
Using a Model Checker to Determine Worst-case
Execution Time

Sungjun Kim
Department of Computer Science

Columbia University
New York, NY 10027, USA
skim@cs.columbia.edu

Hiren D. Patel
Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, CA 94720, USA

hiren@eecs.berkeley.edu

Stephen A. Edwards
Department of Computer Science

Columbia University
New York, NY 10027, USA

sedwards@cs.columbia.edu

Abstract—Hard real-time systems use worst-case execution
time (WCET) estimates to ensure that timing requirements
are met. The typical approach for obtaining WCET estimates
is to employ static program analysis methods. While these
approaches provide WCET bounds, they struggle to analyze
programs with loops whose iteration counts depend on input data.
Such programs mandate user-guided annotations. We propose a
hybrid approach by augmenting static program analysis with
model-checking to analyze such programs and derive the loop
bounds automatically. In addition, we use model-checking to
guarantee repeatable timing behaviors from segments of program
code. Our target platform is a precision timed architecture: a
SPARC-based architecture promising predictable and repeatable
timing behaviors. We use CBMC and illustrate our approach
on Euclidean’s greatest common divisor algorithm (for WCET
analysis) and a VGA controller (for repeatable timing validation).

Keywords-Real-time; Worst-Case Execution Time; Precision-
Timed; Model-Checking

I. I NTRODUCTION

Software for hard real-time systems must satisfy strict
timing constraints. This is typically done by determining
the worst-case execution time (WCET) of programs through
static program analysis methods. Such methods, however,
have limitations. Due primarily to undecidability issues,only
restricted forms of programs are statically analyzable. A large
body of WCET research focuses on reducing the restrictions
on programs, but we find that some striking restrictions still
remains. One striking restriction: programs with dynamically
changing loops bounds are not amenable to static program
analysis because bounds for such programs cannot be automat-
ically derived. Most WCET methods, therefore, require users
to annotate the expected bounds [20].

In this paper, we address the issue of determining loop
bounds automatically for programs with dynamically changing
loop indexes. We present an automatic WCET analysis for the
PRET architecture that uses a combination of static analysis
for low-level analysis to extract execution time of basic blocks
and model-checking to determine the dynamically changing
loop bounds. We illustrate this method via a simple example
with a complex data-dependent loop bound: Euclidean’s al-
gorithm for computing the greatest common divisor (GCD).
The PRET architecture is unique in that it allows programs to
specify timing requirements explicitly through instruction-set

extensions. For example, through the use of timing instruc-
tions, it is possible to specify a periodic rate of executionof
a program segments. To guarantee the periodicity, we again
use CBMC [11] to validate that program segments enclosed in
timing instructions indeed enforce repeatable timing behaviors.
We illustrate this with a VGA driver example.

A. An Example: GCD

Figure 1 illustrates our techique. Figure 1(a) is a C imple-
mentation of Euclid’s greatest common divisor (GCD) algo-
rithm, which repeatedly subtracts the larger of two numbers
from the other. While this is an uncommon algorithm to find
in a real-time setting, it illustrates the challenges of calculating
worst-case execution time when loops have complex behavior.
Here, the values of the loop control variableb do not follow
a simple pattern because they interact with the variablea.

How many times the loop in GCD iterates is a complicated
function of a andb. In certain cases, the worst-case behavior
is easy to see by inspection: if 1≤ a,b≤ 100, the worst case
(100 iterations) occurs whena = 1 and b = 100. However,
when 10≤ b≤ 28 and 70≤ a≤ 94, the maximum number of
iterations is less obvious:1 31, which occurs whena= 85 and
b = 28.

Figure 1 shows how we transform the C source program
into a form that the Carnegie Mellon Bounded Model Checker
(CBMC) can analyze, which we use to calculate the WCET.

