Using a Model Checker to Determine Worst-case
Execution Time

Sungjun Kim Hiren D. Patel Stephen A. Edwards
Department of Computer ScienceElectrical Engineering and Computer ScienceDepartment of Computer Science
Columbia University University of California, Berkeley Columbia University
New York, NY 10027, USA Berkeley, CA 94720, USA New York, NY 10027, USA
ski m@s. col unbi a. edu hi ren@ecs. berkel ey. edu sedwar ds@s. col unbi a. edu

Abstract—Hard real-time systems use worst-case execution extensions. For example, through the use of timing instruc-
time (WCET) estimates to ensure that timing requirements tjons, it is possible to specify a periodic rate of executidn
are met. The typical approach for obtaining WCET estimates a program segments. To guarantee the periodicity, we again

is to employ static program analysis methods. While these . .
approachgs)}grovide \?\/CgET boundg, they struggle to analyze US€ CBMC [11] to validate that program segments enclosed in

programs with loops whose iteration counts depend on input data. timing instructions indeed enforce repeatable timing biira.
Such programs mandate user-guided annotations. We propose a We illustrate this with a VGA driver example.

hybrid approach by augmenting static program analysis with

model-checking to analyze such programs and derive the loop A, An Example: GCD

bounds automatically. In addition, we use model-checking to))])))
guarantee repeatable timing behaviors from segments of program Figure 1 illustrates our techique. Figure 1(a) is a C imple-
code. Our target platform is a precision timed architecture: a mentation of Euclid’s greatest common divisor (GCD) algo-

S_PARC-base_d architecture promising prt_adictable and repeatable rithm, which repeatedly subtracts the larger of two numbers
tmgg ?ShaV|ors. We use CEMC dé.‘”.d |I|uTtra§ehouEfap\r;\r/(():a|Ec_:_1 from the other. While this is an uncommon algorithm to find
on Euclidean’s greatest common divisor algorithm (for)) LT :
analysis) and a VGA controller (for repeatable timing validation). 1" @ real-time setting, it illustrates the challenges otuklting
worst-case execution time when loops have complex behavior

Here, the values of the loop control variatidedo not follow
a simple pattern because they interact with the variable

How many times the loop in GCD iterates is a complicated
_) function ofa andb. In certain cases, the worst-case behavior
~ Software for hard real-time systems must satisfy strigt easy to see by inspection: if<la,b < 100, the worst case
timing constraints. This is typically done by determlnmgloo iterations) occurs whea = 1 andb = 100. However,
the worst-case execution time (WCET) of programs througihen 10< b < 28 and 70< a < 94. the maximum number of
static program analysis methods. Such methods, howevgfiations is less obviods31, which occurs whea = 85 and
have limitations. Due primarily to undecidability issuesly p_ og
restricted forms of programs are statically a_nalyzableaugé_ Figure 1 shows how we transform the C source program
body of WCET research focuses on reducing the restrictiops, 3 form that the Carnegie Mellon Bounded Model Checker
on programs, but we find that some striking restrictiond sticgmc) can analyze, which we use to calculate the WCET.
remains. One striking restriction: programs with dynamyca * o pasic strategy is to add a variable to the program whose
changing loops bounds are not amenable to static prograffirent value represents the number of clock cycles congume
analysis because bounds for such programs cannot be autoRakne program to reach that point and ask the model checker

ically derived. Most WCET methods, therefore, require usefg, ¢ yalues this variable may take. For example, if we know

to annotate the expected bounds [20]. o the variable may not exceed a certain value, that value is a
In this paper, we address the issue of determining 10@QQ,nd on the WCET.

bounds automatically for programs with dynamically chaggi |, ihe beginning of the WCET analysis, the input data range

loop indexes. We present an automatic WCET analysis for t'%ewritten in the source code. In the GCD example, the input

PRET architecture that uses a combination of static amlyﬁ'arametersa andb, are passed from arrays, of which values
for low-level analysis to extract execution time of basiodis ranges from 1 to 100

and model-checking to determine the dynamically changingAﬂer that, we divide the program into basic blocks and

loop bounds. We illustrate this method via a simple examp fdd a statement at the beginning of each block that increases

With a complex dat_a-dependent loop bound: E_u_clidean’s e time variable according to the number of cycles taken by
gorithm for computing the greatest common divisor (GCD).

