
The Sparse Synchronous Model
Stephen A. Edwards

Department of Computer Science
Columbia University

New York, USA
ORCID 0000-0003-2609-4861

John Hui
Department of Computer Science

Columbia University
New York, USA

ORCID 0000-0002-6355-3767

Abstract—We present the Sparse Synchronous model (SSM)
of computation, which allows a programmer to specify soft-
ware timing more precisely than the traditional “heartbeat” of
mainstream operating systems or the synchronous languages.
SSM is a mix of semantics inspired by discrete event simulators
and the synchronous languages designed to operate in resource-
constrained environments such as microcontrollers. SSM pro-
vides precise timing prescriptions, concurrency, and determinism.
We present SSM, its motivations, and details of a lightweight
runtime system upon which a future language will be built.

Index Terms—real time systems, concurrency control, com-
puter languages, timing

I. INTRODUCTION

Real-time data collection is one motivation for this work,
which aims to enable programmers to specify temporal soft-
ware behavior as precisely as its function. A colleague, who
trains rats to perform simple tasks, needed control over stimuli
timing and measurement of response timing. The usual ad
hoc solution of C on a microcontroller with timers requires
a sophisticated programmer (e.g., not the typical biologist)
and is difficult to reproduce. Our colleague had moved to
a microcontroller running a periodic cyclic executive that
simulated a finite state machine stored in an array, but found
the FSM model limiting and the timing precision insufficient.

Our Sparse Synchronous Model (SSM) addresses these
needs. Rats are not periodic enough for an RTOS and the syn-
chronous languages [1] generally employ the heartbeat model.
Ptides [2] avoids a heartbeat but is awkward at sequencing.
Dynamic Ticks [3] comes closer to our goals by adding a
low-level “wake-up call” facility to Esterel. See Section V.

Our goals for SSM were precise (µs-level) timing speci-
fication and measurement, deterministic I/O independent of
platform speed, concurrency, computational efficiency without
a heartbeat, recursive function calls, and bounded memory.
The system uses bounded memory if it has bounded recursion,
but the remaining properties are provided by the model itself.
We know of no other that provides all of these together.

Our primary goal was precise specification and measure-
ment of real-time events. Hence, our model treats time as
a first-class object, like a discrete-event simulator. Inspired
by the synchronous languages [1] and Ptides [2], an SSM
system operates with model time, which a sufficiently fast

This work was supported in part by the National Institutes of Health (NIH)
under grant 1RF1MH120034-01.

implementation keeps synchronized to wall-clock time. SSM
is defined on and deterministic with respect to model time,
in which computation is instantaneous and deadlines are
never missed. A particular implementation might miss some
deadlines, but doing so will not affect its state (the environment
might react) and running the system on a faster platform will
bring its behavior strictly closer to ideal.

Model time is discrete to preclude Zeno-like behavior,
although for platform-independence, the fundamental time
quantum is not visible. An SSM system only sees time in
seconds. We envision implementations with 1µs precision.

SSM solves the challenge of providing deterministic con-
currency by totally ordering the execution of concurrent tasks
within an instant. Specifically, it runs tasks using cooperative
multitasking in a programmer-prescribed order. Discrete-event
models such as what SSM adopts between instants are usually
nondeterministic because they erroneously treat simultaneous
events (with identical timestamps) as order-independent. While
prohibiting truly simultaneous events might seem an attractive
solution, they appear inherent to concurrent systems.

For both timing precision and efficiency, we wanted a model
that did not rely on a “heartbeat” approach in which the system
must march in lockstep with a periodic clock such as a 10 ms
kernel interrupt. Instead, the SSM runtime system performs
some work in response to an event and then schedules itself
to be awakened by a precision hardware timer or another event

We wanted recursive function calls, so SSM is built around
function activation records that are created and destroyed
as SSM routines are called and return. In addition to local
variables and linkage to its caller, a routine’s activation record
stores its control state when it is suspended waiting for
an event and bookkeeping used by the runtime system to
determine when to resume. Besides two fixed-length arrays
used to manage priority queues of pointers into activation
records, the SSM runtime uses no additional run-time data
beyond these activation records, so if the maximum number
of activation records can be determined at compile-time, an
SSM system runs in bounded memory, a useful trait for our
target platforms of resource-constrained microcontrollers.

We present SSM in three sections: through a toy language
(Section II), its semantics (Section III), and a C implementa-
tion of its runtime (Section IV).

978-1-7281-8928-4/20/$31.00 ©2020 IEEE

program ::= routine∗

routine ::= routine-id ([| arg [, arg]∗]) vdecl∗ stmt∗

arg ::= var-id | & var-id Pass-by-value and -by-reference

vdecl ::= var var-id = expr Local variable declaration

expr ::= var-id |@ var-id | literal | expr [+ |- |* |<] expr

stmt ::= var-id = expr Immediate assignment
| if expr then stmt∗ [| else stmt∗] Conditional
| while expr stmt∗ Iteration
| after expr s var-id = expr Delayed assignment
| wait var-id [var-id]∗ Suspension
| fork [routine-id ([| expr [, expr]∗])]∗ Call

Fig. 1. Abstract syntax of SSM systems. Brackets [], bars |, and asterisks ∗
denote syntactic grouping, choice, and zero-or-more. Tokens are bold.

