language interface that is familiar to Haskell
programmers. We believe ADTs will be a good fit for writing
IoT programs; the richness they bring will be especially
helpful for developing safe interfaces for peripherals.

b) Linear Types: Linear types [25] were recently added
to GHC, which allows certain invariants to be encoded in the
types and checked by the compiler. For instance, the compiler
can enforce that we schedule our I/O handlers, if output and
schedule are given more precise linear types:

output :: Int
-> (Ref LED -> SSM () %1 -> Compile ())
-> Compile ()

output i continuation = ...

schedule :: SSM () %1 -> Compile ()
schedule handler = ...

output’s type indicates that it takes an integer identifying
the LED, as well as a continuation that takes the LED
reference and handler as parameters, where the %1 indicates
that handler must be consumed exactly once. These functions
can be invoked as follows:

program :: Compile ()
program = output 0 $ \ref handler -> do

schedule handler -- followed by rest of program setup

Since the handler is scheduled inside of the continuation,
forgetting to schedule the handler (or scheduling it more than
once) is a GHC compile time error. This could otherwise only
be checked at code-generation time (host-language run time).

c) Performance: Experimentally, we identified a few
sources of inefficiency that make Scoria significantly slower
than counterparts implemented directly in C and Zephyr. While
the C and Zephyr versions process an event as soon as the
associated interrupt handler is invoked, Scoria has to enqueue
the message and wake up the main tick-thread that retrieves
it and actually runs the program, which add overhead.

The benchmarked programs can perform significantly better
if the required OS facilities were developed directly on the
bare metal rather than acquired by Zephyr. While Zephyr
gives quick access to many convenient abstractions, they are
developed in a very general way to be suitable for many kind
of applications. If we could tailor these abstractions to just the
needs of Scoria, we might be able to get some speedup. We
will try this, as well as trying out other operating systems.

X. CONCLUSIONS

While the Scoria language is still a simple language, Scoria
programs are short and clutter-free, and the compiler generates
resource-efficient code. Implementing Scoria as an EDSL has
led to several advantages for language and compiler devel-
opment. Taking advantage of features and tooling provided
by the host language, we can rapidly prototype our language.
Using primitives to derive new operations such as delay
is straightforward and transparent. Since the EDSL itself is
simply a Haskell library whose API constructs an AST, we
can easily experiment with exposing and modifying compiler
internals with little coordination with the language front-end.

We were able to confidently iterate on our compiler due to
our Scoria interpreter, which we developed early on. Using
the interpreter as a language oracle, we used QuickCheck to
thoroughly and efficiently test corner cases in our language,
identifying several bugs that would have otherwise taken much
longer to identify. To help us better understand what went
wrong, our shrinker produced minimal failing test programs
which easily pointed to the source of each bug we found.

We extended the RTS proposed by Edwards & Hui [3] with
Zephyr OS bindings to run Scoria programs on real hardware.
I/O peripherals are exposed via Scoria references so that Scoria
programs can converse with peripherals natively, avoiding
the callback hell typical of IoT applications. This interaction
model has allowed us to easily add support for a handful of
peripherals, including GPIO and BLE. Scoria allows users to
precisely specify the priority of I/O handling code relative to
concurrent user code and make application-specific reactivity
and sensitivity trade-offs. Our stress tests confirm we can write
real-time applications with robust overflow behaviour.

While Scoria remains an experimental language, our suc-
cesses with it to date have illustrated how implementing an
EDSL provides a faster route to language implementation
for experimental languages. As expected, Scoria has raised
many questions about how any sparse synchronous language
should be designed, notably how its interface with the outside
world should be specified, and given us a quick route to
experimenting with solutions to these problems. Work on
Scoria continues and will, at the very least, inform language
design in similar domains.
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APPENDIX

1 {-# LANGUAGE ImplicitParams #-}
2 {-# OPTIONS_GHC -fplugin=SSM.Plugin
3 -fplugin-opt=SSM.Plugin:mode=routine #-}
4 module Blinky where
5

6 import SSM.Language
7 import SSM.Frontend.Peripheral.LED
8

9 program :: (?pin :: Ref GPIO) => SSM ()
10 program = routine $ while true $ do
11 after (msecs 1000) ?pin (not $ deref ?pin)
12 wait ?pin
13

14 main :: Compile ()
15 main = do
16 (pin, handler) <- output 1
17 let ?pin = pin
18 schedule handler
19 schedule program

Fig. A1: The “blinky” example from Figure A4, implemented
in Scoria.