The I_DRE_T _arChiteCFure is unique. il’.l that it aHOWS pmgramSlWe found it by simply running the algorithm on every pair of nergin the
specify timing requirements explicitly through instrustiset range.

Keywords-Real-time; Worst-Case Execution Time; Precision-
Timed; Model-Checking

I. INTRODUCTION

ged:
#BB_0
. LL10:
int ged(int a, int b) int gcd(int a, int b) cmp %1, 0 int gcd(int a, int b)
{ { ble.LL8
__asm "#BB_0"); nop int t =
while (b>0) while (b>0) .LL12: while (b>0
#BB_1 {
_asm "#BB_1"); cnmp %0, %01 time +
if (a>b) if (a>b) ble.LL4 i a
{ nop {
__asn("#BB_ 2"); #BB_2 time +
a=a-b; a=a-b; cmp %1, 0 a=a-b;
} } bg .LL12 }
el se el se sub %0, %1, %0 el se
{ { b,a.LL8 {
_asn("#BB_3"); . LL4: tinme += 2;
b=b- a; b=b- a; #BB_3 b=b- a;
} } b .LL10O }
} } sub %1, %0, %1 }
__asm("#BB 4"); . LL8: tine += 2;

#BB 4 assert(__tine<=-1);
return a; return a; retl return a;

} } nop }
() (b) () (d)

Fig. 1. (a) Euclid’'s greatest common divisor algorithm. Ourteque (b) inserts comments at basic block boundaries, (c) ibesnip to assembly (with
optimization), and (d) backannotates the execution time ofi dmasic block to produce a C program suitable for the modetkehe

the block. This is possible because we assume a predictaBleThe PRET Philosophy
architecture whose statements do not interact tempora]ly [_) _ _ _ _
[15]: the technique would be difficult to adapt for architeets It iS no surprise that most abstractions in computing hide
with much more interaction. timing properties of software. This has the immediate advan
Ultimately, it is the compiler that determines the instions t2ge that computer architects can use clever techniques to
in each basic block, but the compiler does not modify thetoloéMProve the average-case performance through archisctur
structure itself. Taking advantage of this, we start byiitisg OPtimizations such as speculative execution, deep pipglin
an assembly comment at the beginning of each basic blg¥kd complex memory hierarchies. This, however, comes at the
(Figure 1(b)). The compiler passes these through unmogifi€Pense of predictable and repeatable timing behavioringiak
allowing us to locate the basic blocks in the assembly € task of calculating accurate execution bounds of a segue
generates (Figure 1(c)). of instructions extremely d|ff|cult [6]. While this is acg:eqbﬂe
After counting instructions in each basic block in thdOr general purpose computing, the absence of time is sgvere
assembly source, we back-annotate the original C sour¢e wiftrimental to computing systems where timeliness is jest a
instructions that update the time variable (Figure 1(dyl argritical as correct functionality. Clearly, hard real-grambed-
hand the result to CBMC for analysis. ded computing is such an example. As real-time embedded
We call CBMC repeately to compute the WCET. We tre&omputing_ continues to borrow computer arch.itectures!stoo
the model checker as a black-box that takes the program, 3Kl téchniques from general purpose computing, we find that
estimate of WCET, and the unrolling depth as inputs and mHyS results in computing systems that are unpredictalde; n
return one of three results. It may tell us that the unrollingfPeatable, and brittle.
depth is insufficient (i.e., the function is still runningefthe ~ Consequently, the philosophy behind PRET [5] is to make
requested number of iterations), in which case we double tinporal characteristics of real-time embedded computing
unrolling depth and try again. just as predictable, and repeatable as function. In péaticu
Another possibility: the unrolling depth may be sufficienPRET’s objective is to re-think many of the architectural
but the property may be false. For example, the WCET of thieatures, and to judiciously select the ones that deliver pe
example is clearly not-1. In this case, CBMC provides aformance enhancements, but without sacrificing predietabl
counterexample (i.e., a reachable state in which the executand repeatable timing behaviors. Our initial prototype] [46
time is greater than-1), we use it as the new estimate othe PRET architecture employs software-managed scradchpa
WCET (i.e., change thassertin Figure 1(d)), and run the memories [1], thread-interleaved pipelines without bgpas
model checker again. ing [12], time-triggered arbitration access to off-chipmuazy,
Finally, the unrolling depth may be sufficient and thexplicit control over timing behaviors through ISA exten-
property is true (i.e., thasserton the timing is always true). sions [10], and high-level language extensions for spewfy
In this case, we terminate and report the WCET. We iteralighing requirements [19].
this process until we run out of memory or patience. By design, the PRET architecture makes predicting exe-