Our basic strategy is to add a variable to the program whose
current value represents the number of clock cycles consumed
by the program to reach that point and ask the model checker
what values this variable may take. For example, if we know
the variable may not exceed a certain value, that value is a
bound on the WCET.

In the beginning of the WCET analysis, the input data range
is written in the source code. In the GCD example, the input
parameters,a andb, are passed from arrays, of which values
ranges from 1 to 100.

After that, we divide the program into basic blocks and
add a statement at the beginning of each block that increases
the time variable according to the number of cycles taken by

1We found it by simply running the algorithm on every pair of numbers in the
range.

int gcd(int a, int b)
{

while (b > 0)
{

if (a > b)
{

a = a - b;
}
else
{

b = b - a;
}

}

return a;
}

(a)

int gcd(int a, int b)
{

__asm("#BB_0");
while (b > 0)
{

__asm("#BB_1");
if (a > b)
{

__asm("#BB_2");
a = a - b;

}
else
{

__asm("#BB_3");
b = b - a;

}
}
__asm("#BB_4");

return a;
}

(b)

gcd:
#BB_0

.LL10:
cmp %o1, 0
ble .LL8
nop

.LL12:
#BB_1
cmp %o0, %o1
ble .LL4
nop
#BB_2
cmp %o1, 0
bg .LL12
sub %o0, %o1, %o0
b,a .LL8

.LL4:
#BB_3
b .LL10
sub %o1, %o0, %o1

.LL8:
#BB_4
retl
nop

(c)

int gcd(int a, int b)
{

int __time = 3;
while (b > 0)
{

__time += 3;
if (a > b)
{

__time += 4;
a = a - b;

}
else
{

__time += 2;
b = b - a;

}
}
__time += 2;
assert(__time <= -1);
return a;

}
(d)

Fig. 1. (a) Euclid’s greatest common divisor algorithm. Our technique (b) inserts comments at basic block boundaries, (c) compiles it to assembly (with
optimization), and (d) backannotates the execution time of each basic block to produce a C program suitable for the model checker.

the block. This is possible because we assume a predictable
architecture whose statements do not interact temporally [5],
[15]; the technique would be difficult to adapt for architectures
with much more interaction.

Ultimately, it is the compiler that determines the instructions
in each basic block, but the compiler does not modify the block
structure itself. Taking advantage of this, we start by inserting
an assembly comment at the beginning of each basic block
(Figure 1(b)). The compiler passes these through unmodified,
allowing us to locate the basic blocks in the assembly it
generates (Figure 1(c)).

After counting instructions in each basic block in the
assembly source, we back-annotate the original C source with
instructions that update the time variable (Figure 1(d)) and
hand the result to CBMC for analysis.

We call CBMC repeately to compute the WCET. We treat
the model checker as a black-box that takes the program, an
estimate of WCET, and the unrolling depth as inputs and may
return one of three results. It may tell us that the unrolling
depth is insufficient (i.e., the function is still running after the
requested number of iterations), in which case we double the
unrolling depth and try again.

Another possibility: the unrolling depth may be sufficient
but the property may be false. For example, the WCET of this
example is clearly not−1. In this case, CBMC provides a
counterexample (i.e., a reachable state in which the execution
time is greater than−1), we use it as the new estimate of
WCET (i.e., change theassert in Figure 1(d)), and run the
model checker again.

Finally, the unrolling depth may be sufficient and the
property is true (i.e., theasserton the timing is always true).
In this case, we terminate and report the WCET. We iterate
this process until we run out of memory or patience.

B. The PRET Philosophy

It is no surprise that most abstractions in computing hide
timing properties of software. This has the immediate advan-
tage that computer architects can use clever techniques to
improve the average-case performance through architectural
optimizations such as speculative execution, deep pipelining,
and complex memory hierarchies. This, however, comes at the
expense of predictable and repeatable timing behaviors making
the task of calculating accurate execution bounds of a sequence
of instructions extremely difficult [6]. While this is acceptable
for general purpose computing, the absence of time is severely
detrimental to computing systems where timeliness is just as
critical as correct functionality. Clearly, hard real-time embed-
ded computing is such an example. As real-time embedded
computing continues to borrow computer architectures, tools,
and techniques from general purpose computing, we find that
this results in computing systems that are unpredictable, non-
repeatable, and brittle.