II. INFORMAL PRESENTATION

Fig. 1 is the abstract syntax of a toy language illustrating
SSM systems. For clarity, it only manipulates integers, and
the only novelty in the expression syntax is the @ operator,
which reports whether its variable was written in this instant.

An SSM program (e.g., Fig. 2), consists of routines that
may call each other concurrently and recursively over multiple
instants. We call them routines because they are coroutine-
like and are run for their side effects, unlike functions. Each
routine consists of imperative statements including variable
assignment, conditionals, and loops. Arguments to routines
may be passed by value or by reference (denoted by &), which
enables routines to return values and to communicate among
themselves. The system starts at the main routine, which may
in turn run others. An imperative program expressed in SSM
behaves in the usual way.

SSM assumes an infinitely fast processor to make its behav-
ior as platform-independent as possible. Specifically, model
time only advances for wait and fork statements; all other
statements terminate in the instant they were started.

While variables in SSM can be used like variables in a
traditional imperative language, they can also be used as com-
munication channels. Like condition variables in Pthreads [5],
variables in SSM announce when they are written, which
can wake up “threads” (routines) that suspended to wait on
them. However, unlike Pthreads, computation in SSM is totally
ordered, and therefore deterministic; there are no data races.

An SSM system communicates with its environment
through variables passed by reference to the main routine.
Incoming data from the environment appears in input variables
as events whose timestamps indicate when, in physical time,
the data appeared. Similarly, scheduling an event on an output
variable causes the runtime system to transmit the data at the
prescribed time. Once the runtime environment is configured
to communicate via these input/output variables, SSM may be
used to build real-time reactive components.

SSM has three additional statements that provide temporal
control and concurrency: after, which schedules a future vari-

1 mywait(&r)
2 wait r // Suspend then wait for a write on r

3 sum(&r1, &r2, &r)
4 fork mywait(r1) mywait(r2) // Wait for r1 and r2
5 after 1 s r = r1 + r2 // Return the sum after 1 second

6 fib(n, &r)
7 var r1 = 0 // Result for fib(n-1)
8 var r2 = 0 // Result for fib(n-2)
9 if n < 2 then

10 after 1 s r = 1 // Base case, assigned after 1 second
11 else // Recurse: r = fib(n−1) + fib(n−2)
12 fork fib(n−1, r1) fib(n−2, r2) sum(r1, r2, r)

13 main()
14 var r = 0
15 fork fib(13, r)

Fig. 2. A contrived Fibonacci example in SSM with delayed assignment
(after), waiting for variable writes (wait), and concurrent routine calls (fork)

able update; wait, which suspends the execution of a routine
until at least one of a set of variables is written to; and fork,
which starts the concurrent execution of child routines.

The after statement schedules a particular variable to be
assigned in a later instant and terminates instantly. In Fig. 2,
both after statements (in lines 5 and 10) delay one second
before the new value of r is assigned; in general the time
may be given by an expression. Time delays may not be zero
(normal assignment statements are used for this) or negative.

SSM only allows one outstanding update per variable—
subsequent updates to variables overwrite previous updates.
This avoids an unbounded accumulation of updates, and
resolves nondeterminism arising from instants with multiple
scheduled updates.

A wait statement causes a routine to suspend its execution
in the current instant, and reawaken in the next instant in
which any of a set of variables has been written. It is the only
statement to directly advance time (fork statements indirectly
incur time delays when the routines they call execute wait
statements). In Fig. 2, the mywait routine only waits on a
single variable; a statement such as wait a b c awakens when
at least one of variables a, b, or c is written to. Afterwards,
the written operator (@) can be used to check which of the
variables was written. As demonstrated in Fig. 3 on line 4,
this can be used to implement timeout2, which acts like a
wait statement with two arguments, except it will also resume
when the timeout passed as its first argument expires.

Unlike discrete-event languages like VHDL [6] designed for
digital logic simulation, SSM routines are awakened by any
write to a variable, not just writes that change the variable’s
value. We chose the event-on-write policy because we wanted
to make event generation explicit. Our policy enables us to
model pure events through variables that only take a single
value (“unit”) and to allow variables to convey sequences
of values without two identical values in sequence being

1 timeout2(t, &a, &b)
2 var tt = 0
3 after t s tt = 0
4 wait a b tt

5 main()
6 var a = 4
7 var b = 3
8 fork timeout2(3, a, b)

Fig. 3. Expressing timeout behavior. Since a wait statement resumes as soon
as any of its variables are written, adding a “timeout” variable and scheduling
it to be written in the future just before a wait effects a timeout function.
Here, since a and b are not written beyond initialization, the fork statement
will resume after 3 seconds and both @a and @b will be 0, indicating they
did not cause the timeout.

inadvertently merged. For example, the tt variable used for
indicating a timeout in Fig. 3 conveys a pure event. SSM
can also express VHDL’s event-on-change policy by enclosing
each assignment in a conditional that only writes to a variable
if its proposed new value differs from its existing one.