| Phase 2
I Compiler Assembly

____________ SPARC
[Phase 1 : >~ |*.pret.asm

: I GCC
C program with Front-end | | m—_ T]
timing constructs translations L _ _ | _ _ _ .

|

I Phase %
| *.C

|

|

" Low-level
: analysis
I

,L

clang

Translated code lla
with timing
instructions

Annotated with |
BB execution time Model-check,

. I
ann > | “.cbmc.c > cbmc |
I

I :
Y {IBETET) Counter-example I

| Phase 4 |

Fig. 2. Design Flow using Both Static Analysis and Modeldtieg

cution times of instructions on the processor straightésdy In contrast to such symbolic methods, our approach does not
This is because every instruction is completely predietablequire the user to provide the loop bounds at all, but imstea
allowing us to construct a simple yet a precise hardwavee simply take the original C program, and automatically
architecture model to estimate the execution times ofuiastr translate it into a program with annotation rules. Statehef t
tions. To control timing behaviors in software the PRET ISArt commercial tools such as Absint [20] provide almostyfull
providesdeadline instruction§5], [15]. A deadline instruction automated usability with code annotation, value analysi$ a
sets cycle counters to a given value and continues decreméRET analysis. However, aside from user-specified anrotsti
ing while executing the instruction stream. If anotheramste they do not provide an automated method for data-dependent
of the deadline instruction is reached in the instructioran loop bounds.
before the counter is zero, the program’s execution isestall
until it is zero before reloading a new value and continuing l1l. OUR TECHNIQUE
the processing of the instruction stream. This guarantess t Our approach has four phases to it as shown in Figure 2. The
a certain segment of program code repeatably takes the saji¢ phase converts a C program with timing constructs [19]
amount of execution time. to a standard C program that is compilable with GCC. During
this phase, deadline instructions are automatically tegénto
the source code in place of the timing constructs. Phase two
At present, integer linear programming (ILP) [14], an@imply describes compiling the translated source codegusin
implicit path enumeration technique (IPET) [13] combinethe SPARC GCC toolchain. The resulting assembly code is
with value analysis [3] and pipeline, and cache analysi§ [20sed as input in phase 3 for the low-level analytis&) that
are popular techniques used in estimating WCET [17], [g}l_etermines execution time of each basic block. The traetlat
However, these methods raise several issues. For exampfgjrce code from phase 1 is annotated with the executiorstime
IPET analysis requires the users to annotate the loop bpurfsbasic blocks &nn). In addition, we add an assertion for
and back-edges of a control flow graph to formulate an ILEhe WCET of the program. The resulting source code with
While value analysis combined with control flow analysi@nnotations (analyzable code) is sent to CBMC for assertion
(CFA) [7] is often successful in providing loop bounds, iverification. Given that we get a counter-example, we repeat
only supports a small subset of programs. This leavesth® process of updating the assertion with a new value for
large number of data-dependent programs uncovered with tifie WCET until we have exhaustively searched all feasible
method. One such example program is the GCD algorithipssible paths, and computed the WCET.
for which we devise a solution that uses model-checking.
The the general concept of WCET analysis through mod@l
checking was proposed by Metzner in [18]. However, that Input to our WCET analysis are C programs compilable
proposed method requires manually annotating loop boundsth the SPARC GCC toolchain. In addition, Patel et al [19]
which we eliminate in our work by unrolling the loops usinghave proposed timing constructs as language extensions to
bounded model-checking combined with an iterative deepespecify temporal requirements in software. An example of a
ing search. Methods that use symbolic representation [@&din timing construct, DEADSEQ) , is shown in Figure 3, which
users to determine the loop bounds manually. For large pspecifies that the program code within tDEADSEQ() scope
grams, this can be an extremely difficult and error-pronk.tashould always také\ units of time to execute. These timing