Consequently, the philosophy behind PRET [5] is to make
temporal characteristics of real-time embedded computing
just as predictable, and repeatable as function. In particular,
PRET’s objective is to re-think many of the architectural
features, and to judiciously select the ones that deliver per-
formance enhancements, but without sacrificing predictable
and repeatable timing behaviors. Our initial prototype [15] of
the PRET architecture employs software-managed scratchpad
memories [1], thread-interleaved pipelines without bypass-
ing [12], time-triggered arbitration access to off-chip memory,
explicit control over timing behaviors through ISA exten-
sions [10], and high-level language extensions for specifying
timing requirements [19].

By design, the PRET architecture makes predicting exe-

Phase 1

Phase 3

Phase 4

Phase 2

C program with

timing constructs

*.c clang

Front-end

translations

Assembly

*.pret.asm

*.cbmc.c

Annotated with

BB execution time

Low-level

analysis

 lla

 cbmc

Model-check

Counter-example
Annotation

 ann

 SPARC

GCC

Compiler

*.pret.c

Translated code

with timing

instructions

Fig. 2. Design Flow using Both Static Analysis and Model-checking

cution times of instructions on the processor straightforward.
This is because every instruction is completely predictable
allowing us to construct a simple yet a precise hardware
architecture model to estimate the execution times of instruc-
tions. To control timing behaviors in software the PRET ISA
providesdeadline instructions[5], [15]. A deadline instruction
sets cycle counters to a given value and continues decrement-
ing while executing the instruction stream. If another instance
of the deadline instruction is reached in the instruction stream
before the counter is zero, the program’s execution is stalled
until it is zero before reloading a new value and continuing
the processing of the instruction stream. This guarantees that
a certain segment of program code repeatably takes the same
amount of execution time.

II. RELATED WORK

At present, integer linear programming (ILP) [14], and
implicit path enumeration technique (IPET) [13] combined
with value analysis [3] and pipeline, and cache analysis [20]
are popular techniques used in estimating WCET [17], [8].
However, these methods raise several issues. For example,
IPET analysis requires the users to annotate the loop bounds,
and back-edges of a control flow graph to formulate an ILP.
While value analysis combined with control flow analysis
(CFA) [7] is often successful in providing loop bounds, it
only supports a small subset of programs. This leaves a
large number of data-dependent programs uncovered with this
method. One such example program is the GCD algorithm,
for which we devise a solution that uses model-checking.

The the general concept of WCET analysis through model
checking was proposed by Metzner in [18]. However, that
proposed method requires manually annotating loop bounds,
which we eliminate in our work by unrolling the loops using
bounded model-checking combined with an iterative deepen-
ing search. Methods that use symbolic representation [16] need
users to determine the loop bounds manually. For large pro-
grams, this can be an extremely difficult and error-prone task.

In contrast to such symbolic methods, our approach does not
require the user to provide the loop bounds at all, but instead,
we simply take the original C program, and automatically
translate it into a program with annotation rules. State of the
art commercial tools such as AbsInt [20] provide almost fully
automated usability with code annotation, value analysis and
IPET analysis. However, aside from user-specified annotations,
they do not provide an automated method for data-dependent
loop bounds.