The fork statement performs concurrent, recursive routine
calls, and are SSM’s sole mechanism for invoking routines
(expressions may not include function calls). While it resem-
bles a traditional function call, a fork may also indirectly
advance time when wait statements within the called routines
block. When a fork executes, the calling routine suspends its
execution, and each of the called child routines runs either to
completion, or until it suspends at a wait. A fork may terminate
instantaneously if all its children do, or may incur time if any
of its children suspend. In Fig. 2, the first fork (line 4) spawns
two copies of the mywait routine to wait for variables r1 and
r2, and only terminates once both variables have been written
to. The second fork (line 12) spawns two recursive copies of
fib along with a copy of sum, which waits for the two results
to be produced, sums them, and writes the sum to r after 1
second. Routines do not implicitly return values; a child may
return a value to a parent by writing to a pass-by-reference
argument, such as the various r variables in Fig. 2.

Fork statements are conjunctive—they wait until all
operands have terminated—while wait statements are
disjunctive—they resume when any of their operands are
written. This distinction explains why we use two calls of
mywait in Fig. 2 (line 4): wait r1 r2 would have terminated
after only the first of r1 and r2 had arrived, whereas sum needs
the new values of both r1 and r2. In this implementation,
fib(n−2, r2) terminates 1 second sooner than fib(n−1, r1) for
n greater than 3.

To ensure determinism within each instant, the children of a
fork are executed in the order they are listed. Fig. 4 illustrates
this: at 1 second, the delayed assignment to a will wake up
both foo and bar. However, because bar appears before foo in
the fork statement on line 10, bar will run first, reading the
new value of a (1) and changing it to 5, then foo will run,
multiplying a by 2 to produce 10.

III. SEMANTICS

We present the semantics of SSM more formally. Below,
time is a natural number (including 0), denoted by N, and Σ

is the set of data values. These semantics treat both abstractly.

1 foo(&a)
2 wait a
3 a = a * 2 // Runs after bar

4 bar(&a)
5 wait a
6 a = a + 4 // Runs first

7 main()
8 var a = 0
9 after 1 s a = 1

10 fork bar(a) foo(a) // bar will run before foo
11 // a = 10 here

Fig. 4. Children of a fork always execute in order: at 1 second, a write to a
awakens routines first and second, which execute in that order.

Let R = N∗ be the set of pathnames for running routines,
which are named hierarchically because fork imposes a tree
structure. The main routine is denoted by the empty path ();
(0) is its first forked child; (1) is its second forked child;
(0;1) is the second forked child of the first forked child, etc.
These names function like stack pointer values. We write ; for
appending a child, e.g., if r = (2;3) and c = 5, r ;c = (2;3 ;5).

Let P be the set of program counter values, i.e., that refer
to a specific instruction in a routine, and let C = R→P be
partial functions that hold the control state of running routines.

Let V be the set of all variable names (e.g., strings), A =
R×V be the set of all memory addresses, and S =A →Σ be
partial functions that represent each variable’s current value.

Because the variables available in a routine may be a mix of
local variables and those passed in by reference, we introduce
the notion of an environment M = R→ V →A that, given
a pathname to a running routine, returns a function that
indicates the address of every local variable. For local variables
and pass-by-value arguments, the environment simply returns
address of the variable in the routine’s activation record.
For pass-by-reference variables it returns the address of the
variable in the routine in which the variable was originally
defined. That is, pass-by-reference variables are aliased. For
example, if variable v in routine r is passed an argument v′ to
a child r′ in environment M, M(r(v)) = M(r′(v′)).

Let E = N×A × Σ be the set of events; (t,a,n) ∈ E
indicates that at time t, address a is to be updated to n.

Between instants, the state of a program is represented by
a 4-tuple (C,σ ,M,E) ∈ C ×S ×M × 2E , representing the
control state of the program, the stored value of each variable,
the variable name environment of each running routine, and
the set of scheduled events.

A. Execution in an instant

During an instant, a set W ⊆A is maintained that holds the
addresses of every variable that was written to in the instant.
W begins empty in every instant, i.e. W = /0.

The execution of the program in state (C,σ ,M,E) at time
t updates this state in two steps. In the first step, every event
in E at time t is applied, i.e., if (t,a,n) ∈ E, σ is updated so
that σ(a) = n and a is added to W . Then, in the second step,
the program resumes from the main routine (pathname r = ()),
which in turn resumes its children.

A routine r ∈ R can suspend at either a wait or a fork
statement, so when resuming r, we must consider both:
• wait v1 v2 . . .vk There are two cases: If at least one

of its awaited variables vi ∈W has been written in the
current instant, then C(r) is advanced to the statement
following the wait and the routine is executed (see
below). Otherwise, the routine immediately continues its
suspension without updating its control state.

• fork Each child is resumed in order.
Executing a routine r ∈R depends on the statement at C(r):
• v = n The expression is evaluated to give value n

(which may use M(r) to retrieve the values of local
variables in σ and may look in W to determine whether a
variable has been written for an @ expression), the store
is updated, i.e., σ(M(r(v))) = n, M(r(v)) is added to W ,
the set of written variables (M(r(v)) is the “address” of
variable v in routine r), the control state C(r) is updated
to the next instruction, and r is executed again.

• var v = n Variable declarations behave like immediate
assignments; no variable may be left uninitialized.

• if-then-else; while These behave classically: evaluating
the conditional expression, updating the routine’s control
state C(r) accordingly, and executing r again.

• after d s v = n The expressions d and n are evaluated;
any existing event for M(r(v)) is removed from E and
(t +d,M(r(v)),n) is added to E; the control state C(r) is
updated to the next instruction; r is executed again.

• wait The routine suspends here; no further instructions
in the routine are executed in the current instant.