II. RELATED WORK

Source Code Features

constructs are realized into deadline instructions syetifi i f(expr)
the PRET architecture. We use an open-source front-end {

. . if(expr) stnt — __asn("#BB_nr");
cl ang to translate the C programs with timing constructs st
into its equivalent representation with the appropriatediiee
instructions. Currently, we have preliminary support fbe t @)
automated translation, and our ongoing efforts are in ngakin i f(expr)

this more robust.
__asm("#BB_nr");

st
DEADSEQ(N) DEADPLLSEQ N) i f(expr) stnt }
{ el se stnt — else
whi | e(<expr>) whi | e(<expr>) {
{ { __asn("#BB_nr");
<stnt> <stnt> st
} } }
} } (b)
(€Y (b)
case const _expr:
Fig. 3. Generating repeatable timing case const expr - {
ctri _expr- g;sn("#BB nr");
There are two kinds of deadline timing constructs, as
illustrated in Figure 3. Figure 3(a) is a deadline constuuitth (©)
thread clock synchronization. (cf. In PRET, 1 thread cysle i whi I e(expr)
same as 6 CPU cycles [15].) The semantic is that the program
code enclosed within the curly braces takes at Idagread while(expr) stnt — gt_ztsrr("#BB_nr");
cycles to execute. If thehi | e loop takes shorter thal }
thread cycles, PRET stalls the execution uNtithread cycles __asn("#BB_nr");
elapse. On the other hand, if it takes longer, the programs goe @
to the next instruction without stalling. Likewise, Figuséb) for (expr: expr: expr)
is a deadline construct with phase-locked loop (PLL) clock
synchronization. Its semantic is exactly the same exceit th fs?:’r‘g expr; expr;expr) gt_ﬁtsm(#BB_nr"),
the given argumeni, is synchronized by a PLL clock. }
Before starting the timing analysis, we define the ranges of __asn("#BB_nr");
input data. In the GCD algorithm, we use arrays as the input (©)
parameters, thus ranging the values of them is straigh#fiahw Fig. 4. Basic block dividing rules

with array size of 100, we set each value of an array element
from 1 to 100.

o . take 1 thread clocks while main-memory accessing instruc-
B. Division into Basic Blocks tions take 15 thread clocks [15].)

The initial step of our timing analysis is dividing the soarc , , ,)
code into basic blocks with assembly labels. First, we ifient - Adding Execution Time Annotations
locations in the program code that represent individualchas After dividing the source code into basic blocks with the
blocks, and insert an assembly label,asnm("#BB nr" assembly labels, we build our timing analyzable code with
); . (cf. nr is a number that increases whenever a label @notations. There are two kinds of annotations: inserting
added.) The rules of inserting assembly labels are given érecution times into its basic blocks and adding assertion
Figure 4. We describe the result for the GCD algorithm istatements for the timing analysis. We annotate execution
Figure 1(b). times of basic blocks as computed in section 1lI-B and