III. O UR TECHNIQUE

Our approach has four phases to it as shown in Figure 2. The
first phase converts a C program with timing constructs [19]
to a standard C program that is compilable with GCC. During
this phase, deadline instructions are automatically inserted into
the source code in place of the timing constructs. Phase two
simply describes compiling the translated source code using
the SPARC GCC toolchain. The resulting assembly code is
used as input in phase 3 for the low-level analysis (lla) that
determines execution time of each basic block. The translated
source code from phase 1 is annotated with the execution times
of basic blocks (ann). In addition, we add an assertion for
the WCET of the program. The resulting source code with
annotations (analyzable code) is sent to CBMC for assertion
verification. Given that we get a counter-example, we repeat
the process of updating the assertion with a new value for
the WCET until we have exhaustively searched all feasible
possible paths, and computed the WCET.

A. Source Code Features

Input to our WCET analysis are C programs compilable
with the SPARC GCC toolchain. In addition, Patel et al [19]
have proposed timing constructs as language extensions to
specify temporal requirements in software. An example of a
timing construct,DEADSEQ(), is shown in Figure 3, which
specifies that the program code within theDEADSEQ() scope
should always takeN units of time to execute. These timing

constructs are realized into deadline instructions specific for
the PRET architecture. We use an open-source front-end
clang to translate the C programs with timing constructs
into its equivalent representation with the appropriate deadline
instructions. Currently, we have preliminary support for the
automated translation, and our ongoing efforts are in making
this more robust.

DEADSEQ(N)
{

while(<expr>)
{

<stmt>
}

}
(a)

DEADPLLSEQ(N)
{

while(<expr>)
{

<stmt>
}

}
(b)

Fig. 3. Generating repeatable timing

There are two kinds of deadline timing constructs, as
illustrated in Figure 3. Figure 3(a) is a deadline constructwith
thread clock synchronization. (cf. In PRET, 1 thread cycle is
same as 6 CPU cycles [15].) The semantic is that the program
code enclosed within the curly braces takes at leastN thread
cycles to execute. If thewhile loop takes shorter thanN
thread cycles, PRET stalls the execution untilN thread cycles
elapse. On the other hand, if it takes longer, the program goes
to the next instruction without stalling. Likewise, Figure3(b)
is a deadline construct with phase-locked loop (PLL) clock
synchronization. Its semantic is exactly the same except that
the given argumentN, is synchronized by a PLL clock.

Before starting the timing analysis, we define the ranges of
input data. In the GCD algorithm, we use arrays as the input
parameters, thus ranging the values of them is straightforward:
with array size of 100, we set each value of an array element
from 1 to 100.

B. Division into Basic Blocks

The initial step of our timing analysis is dividing the source
code into basic blocks with assembly labels. First, we identify
locations in the program code that represent individual basic
blocks, and insert an assembly label,__asm("#BB_nr"
);. (cf. nr is a number that increases whenever a label is
added.) The rules of inserting assembly labels are given in
Figure 4. We describe the result for the GCD algorithm in
Figure 1(b).

Next, we compile the labeled C code into assembly code,
and extract an execution time for every basic block. Since
instructions between the inserted assembly labels comprise
a basic block, the running time of these instructions are
the execution time of the basic block. In addition, all the
instructions of the PRET processor are predictable, thus we
use a simple table-driven assignment of the execution times
to the basic blocks.

We illustrate this in Figure 1(c). The first basic block is
from #BB_0 to #BB_1; since it has only 3 non main-memory
accessing instructions, the execution time of it is 3×1 thread
clocks. (cf. in PRET, non main-memory accessing instructions

if(expr) stmt →

if(expr)
{

__asm("#BB_nr");
stmt

}
(a)

if(expr) stmt
else stmt →

if(expr)
{

__asm("#BB_nr");
stmt

}
else
{

__asm("#BB_nr");
stmt

}
(b)

case const_expr:
stmt →

case const_expr:
{

__asm("#BB_nr");
stmt

}
(c)

while(expr) stmt →

while(expr)
{

__asm("#BB_nr");
stmt

}
__asm("#BB_nr");

(d)

for(expr;expr;expr)
stmt →

for(expr;expr;expr)
{

__asm("#BB_nr");
stmt

}
__asm("#BB_nr");

(e)

Fig. 4. Basic block dividing rules

take 1 thread clocks while main-memory accessing instruc-
tions take 15 thread clocks [15].)