• fork First, the arguments to all the children are eval-
uated. Next, argument values are sent to the children:
if a pass-by-value argument named v in the cth child
is being passed some value n, it is given the address
a = (r ; c,v) ∈ A , the child’s environment is updated so
M(r ; c)(v) = a, and the store is updated so σ(a) = n; if
v were a pass-by-value argument being passed variable
v′, the child’s environment is updated to point to v′, i.e.,
M(r ;c)(v)=M(r)(v′). Next, each local variable v in child
c is added to the environment, i.e., M(r ; c)(v) = (r ; c,v).
Next, the control state of each child, i.e., C(r ; c), for
c = 0,1, . . .k, is set to the beginning of each child’s
routine. Finally, each child (whose paths are (r ;0), (r ;1),
. . . , (r ; k)) is executed in sequence.

• When control “falls off the end” of a routine, its control
state C(r) is forgotten (to mark it as terminated), its caller
p is identified (by truncating its pathname), and if all of
p’s children have also terminated (i.e., (p ; 0), (p ; 1), . . . ,
(p ; k) are all undefined), then C(p) is advanced to the
statement after the fork that spawned this child and p is
executed.

An SSM system’s state is unchanged in instants where there
are no scheduled events. When the system resumes, W = /0
because there are no events; thus all children suspended at wait
statements immediately suspend again because no variables
have been written.

// Routine activation record management
rar t *enter(size t size, void (*step)(rar t *), rar t *caller ,

uint32 t priority , uint8 t depth)
void call(rar t *rar)
void fork(rar t *rar)
void leave(rar t *rar, size t size)

// Variable management
void initialize type(cv type t *var, type val)
void assign type(cv type t *var, uint32 t priority , type val)
void later type(cv type t *var, uint64 t time, type val)
bool event on(cv t *var)

// Trigger management
void sensitize(cv t *var, trigger t *trigger)
void desensitize(trigger t *trigger)

Fig. 5. API functions used in C functions that implement SSM routines. enter
and leave allocate and free generic activation records; call runs a single child;
and fork starts one of many children. For a supported type of variable such
as int, initialize int initializes its fields; assign int performs an immediate
assignment, which may schedule routines suspended on the variable; later int
schedules a future update to the variable; event on reports whether a variable
has been written in the current instant, either by a scheduled event or an
immediate assignment. sensitize adds a trigger for the routine to the given
variable; desensitize removes it.

typedef struct { // Generic Routine Activation Record
void (*step)(rar t *); // Pointer to step function
uint16 t pc; // Saved control state
rar t *caller ; // Caller’s activation record
uint16 t children; // Number of running children
uint32 t priority ; // Order in the ready queue
uint8 t depth; // Index of LSB of our priority
bool scheduled; // True when in the ready queue
} rar t ;

typedef struct { // Generic Variable
void (*update)(cv t *); // Perform scheduled update
trigger t *triggers; // Doubly-linked list
uint64 t last updated; // When variable was written
uint64 t event time; // Time of scheduled update
} cv t;

typedef struct { // Int Variable
// ...all the fields from cv t...
int value; // Current value
int event value; // Value to be assigned at event time
} cv int t ;

typedef struct { // Variable Trigger
rar t *rar; // Triggered routine
trigger t *next; // Next trigger for this variable
trigger t **prev ptr; // Back pointer for doubly-linked list
} trigger t ;

Fig. 6. Principal C data types used by the SSM runtime. Each routine has
its own routine activation record type struct that begins with all the fields in
an rar t so the runtime can manipulate routine activation records generically.
Similarly, each type of variable, such as the int shown here, has its own
variable type struct that begins with the fields in cv t.

examp(&a)
var loc = 0
wait a
loc = 42
after 10ms a = 43
fork foo(42, loc)
fork foo(40, loc) bar(42)

typedef struct {
// ...all fields from rar t...
cv int t *a; // Pass-by-ref
cv int t loc; // Local int
trigger t trig1 ; // Trigger
} rar examp t;

rar examp t *enter examp(
rar t *caller , uint32 t priority , unit8 t depth, cv int t *a) {
rar examp t *rar = (rar examp t *)

enter(sizeof(rar examp t), step examp,
caller , priority , depth);

rar−>a = a; // Store pass-by-reference argument
rar−>trig1.rar = (rar t *) rar; // Initialize our trigger
}
void step examp(rar t *gen rar) {

rar examp t *rar = (rar examp t *) gen rar;
switch (rar−>pc) {
case 0:

initialize int(&rar−>loc, 0); // var loc = 0
sensitize ((cv t *) rar−>a, &rar−>trig1); // wait a
rar−>pc = 1; return;

case 1:
if (event on((cv t *) rar−>a)) { // if @a then

desensitize(&rar−>trig1); // De-register our trigger
} else return;
assign int(&rar−>loc, rar−>priority, 42); // loc = 42
later int (rar−>a, now+10000, 43); // after 10ms a = 43
rar−>pc = 2; // Single routine call: foo(42, loc)
call ((rar t *) enter foo((rar t *) rar , rar−>priority,

rar−>depth, 42, &rar−>loc));return;
case 2: // Concurrent call: fork foo(40, loc) bar(42)
{ uint8 t new depth = rar−>depth − 1; // 2 children

uint32 t pinc = 1 << new depth;
uint32 t new priority = rar−>priority;
fork((rar t *) enter foo((rar t *) rar , new priority,

new depth, 40, &rar−>loc));
new priority += pinc;
fork((rar t *) enter bar((rar t *) rar , new priority,

new depth, 42)); }rar−>pc = 3; return;
case 3: ; }
leave((rar t *) rar , sizeof(rar examp t)); // Terminate
}