1 #include <zephyr.h>
2 #include <drivers/gpio.h>
3

4 static const struct gpio_dt_spec button =
5 GPIO_DT_SPEC_GET_OR(DT_ALIAS(sw0), gpios, {0});
6

7 static struct gpio_dt_spec led =
8 GPIO_DT_SPEC_GET_OR(DT_ALIAS(led0), gpios, {0});
9

10 void main() {
11 gpio_pin_configure_dt(&button, GPIO_INPUT);
12 gpio_pin_configure_dt(&led, GPIO_OUTPUT);
13

14 while (1)
15 gpio_pin_set_dt(&led, gpio_pin_get_dt(&button));
16 }

Fig. A2: The code of the polling button-to-blink code. 100%
of the CPU is allocated to reflecting the button state on the
LED, which gives a kind of theoretical minimum for how fast
the response time could be.

1 #include <zephyr.h>
2 #include <drivers/gpio.h>
3 #include "rb.h"
4

5 K_SEM_DEFINE(my_sem, 0, 1);
6 SSM_RB_DEFINE(int, ssm_input_buffer, 12);
7

8 static const struct gpio_dt_spec button =
9 GPIO_DT_SPEC_GET_OR(DT_ALIAS(sw0), gpios, {0});

10 static struct gpio_dt_spec led =
11 GPIO_DT_SPEC_GET_OR(DT_ALIAS(led0), gpios, {0});
12 static struct gpio_callback button_cb_data;
13

14 void button_pressed(const struct device *dev
15 , struct gpio_callback *cb
16 , uint32_t pins) {
17 int *msg = ssm_rb_writer_alloc(ssm_input_buffer);
18 if(msg) {
19 *msg = gpio_pin_get_dt(&button);
20 ssm_rb_writer_commit(ssm_input_buffer);
21 }
22 k_sem_give(&my_sem);
23 }
24

25 void main(void)
26 {
27 gpio_pin_configure_dt(&button, GPIO_INPUT);
28 gpio_pin_interrupt_configure_dt(&button,
29 GPIO_INT_EDGE_BOTH);
30 gpio_init_callback(&button_cb_data
31 , button_pressed
32 , BIT(button.pin));
33 gpio_add_callback(button.port, &button_cb_data);
34

35 gpio_pin_configure_dt(&led, GPIO_OUTPUT);
36

37 while(true) {
38 k_sem_take(&my_sem, K_FOREVER);
39 int *msg = ssm_rb_reader_claim(ssm_input_buffer);
40 if(msg) {
41 gpio_pin_set_dt(&led, *msg);
42 ssm_rb_reader_free(ssm_input_buffer);
43 }
44 }
45 }

Fig. A3: The button-to-blink program implemented using
Zephyr, where input events are delivered to an input ISR (line
14). When an event arrives, it is placed in a ring buffer (line 17-
20), and the main thread is woken up by releasing a semaphore
(line 22). The main thread retrieves the event from the ring
buffer (line 39-40) and toggles the LED.
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1 #include <zephyr.h>
2 #include <drivers/gpio.h>
3 #include <drivers/counter.h>
4 #include <drivers/clock_control.h>
5 #include <drivers/clock_control/nrf_clock_control.h>
6

7 static struct gpio_dt_spec led = GPIO_DT_SPEC_GET_OR(DT_ALIAS(ssm_led), gpios, {0});
8 const struct device *timer_dev, *clock_dev;
9 struct counter_alarm_cfg alarm_cfg;

10 uint32_t current; // Logical time
11

12 // Make sure GPIO device for LED is ready, and configure it
13 int configure_led(void) {
14 if (led.port && !device_is_ready(led.port))
15 return -ENODEV;
16 gpio_pin_configure(&led, GPIO_OUTPUT);
17 }
18