C. Adding Execution Time Annotations

After dividing the source code into basic blocks with the
assembly labels, we build our timing analyzable code with
annotations. There are two kinds of annotations: inserting
execution times into its basic blocks and adding assertion
statements for the timing analysis. We annotate execution
times of basic blocks as computed in section III-B and
useassert statements as instructed in the CBMC manual.
CBMC recognizes theassert statements and verifies the
property inside it [11].

At first, we insert the execution times of all the basic blocks
to the original code. The positions where assembly labels
are inserted are also the places to add the execution times.
Comparing Figure 1(b) and Figure 1(d), we can clearly notice
this.

When we encounter timing constructs, we annotate the
code as shown in Figure 5. Note the three comments, (1),
(2) and (3). The annotations in these comments separate
two different deadline scopes:DEADSEQ(N1) scope and

DEADSEQ(N1)
{

<stmt>

DEADSEQ(N2)
{

<stmt>

}

}
(a)

DEADSEQ(N1)
{

int __time = 0; // (1)
__time += T1;
<stmt>
__time += N2; // (2)
DEADSEQ(N2)
{

int __time = 0; // (3)
__time += T2;
<stmt>
assert(__time < N2);

}
__time += T3;
assert(__time < N1);

}
(b)

Fig. 5. (a) Nested deadline constructs and (b) its annotatedcode

DEADSEQ(N2) scope. The outerDEADSEQ scope consider
the execution time of the innerDEADSEQ scope asN2 as
marked in (2); however, since the inner should ignore the
execution time declared in (1), the annotation in (3) is inserted.

The assertion statements are added at their proper positions:
at the end of the target function of the WCET analysis
(Figure 6(a)), or at the end of the deadline timing construct
(Figure 6(b) or Figure 6(c)). Also, as illustrated, for WCET
analysis the asserted property compares__time with −1
(Figure 6(a)). However, for validating whether timing require-
ments are satisfied for the timing constructs, we use the
deadline argument in the assertion (Figure 6(b) or Figure 6(c)).

Validating the PLL timing constructs, we have to consider
that the given deadline argument is synchronized with the PLL
clock, which can be different from the thread clock (or the
CPU clock). In this case, the assertion property, the deadline
instruction’s argument, is simply converted by multiplying the
ratio of thread and PLL clocks. Suppose that the thread clock
frequency isX and the PLL frequency isY, as described
in Figure 6(c). SinceN is synchronized by the PLL clock,
the assertion statement for the timing validation should be
assert(__time <= N * X / Y);.

D. Running the Model Checker

After annotating the source code, we use the model checker,
CBMC, to verify the property: theassert statements. For
validation, we only have to model-check once, and if the
property is verified, then the timing requirements are satisfied.
On the other hand, for WCET analysis, we update the asserted
property with the WCET revealed through the counter-example
until the property is verified. The final annotated property is
the WCET.

For model-checking, we use Carnegie-Mellon Bounded
Model-Checker (CBMC) [11]. It effectively finds loop bounds
and WCETs, and validates the deadline timing constructs.
Since CBMC is a verification tool for ANSI-C/C++ programs,
we can simply use the original PRET C source code to
perform the timing analysis. Furthermore, we do not need
to annotate loop bounds for our timing analysis. This is

because the bounded model-checker [2], [4] verifies whether
the loop bound is reached. Thus, the loop bound is determined
via an iterative deepening search. Initially, we provide an
arbitrary number of loop unwinds and run CBMC. If CBMC
verifies that the loop terminates, then we have determined
the loop bound. Otherwise, we increase the number of loop
unwininding and run it again, and continue repeating these
procedures until the loop bound is found.