Fig. 7. Contrived enter and step functions illustrating the use of the API

IV. AN SSM RUNTIME SYSTEM

Our runtime system consists of a generic scheduler that
dispatches C functions performing each routine’s computation.
Each routine is implemented as a pair of C functions: the enter
function initializes the routine-specific activation record type,
and the step function performs the work of the routine in a
single instant of time, i.e., between when it is awakened by
some event and when it suspends.

Our runtime system relies on two priority queues. The
event queue stores (time, variable, value) triples ordered by
increasing time. At the beginning of an instant, all the events
at the current time update their variables and leave the queue.

The ready queue avoids unnecessary work for routines
that do not need to resume. While SSM’s formal semantics
prescribe walking through the tree of running routines and
checking the wait or fork statement at which each routine
is suspended to decide which ones to run, the ready queue
avoids this walk by maintaining a set of routines that will
definitely run in the current instant, updated every time a
variable is written. Routines waiting on a variable are held
in the variable’s list of triggers. Writing a variable adds each
routine in its trigger list to the ready queue, which is prioritized
according the order the routine would appear in the active
routine tree traversal. We encode pathnames as left-justified
32-bit integers, ordered by their tree traversal order.

We represent time in µs with 64-bit integers. This avoids
wraparound; 32-bit integers would wrap around in two hours.

Fig. 5 lists the interface SSM routines use to interact with
the runtime; Fig. 6 shows the principal data types used to
manage routines and variables; Fig. 7 illustrates how enter
and step functions use the interface in a simple example.

Our GitHub repo: https://github.com/sedwards-lab/ssm

A. Routine Activation Records, Enter and Step Functions

To allow routines to freely suspend and resume, step func-
tions store their state in an activation record struct, rather than
using C’s runtime stack. Each routine has its own specialized
type, but all start with the rar t fields listed in Fig. 6 so
that the scheduler can treat them generically. Specifically, it
is always safe to cast a pointer to routine-specific activation
records to an rar t pointer. Fields in rar t hold a pointer to the
routine’s step function, its control state (an encoded program
counter, which the step function uses to remember where to
resume when it suspends), a pointer to its caller’s activation
record, how many of its children are currently running (used to
determine when a fork has terminated), two numbers related to
its scheduling priority (pathname), and, to avoid duplicates in
the ready queue, a Boolean indicating whether this particular
invocation of the routine is already scheduled.

Fig. 7 shows the activation record, enter, and step functions
for the examp routine. The rar examp t struct begins with
the fields in rar t, but also includes a pointer to an integer
variable a, a local integer variable loc, and a single trigger (the
widest wait dictates the number: if a routine has a wait with 5
variables, it needs 5 triggers). The enter examp function takes
a pointer to its caller’s activation record, two priority-related
arguments we describe below, and a pointer to the int variable
a—a pass-by-reference argument.

Fig. 5 lists the routine-management functions: enter allo-
cates the activation record for a routine and initializes its
generic fields; call immediately runs a particular routine (used,
e.g., to call a routine as if it were a function); fork schedules a
particular routine for execution in the current instant; and leave
is the complementary function of enter: it deallocates the given

routine activation record and, if it was the last running child
of the caller, immediately transfers control back to its caller.

Only the enter and leave functions ever allocate or deallo-
cate memory. Thus, provided a SSM system does not make
an unbounded number of routine calls, it will not consume
an unbounded amount of memory. At the moment, enter and
leave simply use the C standard library’s malloc and free; see
Section VI for our thoughts about alternatives.

B. Variables and Triggers

A variable in SSM behaves like a traditional variable in an
imperative language (i.e., it returns the value most recently
written to it), augmented with the ability to schedule a future
assignment, and for suspended routines to be reawakened by
writes to the variable. Like activation records, the struct for
each type of variable begins with a set of common fields (cv t
in Fig. 6), followed by type-specific fields for its current value.

Each variable may have at most one new value scheduled
for it in the future—an event—stored in the event time and
event value fields (event time is ULONG MAX when no
event is pending). To enable the scheduler to update arbitrary
variable types, each variable includes a pointer to a type-
specialized update function that copies event value to value.

Each variable maintains a list of triggers—routines awak-
ened by a write—in the form of a doubly-linked list of
trigger t structs, rooted at a variable’s triggers field. Each
trigger is just a pointer to the activation record for the triggered
routine. Sensitize and desensitize add and remove triggers.

Triggers are stored in a routine’s activation record and can
be reused across suspension points. Each trigger’s rar field
is initialized in its routine’s enter function. Before a routine
suspends, it calls sensitize on each variable it wants to watch.
When a routine is awakened, it calls desensitize on all the
triggers it sensitized. If a routine wants to wait for a particular
value to be written to a variable, the routine will check for
both an event and the desired value on a given variable and
only desensitize its triggers if the desired condition holds.
Otherwise, it will immediately suspend itself again without
updating its control state or triggers. The code for step examp
in Fig. 7 illustrates sensitize and desensitize.