19 // Configure timer device to use NRF52840-DK’s external crystal oscillator
20 int configure_timer(void) {
21 timer_dev = device_get_binding(DT_LABEL(DT_ALIAS(ssm_timer)));
22 if (!timer_dev)
23 return -ENODEV;
24 counter_start(timer_dev);
25

26 clock_dev = device_get_binding(DT_LABEL(DT_INST(0, nordic_nrf_clock)));
27 if (!clock_dev)
28 return -ENODEV;
29 clock_control_on(clock_dev, CLOCK_CONTROL_NRF_SUBSYS_HF);
30 }
31

32 // Set an alarm to go off in delay_in_us microseconds, relative to logical time
33 void set_alarm(uint64_t delay_in_us) {
34 alarm_cfg.ticks = (current += counter_us_to_ticks(timer_dev, delay_in_us));
35 counter_set_channel_alarm(timer_dev, 0, &alarm_cfg);
36 }
37

38 // Called when the alarm goes off
39 void counter_interrupt_fn(const struct device *counter_dev, uint8_t chan_id,
40 uint32_t ticks, void *user_data) {
41 gpio_pin_toggle_dt(&led);
42 set_alarm(1000000); // 1000000 us = 1000 ms
43 }
44

45 // Configure alarm to call counter_interrupt when wakeup time is reached
46 int configure_alarm(void) {
47 alarm_cfg.flags = COUNTER_ALARM_CFG_ABSOLUTE | COUNTER_ALARM_CFG_EXPIRE_WHEN_LATE;
48 alarm_cfg.callback = counter_interrupt_fn;
49 alarm_cfg.user_data = &alarm_cfg;
50

51 // Initialize current logical time
52 counter_get_value(timer_dev, &current);
53 }
54

55 void main(void) {
56 configure_led();
57 configure_timer();
58 configure_alarm();
59 set_alarm(1000000); // 1000000 us = 1000 ms
60 }

Fig. A4: “Blinky” implementation with correct temporal behavior, implemented using Zephyr RTOS. To achieve more precise
timing, the code configures the NRF52840-DK board to use its external crystal oscillator as its clock source. This implementation
does not suffer from drift due to its use of logical time, though this comes at the complexity of (1) maintaining the value of
the logical clock, and (2) decomposing the application into interrupt handlers.
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1 #include <zephyr.h>
2 #include <device.h>
3 #include <drivers/gpio.h>
4

5 #include <drivers/counter.h>
6 #include <drivers/clock_control.h>
7 #include <drivers/clock_control/nrf_clock_control.h>
8 #include <bluetooth/bluetooth.h>
9 #include <bluetooth/hci.h>

10

11 static void counter_interrupt_fn(const struct device *counter_dev, uint8_t chan_id, uint32_t ticks, void *user_data);
12

13 int ssm_timer_configure_clock(void) {
14 const struct device *clock;
15 clock = device_get_binding(DT_LABEL(DT_INST(0, nordic_nrf_clock)));
16 clock_control_on(clock, CLOCK_CONTROL_NRF_SUBSYS_HF);
17 return 0;
18 }
19

20 const struct device *timer_dev;
21 struct counter_alarm_cfg alarm_cfg;
22

23 void set_alarm(uint64_t delay_in_us) {
24 alarm_cfg.ticks = counter_us_to_ticks(timer_dev, delay_in_us);
25 counter_set_channel_alarm(timer_dev, 0, &alarm_cfg);
26 }
27

28 uint64_t broadcast_data = 0;
29 static struct bt_data ad[] = {
30 BT_DATA(BT_DATA_MANUFACTURER_DATA, &broadcast_data, 8)};
31

