
MEMOCODE 2014 Software Design Contest:
Space Invaders Emulator

Stephen A. Edwards
Department of Computer Science, Columbia University

New York, NY, USA
Email: sedwards@cs.columbia.edu

Hiren Patel
Electrical and Computer Engineering, University of Waterloo,

Waterloo, Ontario, Canada
Email: h.patel@ece.uwaterloo.ca

Abstract—The MEMOCODE design contest for 2014 was
centered around the emulation of the 1978 Taito video game
Space Invaders. The challenge is to improve the speed of a cycle-
accurate software emulator for the game. Contestants had a
month toope improve the provided code, which already ran fairly
well on the ARM-based Raspberry Pi platform. Entries were
judged on how much faster their code ran and its quality. The
winning groups used a variety of optimization techniques ranging
from dynamic binary translation, data-structure restructuring,
and improving instruction and data caching.

Index Terms—Instruction set simulator; Hardware emulation;
Hardware/software codesign; Raspberry Pi;

I. INTRODUCTION

Since 2007, the organizers of the MEMOCODE Design
Contest have proposed design problems and invited teams
from around the world to come up with innovative hardware/-
software solutions. Past years’ problems have ranged from
matrix multiplication to network simulation. This year, two
problems were proposed: one focused on hardware and one
focused on software.

This year’s software challenge was to improve the speed
of a processor system simulator, specifically one for Taito’s
wildly successful 1978 video arcade game Space Invaders.
While this challenge was chosen in part for its amusement
value, it is representative of a common challenge: designers
often rely on an accurate system simulator to develop software
while the target hardware is still under development. Like all
simulators, such a simulator typically runs slower than the
target hardware, making its optimization critical.

II. SPACE INVADERS

Space Invaders is a processor-based system consisting of
an Intel 8080 CPU running at roughly 2 MHz, 8K of ROM,
and 8K of RAM. Most of the memory (7K) is a simple one-
bit-per-pixel framebuffer that delivers a 256 × 244 display
to a black-and-white CRT. In the arcade cabinet, the CRT is
tilted 90 degrees to deliver a portrait display and covered with
a banded colored overlay that renders certain areas green and
red.

The remaining I/O includes two byte-wide ports that in-
dicate which buttons (left, right, and fire) the player has
pressed, some ports that, when written, trigger the (analog)
sound hardware (which is not emulated), and a barrel shifter
that returns an arbitrary eight-bit segment of a 16-bit register,

which the software uses to improve graphics rendering speed
since the 8080 can only shift by one bit. In the game hardware,
the shifter was implemented as a sixteen-bit register driving
eight eight-input muxes.

III. THE SIMULATOR

The contenstants were given a complete, working simulator
based on the 8080 emulator from http://emulator101.com.
The core of this is a function that simulates a single 8080
instruction:

int Emulate8080Op(State8080 ∗state) {
uint8 t ∗opcode = &state−>memory[state−>pc];
++state−>pc;
switch (∗opcode) {

case 0x00: break; /∗ NOP ∗/
case 0x01: /∗ LXI B,word ∗/

state −>c = opcode[1];
state −>b = opcode[2];
state −>pc += 2;
break;

case 0x02: /∗ STAX B ∗/
/∗ ... ∗/
}
return cycles8080[∗opcode];
}

A struct State8080 holds the 8080 registers (a, b, etc.), a
pointer to the base of the array representing memory, a pointer
to a function that reads from an I/O port, and a pointer to a
function that write to an I/O port.

IV. WINNING CONTESTANTS

Three contestants were successful in completing this soft-
ware design contest. These contestants employed a variety
of techniques to both discover and optimize performance
bottlenecks in the emulator. We highlight a few of the many
optimizations the contestants made in their contest submis-
sions. The third place contestants focused their optimization
efforts in improving the caching behavior by using techniques
such as dead-code and data elimination and inlining. The
second place contestants centered their efforts in optimizing
function calls that were frequently invoked, and re-organizing
data-structures to better match the underlying Raspberry Pi’s
hardware architecture. In addition to some of the above-
mentioned optimizations, the winner of the contest used direct-
threaded dispatch and dynamic binary translation techniques.

185978-1-4799-5338-7/14/$31.00 ©2014 IEEE