Type-specialized assign functions write the value and
last updated fields of a variable and schedules all the later
routines currently sensitized to that variable. In addition to
the value being assigned to the variable, assign also takes the
priority of the current routine, and only schedules sensitive
routines with a higher priority number to avoid looping
behavior among routines in a single instant.

The event on function compares the last updated field to
now (the current instant) to determine if a variable was written.

The type-specific later function schedules a future variable
update by writing to a variable’s event value and event time
fields and adding the variable to the event queue. If later is
called on a variable that already has a pending event, the exist-
ing event is overwritten. These semantics avoid an unbounded
accumulation of events, but may surprise the programmer. We
may have this raise a runtime warning error.

C. Single Routine Calls

Routines may recursively call other routines using a mech-
anism similar to that in C and related imperative languages.
Fig. 7 illustrates the code at a single call site for a routine
called foo. First, the “return address” is stored in the routine’s
activation record (act->pc). Next, to allocate and initialize
foo’s activation record, enter foo is called with the pointer for
the current activation record (saved in the callee’s caller field),
the current routine’s priority and depth (when just a single
routine is called, the callee simply inherits these values), and
the actual arguments to foo: here, the literal 42 and a reference
to the (passed-by-reference) loc variable.

Once enter foo creates the activation record for foo, it
is passed to call, which immediately sends control to the
step foo function (i.e., the body of the foo routine; not shown).

The step foo function may suspend and be later awakened
by a trigger, or may run to completion in the current instant. In
either case, step foo terminates by calling leave, which frees
its activation record and returns control to its caller (whose
activation record is in foo’s activation record’s caller field).

D. Concurrent Routine Calls and Priorities

A routine may also invoke multiple concurrent routines.
The mechanism is a generalization of single routine calls, and
is also illustrated in Fig. 7. At a concurrent call site, each
child’s enter function is called, but the activation records these
produce are passed to the fork function, which adds them to the
ready queue according to their priority. The first child inherits
the priority of the caller; the others are given successively
higher priority numbers and thus will be executed in order.

The caller regains control after all children have called
leave. This is managed by the children field in the caller’s
activation record, which is set to zero when a routine is first
entered, incremented by enter, and decremented by leave,
which immediately passes control back to the routine once
all its children have terminated.

Deterministic concurrency was a key SSM design goal. We
achieve it by assigning a unique priority numbers to each
active routine and having the scheduler always run them in
that order. In the case of a single routine call, the child
simply inherits the priority of its parent, which is unambiguous
because only one is ever running at a time.

When multiple routines are called, we assign priority num-
bers in a hierarchical manner that subdivides the range of
priority numbers occupied by the caller. Each routine has
a priority-depth pair, (p,d) where p ≥ 2d , that indicates
it “owns” priority numbers p through p + 2d − 1. When a
routine calls k children, it assigns pairs (p,d′), (p+ 2d′ ,d′),
(p+2 ·2d′ ,d′), . . . , (p+(k−1)2d′ ,d′), where d′= d−dlog2 ke.
The depth may also be thought of as the index of the least
significant bit in the priority.

For example, if a routine has the pair (16,4), it “owns”
priority numbers 16 through 16+ 16− 1 = 31 and calls four
children, the children are given pairs (16,2), (20,2), (24,2),
and (28,2). And if the (24,2) child in turn calls two children,
they would be given pairs (24,1) and (26,1). In Fig. 7,

the new depth, pinc, and new priority variables and related
machinery dynamically compute the new priority-depth pairs
at the call site for foo and bar.

Our runtime system uses 32-bit unsigned integers (uint32 t)
to represent priorities and 8-bit unsigned integers (uint8 t)
to represent depths. This provides four billion unique priority
numbers, although a pathological program could exhaust them.

E. The Scheduler

The scheduler maintains two priority queues: the event
queue, which holds variables scheduled to be updated, ordered
according to their event time fields; and the ready queue,
which holds routine activation records scheduled to run in
the current instant, ordered by increasing priority fields. We
implement both as binary heaps whose maximum size can be
determined from analyzing the program’s dynamic call graph.

The tick function runs the system for an instant by perform-
ing all the variable updates queued for the instant then running
every routine in the ready queue in priority order.

In the first phase, performing an event consists of removing
the variable at the front of the event queue provided it
is scheduled for the current instant now, calling its update
function to update its value field, updating its last updated,
and then adding each routine waiting on the variable to the
ready queue if it is not already there. This process stops when
there are no pending events on the queue for the current time
instant. Note that each variable’s list of triggered routines is
not modified during this phase: the routines themselves are
exclusively responsible for managing their triggers.

In the second phase, the routine with the lowest priority
number is removed from the ready queue and its step function
invoked. The step function, in turn, may cause routines with
equal or higher priority numbers to be added to the ready
queue, either through a call to schedule (which may schedule
another routine at the same priority) or through an assign call
to a variable that triggers other routines at higher priorities.

The scheduler will terminate unless one of the activated
routines refuses to suspend. Routines may contain loops that
perform multiple iterations in a single instant, but C does
not guarantee that they terminate. However, infinite loops that
always eventually suspend work fine in SSM.

F. Interfacing with the Real World

Our prototype simulates an SSM model like any discrete-
event model: simulation time is advanced to that of the next
event in the queue, tick is called, and the process repeats.