32 K_THREAD_STACK_DEFINE(my_stack_area, 512);
33

34 struct k_work_q my_work_q;
35

36 #define SHORT_FREQ 200000
37 #define LONG_FREQ 500000
38

39 void alternate_frequency_broadcast(struct k_work *item) {
40 bt_le_adv_stop();
41 broadcast_data = broadcast_data == SHORT_FREQ ? LONG_FREQ : SHORT_FREQ;
42 bt_le_adv_start(BT_LE_ADV_NCONN_IDENTITY, ad, ARRAY_SIZE(ad), NULL, 0);
43 }
44

45 K_WORK_DEFINE(my_work_item, alternate_frequency_broadcast);
46

47 static void counter_interrupt_fn(const struct device *counter_dev, uint8_t chan_id, uint32_t ticks, void *user_data) {
48 k_work_submit(&my_work_item);
49 set_alarm(5000000);
50 }
51

52 void main() {
53 bt_enable(NULL);
54

55 k_work_queue_start(&my_work_q, my_stack_area, K_THREAD_STACK_SIZEOF(my_stack_area), 5, NULL);
56

57 timer_dev = device_get_binding(DT_LABEL(DT_ALIAS(ssm_timer)));
58 counter_start(timer_dev);
59 ssm_timer_configure_clock();
60

61 alarm_cfg.flags = 0;
62 alarm_cfg.callback = counter_interrupt_fn;
63 alarm_cfg.user_data = &alarm_cfg;
64

65 set_alarm(5000000);
66 }

Fig. A5: The C version of the BLE mime broadcaster. This application broadcasts one of two frequencies, switching between
the two every five seconds.
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1 #include <zephyr.h>
2 #include <device.h>
3 #include <drivers/gpio.h>
4

5 #include <drivers/counter.h>
6 #include <drivers/clock_control.h>
7 #include <drivers/clock_control/nrf_clock_control.h>
8 #include <bluetooth/bluetooth.h>
9 #include <bluetooth/hci.h>

10

11 static struct gpio_dt_spec led = GPIO_DT_SPEC_GET_OR(DT_ALIAS(led0), gpios, {0});
12

13 static void counter_interrupt_fn(const struct device *counter_dev, uint8_t chan_id, uint32_t ticks, void *user_data);
14

15 int ssm_timer_configure_clock(void) {
16 const struct device *clock;
17 clock = device_get_binding(DT_LABEL(DT_INST(0, nordic_nrf_clock)));
18 clock_control_on(clock, CLOCK_CONTROL_NRF_SUBSYS_HF);
19 return 0;
20 }
21

22 const struct device *timer_dev;
23 struct counter_alarm_cfg alarm_cfg;
24

25 void set_alarm(uint64_t delay_in_us) {
26 alarm_cfg.ticks = counter_us_to_ticks(timer_dev, delay_in_us);
27 counter_set_channel_alarm(timer_dev, 0, &alarm_cfg);
28 }
29

30 uint64_t period_in_us = 1000000;
31 uint64_t next_value = 0;
32

33 static void counter_interrupt_fn(const struct device *counter_dev, uint8_t chan_id, uint32_t ticks, void *user_data) {
34 gpio_pin_set_dt(&led, next_value);
35 next_value = next_value ^ 1UL;
36 set_alarm(period_in_us);
37 }
38

39 static void device_found(const bt_addr_le_t *addr, int8_t rssi, uint8_t type, struct net_buf_simple *ad) {
40 if (type != BT_GAP_ADV_TYPE_ADV_NONCONN_IND)
41 return;
42

43 if (ad->data[0] == 9 && ad->data[1] == BT_DATA_MANUFACTURER_DATA) {
44 uint64_t res = 0;
45 for (int i = 7; i >= 0; i--) {
46 res = (res << 8) | (uint64_t)ad->data[2 + i];
47 }
48 period_in_us = res;
49 }
50 }
51

52 void main() {
53 bt_enable(NULL);
54

55 timer_dev = device_get_binding(DT_LABEL(DT_ALIAS(ssm_timer)));
56 counter_start(timer_dev);
57 ssm_timer_configure_clock();
58

59 alarm_cfg.flags = 0;
60 alarm_cfg.callback = counter_interrupt_fn;
61 alarm_cfg.user_data = &alarm_cfg;
62