Next, we compile the labeled C code into assembly codeseassert statements as instructed in the CBMC manual.
and extract an execution time for every basic block. Sin€eéBMC recognizes theassert statements and verifies the
instructions between the inserted assembly labels coeprmoperty inside it [11].

a basic block, the running time of these instructions are At first, we insert the execution times of all the basic blocks
the execution time of the basic block. In addition, all théo the original code. The positions where assembly labels
instructions of the PRET processor are predictable, thus waee inserted are also the places to add the execution times.
use a simple table-driven assignment of the execution timésmparing Figure 1(b) and Figure 1(d), we can clearly notice
to the basic blocks. this.

We llustrate this in Figure 1(c). The first basic block is When we encounter timing constructs, we annotate the
from#BB_0 to #BB_1; since it has only 3 non main-memorycode as shown in Figure 5. Note the three comments, (1),
accessing instructions, the execution time of it is Bthread (2) and (3). The annotations in these comments separate
clocks. (cf. in PRET, non main-memory accessing instrastiotwo different deadline scope®EADSEQ(N1) scope and

DEADSEQ(N1) DEADSEQ(N1) because the bounded model-checker [2], [4] verifies whether
{

int time=o; /(D the loop bound is reached. Thus, the loop bound is determined

_time += T1; via an iterative deepening search. Initially, we provide an
<stnt> <stnt > arbitrary number of loop unwinds and run CBMC. If CBMC
_time += N2; 11 (2) i ; i
DEADSEQ(N2) DEADSEQ(N2) verifies that the loop te_rmmateg, then we have determined
{ the loop bound. Otherwise, we increase the number of loop
int _time=0; // (3) unwininding and run it again, and continue repeating these
_time +=T2; . .
<stnt> Stnts procedures until the loop bound is found.
assert(_time<N2); To explain WCET analysis in detail, let's see Figure 6(a).
} oo Initially, we do not know the WCET nor the loop bound.
_time +=T3;
assert(_time<NL); Therefore, we start with finding the WCET with a small
} } number of loop unwinds. Provided verification fails due te in
(@) (b) sufficient loop unwinding, we increase this number and re-ru

CBMC (finding the loop bound). If CBMC provides a counter-
example, we change the assertion statement while guessing
the WCET as the counter-example, and re-run CBMC. We
. repeating these steps until CBMC yields successful vetifioa
DEADSEQU N2) scope. The outdDEADSEQscope consider whereby the candidate WCET is the WCET. When we find the

the exec'ut|on -tlme of the Inne .E EQ scope agNZ as WCET, loop bound is also found because the model checker
marked in (2); however, since the inner should ignore tfhe

execution time declared in (1), the annotation in (3) isitesk as e>_<haust|vely_searched all the feasible paths.

The assertion statements are added at their proper pasition Ve illustrate this method to compute the WCET of the GCD
at the end of the target function of the WCET analysi@lgorithm. We first start the candidate WCET a8 with 10
(Figure 6(a)), or at the end of the deadline timing construlqop unW|.nds. Whenever verification fails due_to insufficient
(Figure 6(b) or Figure 6(c)). Also, as illustrated, for WCETOOP unwind, we double the number of unwinds. For two
analysis the asserted property compareg i me with —1 arguments ranging from 1 to 100, the result WCET is 703
(Figure 6(a)). However, for validating whether timing ragu thread cycles.
ments are satisfied for the timing constructs, we use theUnlike the WCET analysis, which requires multiple invoca-
deadline argument in the assertion (Figure 6(b) or Figue) 6(tions of CBMC, validating repeatable timing behaviors reed