A SSM model interacts with a real-world environment
through variables passed to its main function. Each output
variable is given a concurrently running output routine that
waits for an update then transmits the new value to hardware.

Each input event is received by interrupt routine that
timestamps and enqueues it. Contention between tick and the
interrupt routines over the event queue needs to be considered.
It may be more efficient for the interrupt routines to place
events in a separate incoming event queue that has fewer
contention issues since it can be a simple FIFO.

After each call of tick, the system will determine the time of
the earliest queued event, schedule a timer interrupt for then,
then wait to be awakened by the next interrupt, which can be
either an input event or the expiration of the timer.

V. RELATED WORK

The Ptides [2], [7] distributed real-time model based on
discrete event semantics [8] inspired much of SSM. Ptides
is actor-oriented and reactive [9] where parallel processes
(like SSM routines) communicate via timestamped events
(like SSM variables). Ptides’s sparse time model enables its
PtidyOS [10] runtime to use an earliest deadline first scheduler.
Like SSM’s runtime, PtidyOS uses an event queue to spare the
tick function from running in every instant. However, PtidyOS
requires a fixed topology, precluding SSM’s recursion.

A key advantage of SSM is its use of a separate semantics
(i.e., one not based on events) for dealing with events in a
single instant, unlike other discrete-event models. This gives
SSM its determinism and sidesteps such infelicities as VHDL’s
delta cycles [6] and Ptides’s microsteps and depth numbers.

SSM’s labeling of instants with natural numbers and its
intra-instant semantics were inspired by the synchronous lan-
guages [1]. This regular, tick-based approach works well for
continuously evolving systems, but places an undue compu-
tational burden on reactive applications with sparse, irregular
computation. SSM differs in that events are assumed to be
sparse—in most instants, no computation takes place.

Hanxleden, Bourke, Girault, and others [3], [4] show how
giving an Esterel program the ability to schedule when it
should be awakened after the end of each tick enables far richer
temporal behavior. Their proposal, however, leaves the subtle
calculation of this single number to the program itself. Their
solution [3] effectively implements a crude event queue in
Esterel where, at each tick, each pending delay action reports
its desired wake-up time to a global signal that computes the
earliest event and reports that to an external timer. SSM uses
a much more efficient priority queue that avoids each delay
having to do something at each tick.

We admire Esterel’s deterministic, parallel semantics [11]
but did not want its single-value-per-instant rule for signal
values, which is difficult to explain and compile [12], causing
it to reject programs with read-modify-write behavior (Fig. 4).
Sequentially constructive concurrency [13], [14] attempts a
fix by relaxing the single-value-per-instant rule, but is more
complex. SSM uses a simpler syntactic total order.

Boussinot’s ordering of concurrent routines to achieve deter-
minacy, at the heart of his Reactive C [15], FairThreads [16],
and FunLoft [17], inspired us. However, Boussinot’s execution
strategy searches for Esterel-inspired fixed-points, using a
round-robin cooperative scheduler that repeatedly evaluates
concurrent routines in order until they quiesce. For example,
in SSM, fork foo() bar() runs foo then bar once each in an
instant; Boussinot would also run foo then bar, but allows foo
and bar to resume (e.g., if one routine wrote to a variable on
which the other was blocked). This repeats until each routine
either terminates or suspends on an untouched variable.

Boussinot’s iterations enable instantaneous bidirectional
communication among processes, but its execution time is
difficult to bound. Also, confusingly, the cyclical order of
concurrent routines still matters in Boussinot’s world. SSM
adopts a more rigid, faster policy that is simpler to explain.

The graphical education language Scratch [18] provides
delays, concurrency, and events, and is nearly deterministic. Its
interpreter imposes cooperative multitasking among threads,
which relinquish control at delays and at the end of looping
constructs, making it possible (if a bit inefficient) to write
“for (;;) if (a == 1) { ... }” in a cooperative multitasking
setting without blocking the other threads. For efficiency rea-
sons, we did not adopt such a forgiving execution semantics.

Verilog [19] and VHDL [6] inspired some aspects of SSM,
while also warning us of nondeterministic pitfalls. Both are
imperative discrete-event simulation languages for modeling
digital hardware, and use variables that convey events (signals
in VHDL; nets and regs in Verilog). SSM’s assignment and
after parallel Verilog’s blocking and nonblocking assignments.

VHDL exposes far more of the discrete-event machinery to
the user, e.g., allowing her to control the filtering of closely
spaced events (transport vs. inertial delay), test for the presence
of events, and even check for the absence of events over a
prescribed period of time. SSM allows one event per variable;
VHDL’s ′event attribute inspired SSM’s @ operator.

While designing SSM, we considered VHDL’s wait, which
can behave like SSM’s wait, wait for a condition (e.g., wait
until CLK ′event and CLK=’1’), or wait for a period of time
(e.g., wait for 10 ns). The FreeHDL compiler [20] implements
SSM’s wait, transforms conditional waits into in a loop that
checks the condition and suspends if it is not met, and
transforms timeouts into waiting for a scheduled event (Fig. 3).

VI. CONCLUSIONS

We presented the sparse synchronous model via a toy
imperative language with concurrent function calls and waits
on variable updates, which may be scheduled in the future
to provide temporal control. We discussed the semantics of
our model and presented an efficient runtime system with two
priority queues: one for events, and the other for ready-to-run
routines. The result is a deterministic formalism that supports
precise timing specification, concurrency, and recursion.