63 bt_le_scan_start(BT_LE_SCAN_PASSIVE, device_found);
64 gpio_pin_configure_dt(&led, GPIO_OUTPUT);
65 set_alarm(period_in_us);
66 }

Fig. A6: The C version of the BLE mime generator. This application scans for broadcasted messages, and generates a frequency
on LED 0. If a broadcasted message is detected, the generated frequency is the one specified in the advertisement payload.
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1 {-# LANGUAGE ImplicitParams #-}
2 {-# OPTIONS_GHC -fplugin=SSM.Plugin -fplugin-opt=SSM.Plugin:mode=routine #-}
3 module FrequencyMime where
4

5 import SSM.Language
6 import SSM.Frontend.Peripheral.BasicBLE
7

8 freqCount :: Ref Time -> SSM () -- concurrent process dictating which frequency to broadcast
9 freqCount period = routine $ while true $ do

10 period <∼ (msecs 200)
11 delay (secs 5)
12 period <∼ (msecs 500)
13 delay (secs 5)
14

15 broadcastCount :: (?ble :: BBLE) => Ref Time -> SSM ()
16 broadcastCount count = routine $ while true $ do
17 enableBroadcast $ time2ns $ deref count
18 delay (secs 5)
19 disableBroadcast
20

21 counterEntry :: (?ble :: BBLE) => SSM ()
22 counterEntry = routine $ do
23 count <- var $ secs 1 -- create the reference that is shared between the concurrent processes
24 fork [ freqCount count, broadcastCount count ]
25

26 counter :: Compile ()
27 counter = do
28 (ble, broadcast, scanning) <- enableBasicBLE
29

30 let ?ble = ble
31

32 schedule counterEntry
33 schedule broadcast
34 schedule scanning

Fig. A7: The Scoria version of the BLE mime broadcaster. It implements the same application as the one in Figure A5. See
Section V for a description of what delay does.
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1 {-# LANGUAGE ImplicitParams #-}
2 {-# OPTIONS_GHC -fplugin=SSM.Plugin -fplugin-opt=SSM.Plugin:mode=routine #-}
3 module FrequencyMime where
4

5 import SSM.Language
6 import SSM.Frontend.Peripheral.LED
7 import SSM.Frontend.Peripheral.BasicBLE
8

9 bleHandler :: (?ble :: BBLE) => Ref Time -> SSM () -- scan for broadcasted frequencies and write them to the shared reference
10 bleHandler period = routine $ do
11 enableScan
12 while true $ do
13 wait scanref
14 period <∼ nsecs (deref scanref)
15 delay (secs 5)
16

17 freqGen :: (?led0::Ref LED) => Ref Time -> SSM () -- generate a frequency with a half period dictated by the value of the shared
reference

18 freqGen period = routine $ while true $ do
19 after (deref period) ?led0 (not' $ deref ?led0)
20 wait ?led0
21

22 entry :: (?ble :: BBLE, ?led0::Ref LED) => SSM ()
23 entry = routine $ do
24 period <- var $ secs 1 -- create reference that is shared between the concurrent processes
25 fork [freqGen period, bleHandler period]
26

27 generator :: Compile ()
28 generator = do
29 (led, handler) <- output 0
30 (ble, broadcast, scanning) <- enableBasicBLE
31

32 let ?led0 = led
33 ?ble = ble
34

35 schedule handler
36 schedule entry
37 schedule broadcast
38 schedule scanning

Fig. A8: The Scoria version of the BLE mime generator. It implements the same application as the one in Figure A6. See
Section V for a description of what delay does.
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1

2 #include <zephyr.h>
3 #include <drivers/gpio.h>
4

5 #include <drivers/counter.h>
6 #include <drivers/clock_control.h>
7 #include <drivers/clock_control/nrf_clock_control.h>
8

9 #include "rb.h"
10

11 K_SEM_DEFINE(my_sem, 0, 1);
12 SSM_RB_DEFINE(uint8_t, ssm_input_buffer, 12);
13

14 static struct gpio_dt_spec led = GPIO_DT_SPEC_GET_OR(DT_ALIAS(led0), gpios, {0});
15