To explain WCET analysis in detail, let’s see Figure 6(a).
Initially, we do not know the WCET nor the loop bound.
Therefore, we start with finding the WCET with a small
number of loop unwinds. Provided verification fails due to in-
sufficient loop unwinding, we increase this number and re-run
CBMC (finding the loop bound). If CBMC provides a counter-
example, we change the assertion statement while guessing
the WCET as the counter-example, and re-run CBMC. We
repeating these steps until CBMC yields successful verification
whereby the candidate WCET is the WCET. When we find the
WCET, loop bound is also found because the model checker
has exhaustively searched all the feasible paths.

We illustrate this method to compute the WCET of the GCD
algorithm. We first start the candidate WCET as−1 with 10
loop unwinds. Whenever verification fails due to insufficient
loop unwind, we double the number of unwinds. For two
arguments ranging from 1 to 100, the result WCET is 703
thread cycles.

Unlike the WCET analysis, which requires multiple invoca-
tions of CBMC, validating repeatable timing behaviors needs
performing the verification only once because the assertion
explicitly checks for the timing requirement. A sample code
is shown in Figure 6(b). Notice that we only need to unwind
the loop at mostN times. This is under the conservative
assumption that the loop takes one thread cycle to execute.
So, if the enclosed program code does not meet its timing
requirement ofN thread cycles withN number of unwindings,
then the timing requirement is violated. This goes to show
that in order to validate that program segments have repeatable
timing behavior, we do not need to determine the loop bounds.
Instead, we can unwindN times to validate our timing
requirement. For these reasons, we don’t have to precondition
the loop termination for the timing validation.

Not only that, but the timing validation method is also
particularly fast when the target code has nested deadline
constructs and when the validation fails in an outer scope.
Let’s see Figure 5. Note that__time variable of the inner
DEADSEQ is invisible to the outerDEADSEQ scope and the
outer __time ignores the inner. Thus, timing validations
of two DEADSEQs work differently. Since timing properties
of the inner DEADSEQ is ignored whenassert in the
outer DEADSEQ is verified, the execution time of the inner
DEADSEQ is simply regarded asdeadline_inner. The
timing validation of the innerDEADSEQ is done only if that of
the outer is passed; otherwise, the verification shortly finishes
with failure. Thus, the repeatable timing validation of nested
deadlines can be faster in a validation failure case.

int __time = 0;
void foo()
{

__time += T1;
while(<expr>)
{

__time += T2;
<stmt>

}
__time += T3;
assert(__time < -1);

}
(a)

DEADSEQ(N)
{

int __time = 0;
__time += T1;
while(<expr>)
{

__time += T2;
<stmt>

}
__time += T3;
assert(__time < N);

}
(b)

DEADPLLSEQ(N)
{

int __time = 0;
__time += T1;
while(<expr>)
{

__time += T2;
<stmt>

}
__time += T3;
assert(__time < N * X / Y);

} // X: thread clock frequency
// Y: PLL frequency

(c)

Fig. 6. Time annotated code: (a) WCET analysis, (b) timing validation for a deadline construct and (c) timing validation for aPLL deadline construct

IV. EXPERIMENTAL RESULTS

A. GCD Algorithm

Stage Unwind Candidate WCET Counterexample
1 10 -1 10
2 10 10 20
3 10 20 50
4 10 50 59
5 10 59 Unwind Error
6 20 59 62
7 20 62 95
8 20 95 97
9 20 97 103
10 20 103 Unwind Error
11 40 103 125
12 40 125 237
13 40 237 283
14 40 283 Unwind Error
15 80 283 360
16 80 360 Unwind Error
17 160 360 492
18 160 492 505
19 160 505 507
20 160 507 540
21 160 540 610
22 160 610 682
23 160 682 701
24 160 701 703
25 160 703 (WCET) Verification Success

TABLE I
ITERATIVE DEEPENING WCET ANALYSIS OF THE GCD ALGORITHM

The WCET analysis result of the GCD algorithm is shown
in Table I. The test starts with 10 unwinds, finding counter-
examples. We double the number of unwinds whenever we
encounter an unwind error, which means verification cannot
complete with the given number of unwinds. We also substitute
the candidate WCETs as the counter-example and the test
continues until the verification succeeds. The WCET is 703
thread cycles for our GCD example, in which the input
variables are ranging from 1 to 100.