At the moment, our runtime system uses malloc and free
calls to manage its tree-structured “cactus stack” of activation
records, but we have two ideas on how to improve this. One
approach employs fixed-sized stack pages to avoid fragmen-
tation. Simple recursive calls would allocate their activation
records on the same page and switch to a new page to
avoid overflow; concurrent calls would allocate new pages. A
segregated memory manager would be another fast approach
that avoids fragmentation: pages are divided into fixed sized
bins, and each activation record is held in the next largest bin
that will fit it. Since these sizes are known at compile-time,
the page and bin sizes can be specialized to each application.

One reviewer suggested we allow a program to check its
progress by comparing logical time with real time. While this

intriguing idea could enable systems to adapt to and make
better use of their resources, it introduces a serious testing
challenge by making behavior strongly dependent on details of
platform execution time. Perhaps a Boolean “deadline missed”
input could achieve similar results yet maintain testability.

Other attractive ideas include applying the distributed im-
plementation techniques proposed for Ptides to SSM, and
statically determining when we can relax SSM’s strict child-
ordering rules without introducing nondeterminism—perhaps
using Rust-like ownership types—to enable true parallelism.

Our end goal is a user-friendly language built on SSM’s
semantics. We do not recommend coding in the toy language in
Fig. 1; instead, we are currently developing a richer language.

ACKNOWLEDGMENTS

We wish to thank Adam Kepecs, Reinhard von Hanxleden,
and the FDL reviewers for their helpful suggestions.

REFERENCES

[1] A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. L. Guernic,
and R. de Simone, “The synchronous languages 12 years later,” Pro-
ceedings of the IEEE, vol. 91, no. 1, pp. 64–83, Jan. 2003.

[2] Y. Zhao, J. Liu, and E. A. Lee, “A programming model for time-
synchronized distributed real-time systems,” in Proc. Real-Time Tech-
nology and Applications Symposium (RTAS), Apr. 2007, pp. 259–268.

[3] R. von Hanxleden, T. Bourke, and A. Girault, “Real-time ticks for
synchronous programming,” in FDL, Verona, Italy, Sep. 2017.

[4] T. Bourke and A. Sowmya, “Delays in Esterel,” in Proceedings of
SYNCHRON, Schloss Dagstuhl, Germany, Nov. 2009, Seminar 09481.

[5] B. Nichols, D. Buttlar, and J. Farrell, Pthreads Programming: A Posix
Standard for Better Multiprocessing. O’Reilly Media, 1996.

[6] IEEE Standard VHDL Reference Manual (1076–1987), The Institute of
Electrical and Electronics Engineers (IEEE), New York, 1988.

[7] J. Zou, “From Ptides to PtidyOS, designing distributed real-time embed-
ded systems,” Ph.D. dissertation, U. California, Berkeley, May 2011.

[8] E. A. Lee, “Modeling concurrent real-time processes using discrete
events,” Annals of Software Engineering, vol. 7, pp. 25–45, 1999.

[9] E. A. Lee, S. Neuendorffer, and M. J. Wirthlint, “Actor-oriented design
of embedded hardware and software systems,” Journal of Circuits,
Systems and Computers, vol. 12, no. 3, pp. 231–260, Aug. 2002.

[10] J. Zou, S. Matic, and E. A. Lee, “PtidyOS: A lightweight microkernel
for Ptides real-time systems,” in Proceedings of Real-Time Technology
and Applications Symposium (RTAS), Apr. 2012, pp. 209–218.

[11] G. Berry and G. Gonthier, “The Esterel synchronous programming
language: Design, semantics, implementation,” Science of Computer
Programming, vol. 19, no. 2, pp. 87–152, Nov. 1992.

[12] D. Potop-Butucaru, S. A. Edwards, and G. Berry, Compiling Esterel.
Springer, Jan. 2007.

[13] R. von Hanxleden et al., “Sequentially Constructive Concurrency—A
conservative extension of the synchronous model of computation,” ACM
Trans. Embedded Comp. Sys., vol. 13, Jul. 2014.

[14] S. Smyth, A. Schulz-Rosengarten, and R. von Hanxleden, “Practical
causality handling for synchronous languages,” in Proc. Design, Au-
tomation, and Test in Europe (DATE), Florence, Italy, Mar. 2019.

[15] F. Boussinot, “Reactive C: An extension of C to program reactive
systems,” Software: Practice and Experience, vol. 21, no. 4, Apr. 1991.

[16] ——, “FairThreads: mixing cooperative and preemptive threads in C,”
Concurrency and Computation: Prac. Exper., vol. 18, no. 5, Apr. 2006.

[17] ——, Safe Reactive Programming: The FunLoft Language. Lambert
Academic Publishing, 2010.

[18] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond, “The
Scratch programming language and environment,” ACM Transcations on
Computing Education, vol. 10, no. 4, p. 16, Nov. 2010.

[19] IEEE Standard Hardware Description Language Based on the Verilog
Hardware Description Language (1364–1995), IEEE Comp. Soc., 1996.

[20] E. Naroska, “The FreeHDL compiler/simulator system,” Online at
http://freehdl.seul.org/, Nov. 1998.