16 static void counter_interrupt_fn(const struct device *counter_dev, uint8_t chan_id, uint32_t ticks, void *user_data);
17

18 uint32_t current;
19 const struct device *timer_dev;
20 struct counter_alarm_cfg alarm_cfg;
21

22 int ssm_timer_configure_clock(void) {
23 const struct device *clock;
24 clock = device_get_binding(DT_LABEL(DT_INST(0, nordic_nrf_clock)));
25 clock_control_on(clock, CLOCK_CONTROL_NRF_SUBSYS_HF);
26 return 0;
27 }
28

29 void set_alarm(uint64_t delay_in_us) {
30 alarm_cfg.ticks = (current += counter_us_to_ticks(timer_dev, delay_in_us));
31 counter_set_channel_alarm(timer_dev, 0, &alarm_cfg);
32 }
33

34 uint8_t next;
35

36 static void counter_interrupt_fn(const struct device *counter_dev, uint8_t chan_id, uint32_t ticks, void *user_data) {
37 next = next ? 0 : 1;
38 uint8_t *msg = ssm_rb_writer_alloc(ssm_input_buffer);
39 if(msg) {
40 *msg = next;
41 ssm_rb_writer_commit(ssm_input_buffer);
42 }
43 k_sem_give(&my_sem);
44 }
45

46 void main() {
47 gpio_pin_configure_dt(&led, GPIO_OUTPUT);
48

49 timer_dev = device_get_binding(DT_LABEL(DT_ALIAS(ssm_timer)));
50 counter_start(timer_dev);
51 ssm_timer_configure_clock();
52 counter_get_value(timer_dev, &current);
53

54 alarm_cfg.flags = COUNTER_ALARM_CFG_ABSOLUTE | COUNTER_ALARM_CFG_EXPIRE_WHEN_LATE;
55 alarm_cfg.callback = counter_interrupt_fn;
56 alarm_cfg.user_data = &alarm_cfg;
57

58 uint32_t half_period = 41;
59 set_alarm(half_period);
60

61 while(true) {
62 k_sem_take(&my_sem, K_FOREVER);
63 uint8_t *msg = ssm_rb_reader_claim(ssm_input_buffer);
64 if(msg) {
65 gpio_pin_set_dt(&led, *msg);
66 ssm_rb_reader_free(ssm_input_buffer);
67 set_alarm(half_period);
68 }
69 }
70 }

Fig. A9: The frequency generator implemented using Zephyr. When the timer goes off, the associated event (the new state of
the LED) is placed in the ring buffer (line 38-41), and the main thread is woken up by releasing a semaphore (line 43). The
main thread retrieves the event (line 63-66), and schedules the next wake-up point (line 67).
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1 {-# LANGUAGE ImplicitParams #-}
2 {-# LANGUAGE FlexibleContexts #-}
3 {-# LANGUAGE RebindableSyntax #-}
4 {-# OPTIONS_GHC -fplugin=SSM.Plugin -fplugin-opt=SSM.Plugin:mode=routine #-}
5 module Generator where
6

7 import Prelude
8 import SSM.Language
9 import SSM.Frontend.Peripheral.GPIO

10

11 -- signal generator, generating a signal on ?out0 with a half period specified by hpr
12 sig_gen :: (?out0 :: Ref GPIO) => Ref Time -> SSM ()
13 sig_gen hpr = routine $ while true $ do
14 after (deref hpr) ?out0 (not' $ deref ?out0)
15 wait ?out0
16

17 -- increments or decrements the half period by 2 us, depending on which of two buttons was pressed
18 button_handler :: (?b1 :: Ref Switch, ?b2 :: Ref Switch) => Ref Time -> SSM ()
19 button_handler hpr = routine $ while true $ do
20 wait (?b1, ?b2)
21 if changed ?b1 -- here we woke up, so either b1 or b2 was pressed
22 then hpr <∼ deref hpr + usecs 2
23 else hpr <∼ deref hpr - usecs 2
24