Validating the PLL timing constructs, we have to considgperforming the verification only once because the assertion
that the given deadline argument is synchronized with thie Plexplicitly checks for the timing requirement. A sample code
clock, which can be different from the thread clock (or thés shown in Figure 6(b). Notice that we only need to unwind
CPU clock). In this case, the assertion property, the deadlithe loop at mostN times. This is under the conservative
instruction’s argument, is simply converted by multiplyithe assumption that the loop takes one thread cycle to execute.
ratio of thread and PLL clocks. Suppose that the thread cloBk, if the enclosed program code does not meet its timing
frequency isX and the PLL frequency i¥, as described requirement oN thread cycles wittN number of unwindings,
in Figure 6(c). SinceN is synchronized by the PLL clock, then the timing requirement is violated. This goes to show
the assertion statement for the timing validation should Iteat in order to validate that program segments have rejpleata

Fig. 5. (a) Nested deadline constructs and (b) its annotzteé

assert(_time <= N=x* X/ Y);. timing behavior, we do not need to determine the loop bounds.
_ Instead, we can unwind\ times to validate our timing
D. Running the Model Checker requirement. For these reasons, we don't have to preconditi

After annotating the source code, we use the model check8g loop termination for the timing validation.
CBMC, to verify the property: thessert statements. For Not only that, but the timing validation method is also
validation, we only have to model-check once, and if thearticularly fast when the target code has nested deadline
property is verified, then the timing requirements are 8atls constructs and when the validation fails in an outer scope.
On the other hand, for WCET analysis, we update the assertat's see Figure 5. Note that ti ne variable of the inner
property with the WCET revealed through the counter-examBEADSEQ is invisible to the outeDEADSEQ scope and the
until the property is verified. The final annotated propegy iouter __ti ne ignores the inner. Thus, timing validations
the WCET. of two DEADSEQs work differently. Since timing properties
For model-checking, we use Carnegie-Mellon Boundenf the inner DEADSEQ is ignored whenassert in the
Model-Checker (CBMC) [11]. It effectively finds loop boundsouter DEADSEQ is verified, the execution time of the inner
and WCETs, and validates the deadline timing construcBEADSEQ is simply regarded ageadl i ne_i nner. The
Since CBMC is a verification tool for ANSI-C/C++ programstiming validation of the inneDEADSEQis done only if that of
we can simply use the original PRET C source code the outer is passed; otherwise, the verification shortlgliies
perform the timing analysis. Furthermore, we do not neewth failure. Thus, the repeatable timing validation of teeks
to annotate loop bounds for our timing analysis. This ideadlines can be faster in a validation failure case.

DEADPLLSEQ N)

int __time=0; DEADSEQ(N) {
voi d foo() int __time=0;
{ int __tine=0; __tinme +=T1,;
_tine +=T1,; _ time +=T1, whi | e(<expr>)
whi | e(<expr>) whi | e(<expr>) {
{ _time +=T2;
__tinme +=T2; _tine +=T2; <stnt>
<stmt> <stnt> }
_tine +=T3;
_time +=T3; _time +=T3; assert(__time <N X/ Y);
assert(__tine<-1); assert(__time <N); } // X thread cl ock frequency
} } /1 Y: PLL frequency
(@ (b) (©)
Fig. 6. Time annotated code: (a) WCET analysis, (b) timing ei@h for a deadline construct and (c) timing validation foPlaL deadline construct

architecture. The VGA driver sends four colors of pixel data
the VGA controller. The VGA timing requirements for 640
480 resolution with 60 Hz refresh rate must be met. There

IV. EXPERIMENTAL RESULTS
A. GCD Algorithm

ITERATIVE DEEPENING WCET ANALYSIS OF THE GCD ALGORITHM

Stage|[Unwind | Candidate WCET| Counterexample are blank timing and active timing requirements. The driver
1 10 -1 10 should send image data one by one according to the VGA
2 10 10 20 clock, 25175MHz, in active timings. To produce the VGA
3 10 20 S0 clock, we use the PLL clock, and to send image data, we load
4 10 20 29 the data to a 32-bit hardware shift register.