B. VGA Driver

We use the VGA driver example presented in [15] to confirm
our approach for validating timing requirements for the PRET

architecture. The VGA driver sends four colors of pixel datato
the VGA controller. The VGA timing requirements for 640×
480 resolution with 60 Hz refresh rate must be met. There
are blank timing and active timing requirements. The driver
should send image data one by one according to the VGA
clock, 25.175MHz, in active timings. To produce the VGA
clock, we use the PLL clock, and to send image data, we load
the data to a 32-bit hardware shift register.

The implemented VGA driver algorithm is a nesting of
simple loops. The driver iterates every vertical timing, a frame
drawing timing; a horizontal timing, a line drawing timing,
iterates inside the frame timing while sending image data tothe
VGA controller. Each iteration must follow the VGA timing
requirement that is synchronized by the PLL clock. Repeatable
timing constructs are inserted for the iterations of vertical and
horizontal timings.

Since the current PRET processor prototype is in the form
of a simulator, we need to compute the CPU speed that
allows correct operation of the VGA driver. In our VGA driver
example, we calculate the minimum CPU speed manually, and
then validate the driver code to determine whether any timing
requirements are violated. As a result, the calculated minimum
CPU speed is 188MHz. We use this frequency when we
perform the validation, and verify that our timing requirements
are satisfied. We also investigated reducing the frequency.This
resulted in counter-examples, as we had expected.

V. CONCLUSION

This work presents a hybrid approach to WCET analysis.
We leverage model-checking techniques to derive loop bounds
and cover feasible program paths, and static program analysis
to determine basic block execution times. By combining these
two techniques, we are able to compute WCET of programs
whose loop bounds are allowed to change dynamically. Note
that we do require the user to provide the range of possible val-
ues that the loop arguments can take. Additionally, we validate
that PRET’s timing constructs meet their timing requirements
using this approach. Our future work involves extending the
WCET analysis for timing constructs that provide time-based
exceptions [9], synchronization instructions between threads,
and employing this WCET analysis for scratchpad memory
allocation schemes [19].

REFERENCES

[1] Oren Avissar, Rajeev Barua, and Dave Stewart. An optimal memory
allocation scheme for scratch-pad-based embedded systems.ACM
Transactions on Embedded Computing Systems, 1(1):6–26, 2002.

[2] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu.
Symbolic model checking without bdds. InTACAS ’99: Proceedings
of the 5th International Conference on Tools and Algorithmsfor Con-
struction and Analysis of Systems, pages 193–207, London, UK, 1999.
Springer-Verlag.

[3] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified
lattice model for static analysis of programs by constructionor ap-
proximation of fixpoints. InProceedings of Principles of Programming
Languages (POPL), pages 238–252, Los Angeles, California, January
1977.

[4] Vijay D’Silva, Daniel Kroening, and Georg Weissenbacher. A survey
of automated techniques for formal software verification.A Survey of
Automated Techniques for Formal Software Verification, 2008.

[5] Stephen A. Edwards and Edward A. Lee. The case for the precision
timed (PRET) machine. InProceedings of the 44th Design Automation
Conference, pages 264–265, San Diego, California, June 2007.

[6] Christian Ferdinand, Reinhold Heckmann, Marc Langenbach, Florian
Martin, Michael Schmidt, Henrik Theiling, Stephan Thesing,and Rein-
hard Wilhelm. Reliable and precise WCET determination for a real-life
processor. InProceedings of the International Conference on Embedded
Software (Emsoft), volume 2211 ofLecture Notes in Computer Science,
pages 469–485, North Lake Tahoe, California, October 2001.