25 -- create shared half period reference and initialize it to 1 second, before spawning the concurrent child processes
26 entry :: (?out0 :: Ref GPIO, ?b1 :: Ref Switch, ?b2 :: Ref Switch) => SSM ()
27 entry = routine $ do
28 hp <- var $ usecs 1000000
29 fork [ sig_gen hp, button_handler hp]
30

31 -- Specify what inputs and outputs the program uses, and specify the initial contents on the ready queue
32 main :: Compile ()
33 main = do
34 (led, handler) <- output 0
35 button1 <- input 0
36 button2 <- input 1
37

38 let ?out0 = led
39 ?b1 = button1
40 ?b2 = button2
41

42 schedule handler
43 schedule entry

Fig. A10: A frequency generator implemented in Scoria. The half period of the generated frequency is adjusted in steps of
2 µs when button 0 or button 1 is pressed.
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1 #include "ssm-platform.h"
2 #ifndef SSM_DEBUG_TRACE
3 #define SSM_DEBUG_TRACE(...) \
4 do \
5 ; \
6 while (0)
7 #endif
8 #ifndef SSM_DEBUG_MICROTICK
9 #define SSM_DEBUG_MICROTICK(...) \

10 do \
11 ; \
12 while (0)
13 #endif
14 ssm_bool_t input0;
15 ssm_bool_t output1;
16 typedef char event;
17 typedef struct {
18 struct ssm_act act;
19 struct ssm_trigger trig1;
20 } act_b2b_t;
21 struct ssm_act *enter_b2b(struct ssm_act *caller, ssm_priority_t priority, ssm_depth_t depth);
22 void step_b2b(struct ssm_act *actg);
23 struct ssm_act *enter_b2b(struct ssm_act *caller, ssm_priority_t priority, ssm_depth_t depth) {
24 struct ssm_act *actg = ssm_enter(sizeof(act_b2b_t), step_b2b, caller, priority, depth);
25 act_b2b_t *acts = container_of(actg, act_b2b_t, act);
26

27 acts->trig1.act = actg;
28 return actg;
29 }
30 void step_b2b(struct ssm_act *actg) {
31 act_b2b_t *acts = container_of(actg, act_b2b_t, act);
32

33 SSM_DEBUG_TRACE("ActStepBegin␣\"b2b\"");
34 SSM_DEBUG_MICROTICK();
35 switch (actg->pc) {
36

37 case 0:;
38 while (true) {
39 SSM_DEBUG_MICROTICK();
40 SSM_DEBUG_TRACE("ActSensitize␣\"input0\"");
41 ssm_sensitize(&(&input0)->sv, &acts->trig1);
42 actg->pc = 1;
43 return;
44

45 case 1:;
46 ssm_desensitize(&acts->trig1);
47 ssm_assign_bool(&output1, actg->priority, (&input0)->value);
48 }
49

50 default:
51 break;
52 }
53 ssm_leave(actg, sizeof(act_b2b_t));
54 }
55 int ssm_program_initialize(void) {
56 ssm_initialize_bool(&input0);
57 ssm_assign_bool(&input0, 0, 0);
58 ssm_initialize_bool(&output1);
59 ssm_assign_bool(&output1, 0, 0);
60 bind_static_input_device((ssm_sv_t *)&input0.sv, 0U);
61 ssm_activate(enter_b2b(&ssm_top_parent, SSM_ROOT_PRIORITY + 0 * (1 << SSM_ROOT_DEPTH - 1), SSM_ROOT_DEPTH - 1));
62 ssm_activate(bind_static_output_device(&ssm_top_parent, SSM_ROOT_PRIORITY + 1 * (1 << SSM_ROOT_DEPTH - 1),
63 SSM_ROOT_DEPTH - 1, &output1.sv, 0U));
64 return 0;
65 }

Fig. A11: The generated C code from the Scoria program in Figure 15. For more details of code such as this, see [3].

20


	Introduction
	Motivation
	Overview of Scoria
	I/O in Scoria
	Leveraging the Host Language
	Testing
	Experimental Results
	Related Work
	Future Work
	Conclusions
	References
	Appendix