5 10 59 Unwind Error
6 20 59 60 The implemented VGA driver algorithm is a nesting of
7 20 62 95 simple loops. The driver iterates every vertical timingranie
8 20 95 97 drawing timing; a horizontal timing, a line drawing timing,
9 20 97 103 iterates inside the frame timing while sending image dathe¢o
10 20 103 Unwind Error VGA controller. Each iteration must follow the VGA timing
i; 38 1(2)2 ;g? r'eq'uirement that is synchronized by th'e PLI._ clock. Repéatab
13 0 537 583 tlml_ng cons_tru_cts are inserted for the iterations of veitend
14 40 283 Unwind Error horizontal timings.
15 80 283 360 Since the current PRET processor prototype is in the form
16 80 360 Unwind Error of a simulator, we need to compute the CPU speed that
17 160 360 492 allows correct operation of the VGA driver. In our VGA driver
18 160 492 505 example, we calculate the minimum CPU speed manually, and
%g 128 28? g% then validate the driver code to determine whether any imin
1 160 540 610 requirements are violated. As a result, the calculatedmmuinmi
22 160 610 682 CPU speed is 188MHz. We use this frequency when we
23 160 682 701 perform the validation, and verify that our timing requiremis
24 160 701 703 are satisfied. We also investigated reducing the frequdriy.
25 160 703 (WCET) | Verification Success resulted in counter-examples, as we had expected.

TABLE |

V. CONCLUSION
This work presents a hybrid approach to WCET analysis.

The WCET analysis result of the GCD algorithm is showwe leverage model-checking techniques to derive loop b®und

in Table I. The test starts with 10 unwinds, finding countef
examples. We double the number of unwinds whenever
encounter an unwind error, which means verification cann

and cover feasible program paths, and static program asalys
Jiudetermine basic block execution times. By combining ¢hes
%LO techniques, we are able to compute WCET of programs

complete with the given number of unwinds. We also substit
the candidate WCETs as the counter-example and the
continues until the verification succeeds. The WCET is 7
thread cycles for our GCD example, in which the inp

,whose loop bounds are allowed to change dynamically. Note
(&ﬁt we do require the user to provide the range of possilble va
s that the loop arguments can take. Additionally, we atdid
at PRET's timing constructs meet their timing requireteen
variables are ranging from 1 to 100. using this approach.' Qur future work involves. extgnding the

. WCET analysis for timing constructs that provide time-based
B. VGA Driver exceptions [9], synchronization instructions betweerdlls,
We use the VGA driver example presented in [15] to confirmnd employing this WCET analysis for scratchpad memory
our approach for validating timing requirements for the FREallocation schemes [19].

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

REFERENCES

Oren Avissar, Rajeev Barua, and Dave Stewart. An optimaiorg
allocation scheme for scratch-pad-based embedded systeAGM
Transactions on Embedded Computing Syster(ly:6-26, 2002.

Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yoas Zhu.

Symbolic model checking without bdds. MACAS '99: Proceedings [20]

of the 5th International Conference on Tools and AlgorithiorsCon-
struction and Analysis of Systenmages 193-207, London, UK, 1999.
Springer-Verlag.

Patrick Cousot and Radhia Cousot. Abstract interpi@tatA unified
lattice model for static analysis of programs by constructiwnap-
proximation of fixpoints. InProceedings of Principles of Programming
Languages (POPL)pages 238-252, Los Angeles, California, January
1977.

Vijay D’'Silva, Daniel Kroening, and Georg Weissenbaché survey
of automated techniques for formal software verificatien.Survey of
Automated Techniques for Formal Software Verificatid®08.

Stephen A. Edwards and Edward A. Lee. The case for theigioac
timed (PRET) machine. IRroceedings of the 44th Design Automation
Conferencegpages 264-265, San Diego, California, June 2007.
Christian Ferdinand, Reinhold Heckmann, Marc Langehbddorian
Martin, Michael Schmidt, Henrik Theiling, Stephan Thesiagd Rein-
hard Wilhelm. Reliable and precise WCET determination for &lita
processor. IProceedings of the International Conference on Embedded
Software (Emsoftfvolume 2211 ofLecture Notes in Computer Science
pages 469-485, North Lake Tahoe, California, October 2001.