[7] Jan Gustafsson, Björn Lisper, Christer Sandberg, and Nerina Bermudo.
A tool for automatic flow analysis of C-programs for WCET calculation.
In Proceedings of the Eighth International Workshop on Object-Oriented
Real-Time Dependable Systems (WORDS), pages 106–112, Guadalajara,
Mexico, January 2003.

[8] Reinhold Heckmann, Marc Langenbach, Stephan Thesing, and Reinhard
Wilhelm. The influence of processor architecture on the design and the
results of WCET tools.Proceedings of the IEEE, 91(7):1038–1054, July
2003.

[9] IEEE Real-Time and Embedded Technology and Applications Sympo-
sium. Poster Abstract: Timing Instructions - ISA Extensions for Timing
Guarantees, April 2009.

[10] Nicholas Jun Hao Ip and Stephen A. Edwards. A processor extension
for cycle-accurate real-time software. InProceedings of the IFIP Inter-
national Conference on Embedded and Ubiquitous Computing (EUC),
volume 4096 ofLecture Notes in Computer Science, pages 449–458,
Seoul, Korea, August 2006.

[11] Daniel Kroening and Edmund Clarke. Carnegie-Mellon Bounded Model-
Checker (CBMC).http://www.cprover.org/cbmc/.

[12] Edward A. Lee and David G. Messerschmitt. Pipeline interleaved
programmable DSP’s: Architecture.IEEE Transactions on Acoustics,
Speech, and Signal Processing, ASSP-35(9):1320–1333, September
1987.

[13] Yau-Tsun Steven Li and Sharad Malik. Performance analysis of
embedded software using implicit path enumeration.IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems,
16(12):1477–1487, December 1997.

[14] Yau-Tsun Steven Li, Sharad Malik, and Andrew Wolfe. Efficient
microarchitecture modeling and path analysis for real-time software. In
Proceedings of the 16th IEEE Real-Time Systems Symposium, pages
298–307, Pisa, Italy, December 1995.

[15] Ben Lickly, Isaac Liu, Sungjun Kim, Hiren D. Patel, Stephen A.
Edwards, and Edward A. Lee. Predictable programming on a precision
timed architecture. InProceedings of the International Conference on
Compilers, Architecture, and Synthesis for Embedded Systems (CASES),
pages 137–146, Atlanta, Georgia, October 2008.

[16] G. Logothetis and Klaus Schneider. Exact high level WCETanalysis
of synchronous programs by symbolic state space exploration.In
Proceedings of Design, Automation, and Test in Europe (DATE), pages
196–203, Munich, Germany, March 2003.

[17] Thomas Lundqvist and Per Stenström. Timing anomalies in dynamically
scheduled microprocessors. InProceedings of the IEEE Real-Time
Systems Symposium (RTSS), page 12, Washington, DC, 1999. IEEE
Computer Society.

[18] Alexander Metzner. Why model checking can improve WCET analysis.
In Proceedings of the International Conference on Computer-Aided

Verification (CAV), volume 3114 ofLecture Notes in Computer Science,
pages 334–347, Boston, Massachusetts, July 2004.

[19] Hiren D. Patel, Ben Lickly Ben, Bas Burgers, and Edward A. Lee. A
timing requirements-aware scratchpad memory allocation schemefor a
precision timed architecture. Technical Report UCB/EECS-2008-115,
EECS Department, University of California, Berkeley, September 2008.

[20] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti,
Stephan Thesing, David Whalley, Guillem Bernat, Christian Ferdinand,
Reinhold Heckmann, Frank Mueller, Isabelle Puaut, Peter Puschner,
Jan Staschulat, and Per Stenström. The determination of worst-case
execution times: Overview of the methods and survey of tools.ACM
Transactions on Embedded Computing Systems, 7(3):36:1–36:53, April
2008.