Jan Gustafsson, Bfn Lisper, Christer Sandberg, and Nerina Bermudo.
A tool for automatic flow analysis of C-programs for WCET cal¢iga.

In Proceedings of the Eighth International Workshop on Obfedented
Real-Time Dependable Systems (WORP&yes 106—112, Guadalajara,
Mexico, January 2003.

Reinhold Heckmann, Marc Langenbach, Stephan ThesirgyRamnhard
Wilhelm. The influence of processor architecture on the deaid the
results of WCET toolsProceedings of the IEED1(7):1038-1054, July
2003.

IEEE Real-Time and Embedded Technology and Applications -
sium. Poster Abstract: Timing Instructions - ISA Extensions fonifig
GuaranteesApril 2009.

Nicholas Jun Hao Ip and Stephen A. Edwards. A processi@nsion
for cycle-accurate real-time software. Rioceedings of the IFIP Inter-
national Conference on Embedded and Ubiquitous ComputitgC),
volume 4096 ofLecture Notes in Computer Sciengeages 449-458,
Seoul, Korea, August 2006.

Daniel Kroening and Edmund Clarke. Carnegie-Mellon Baed Model-
Checker (CBMC).ht t p: / / www. cprover. or g/ chnt/ .

Edward A. Lee and David G. Messerschmitt. Pipeline ietared
programmable DSP’s: ArchitecturdEEE Transactions on Acoustics,
Speech, and Signal ProcessingSSP-35(9):1320-1333, September
1987.

Yau-Tsun Steven Li and Sharad Malik. Performance aislys
embedded software using implicit path enumeratidBEE Transac-
tions on Computer-Aided Design of Integrated Circuits anst&nms
16(12):1477-1487, December 1997.

Yau-Tsun Steven Li, Sharad Malik, and Andrew Wolfe. &#t
microarchitecture modeling and path analysis for real-tinfensoe. In
Proceedings of the 16th IEEE Real-Time Systems Sympopages
298-307, Pisa, Italy, December 1995.

Ben Lickly, Isaac Liu, Sungjun Kim, Hiren D. Patel, Steph A.
Edwards, and Edward A. Lee. Predictable programming on agioeci
timed architecture. IfProceedings of the International Conference on
Compilers, Architecture, and Synthesis for Embedded Bgst€ASES)
pages 137-146, Atlanta, Georgia, October 2008.

G. Logothetis and Klaus Schneider. Exact high level WCHiRlysis
of synchronous programs by symbolic state space exploratitm.
Proceedings of Design, Automation, and Test in Europe (DAp&ges
196-203, Munich, Germany, March 2003.

Thomas Lundqvist and Per Ster@str. Timing anomalies in dynamically
scheduled microprocessors. Rroceedings of the IEEE Real-Time
Systems Symposium (RTS@age 12, Washington, DC, 1999. IEEE
Computer Society.

Alexander Metzner. Why model checking can improve WCET ysisl

In Proceedings of the International Conference on Computded

[19]

Verification (CAV) volume 3114 olecture Notes in Computer Science
pages 334-347, Boston, Massachusetts, July 2004.

Hiren D. Patel, Ben Lickly Ben, Bas Burgers, and EdwardL&e. A
timing requirements-aware scratchpad memory allocation scliense
precision timed architecture. Technical Report UCB/EE08&115,
EECS Department, University of California, Berkeley, Septer 2008.
Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niktolsti,
Stephan Thesing, David Whalley, Guillem Bernat, Christi@ndihand,
Reinhold Heckmann, Frank Mueller, Isabelle Puaut, Peterclines,
Jan Staschulat, and Per Stedsir The determination of worst-case
execution times: Overview of the methods and survey of todIEM
Transactions on Embedded Computing Systéft®):36:1-36:53, April
2008.

