
by Stephen A. Edwards

Retrocomputing on an FPGA
Reconstructing an 80’s-Era Home Computer with Programmable Logic

The author reconstructs a computer of his childhood, an Apple II+.

As a Christmas present to myself in

2007, I implemented an 1980s-era Apple

II+ in VHDL to run on an Altera DE2

FPGA board. The point, aside from

entertainment, was to illustrate the power

(or rather, low power) of modern FPGAs.

Put another way, what made Steve Jobs

his first million could be a class project

for the embedded systems class I teach at

Columbia University.

More seriously, this project

demonstrates how legacy digital

electronics can be preserved and

integrated with modern systems. While I

didn’t have an Apple II+ playing an

important role in a system, many

embedded systems last far longer than

their technology. The space shuttle

immediately comes to mind; PDP-8s can

be found running some signs for San

Francisco’s BART system.

What is an Apple II+?

The Apple II+ (Photo 1) was one of the

first really successful personal computers.

Designed by Steve Wozniak (“Woz”) and

introduced in 1977 [1, 2, 4], it really took

off in 1978 when the 140K Disk II

5.25-inch floppy drive was introduced,

followed by VisiCalc, the first

spreadsheet.

Fairly simple even by the standards of

the day, the Apple II was built around the

inexpensive 8-bit 6502 processor from

Photo 1: An Apple II+

MOS Technology (it sold for $25 when

an Intel 8080 sold for $179). The 6502

had an eight-bit data bus and a 64K

address space. In the Apple II+, the 6502

ran at slightly above 1 MHz. Aside from

the ROMs and DRAMs, the rest of the

circuitry consisted of discrete LS TTL

chips (Photo 2).

While the first Apple IIs shipped with

4K of DRAM, this quickly grew to a

standard of 48K. DRAMs, at this time,

were cutting-edge technology. While they

required periodic refresh and three power

supplies, their six-times higher density

made them worthwhile.

Along with with an integrated

keyboard, a rudimentary (one-bit) sound

port, and a game port that could sense

buttons and potentiometers (e.g., in a

joystick), the main feature of an

Apple II+ was its integrated video

display. It generated composite

(baseband) NTSC video that was usually

sent through an RF modulator to appear

on TV channel 3 or 4.

The Apple II+ had three video modes:

a 40 × 24 uppercase-only

black-and-white text display, a 40 × 48

16-color low-resolution display, and a

140 × 280 6-color high-resolution

display. The Apple II+ can almost be

thought of as a video controller that

happens to have a microprocessor

connected to it. Woz started with a

14.31818 MHz master clock—exactly

four times the 3.579545 MHz colorburst

frequency used in NTSC video—and

derived everything from it.

The CPU and video alternate accesses

to memory at 2 MHz. Another Woz trick:

the video addresses are such that

refreshing the video also suffices to

refresh the DRAMs, so no additional

refresh cycles are needed.

Figure 1 shows the block diagram of

my reconstruction. The 6502 processor

on the left generates addresses and output

data. The address is fed to the ROMs, an

Photo 2: The Apple II+ Motherboard. Ex-

pansion slots and analog video circuity

dominate the top; the 6502 is above the

six large ROM chips. The white rectan-

gle encloses 48K of DRAM. The charac-

ter ROM is at the bottom; the rest is TTL.

Figure 1: Block Diagram

Figure 2: Woz’s clock generator circuit. A 14.31818 MHz crystal drives a 4-bit shift register and a quad flip-flop to generate DRAM

timing signals and the processor clocks, which in turn feed a bank of horizontal and vertical video counters.

address range decoder, the peripheral

slots, and to a mux that selects between

processor and video system addresses for

the main memory.

The original Apple II+ used a tri-state

data bus, but FPGA cores do not support

such complex electrical structures

(although they do provide tri-state I/O

pins), so my reconstruction breaks the

data bus into multiple segments. Most

notably, I added a large mux (right side of

Figure 1) that selects the source of data

fed to the 6502 core, such as main

memory or the ROMS.

The Clock Generator

Figure 2 shows the Apple’s clock

generator circuit. A crystal oscillator

drives the clocks on a ’195 quad shift

register and a ’175 quad flip-flop. These

generate clocks for the the DRAM (RAS’

and CAS’) along with the “1 MHz”

processor clocks PHI0 and PHI1. A gated

version of PHI0 feeds a bank of ’161s:

four-bit binary counters configured to act

as horizontal and vertical counters

(H0–H5, VA–VC, and V0–V5) from

which the video addresses are generated.

This clever circuit does a lot with few

parts. It is at the center of Woz’s

patent [5], which describes it and his trick

of using digital signals to generate color

NTSC video.

Woz derived the CPU clock from the

14M clock by dividing by roughly

fourteen. “Roughly” because every

sixty-fifth CPU cycle (one per horizontal

scan line) is stretched by two 14M clock

periods to preserve the phase of the 3.58

MHz colorburst frequency. Thus, there

are 65 * 14 + 2 = 912 pixel periods per

line, or exactly 228 cycles of the

3.58 MHz colorburst per line.

While it would be possible to write a

model for each TTL part in VHDL and

assemble them according to the

schematic, I prefer to try to write the

VHDL according to Woz’s intentions for

the original circuit. This is especially true

for combinational “glue” logic, which

was often implemented in nonintuitive

ways to save parts.

Listing 1 shows my VHDL code for the

clock generator. It assumes the 14 MHz

clock is provided externally and consists

of three main sequential processes. The

first models the ’195 shift register, which

either shifts or loads dependings on its

own Q3 output. The second process

models the ’175 quad flip-flop and the

’153 driving it, which selects between

PRE PHI 0 and a combination of Q3 and

PHI0 depending on the state of AX.

The third sequential process models

the four 4-bit binary counters. In the

original circuit, these were clocked by the

output of a NAND gate. Such a practice

is dangerous because the output of the

gate might glitch and cause unpredictable

behavior, so instead I chose to clock these

counters at 14 MHz and instead carefully

control when they count.

Figure 3 shows a timing diagram for

the clock generator illustrating how it

behaves at the end of a line. The

COLOR DELAY N signal causes the

shift register to delay RAS N et al. two

extra 14M cycles, which also causes

PHI0 to be stretched. HCOUNT changes

on the rising edge of LDPS N, just as in

the original circuit.

The values taken on by the horizontal

counter are a little unusual: the counter is

allowed to wrap around from 7F to 00,

but is then set to 40 to start the line.

These 65 PHI0 periods turn into about

15.70 kHz, close to the NTSC horizontal

frequency of 15.734 kHz.

60 us 61 us 62 us 63 us 64 us 65 us

7E 7F 00 40 41

0FA 0FB

Time
CLK_14M

RAS_N

AX

cas_n

Q3

CLK_7M

COLOR_REF

PRE_PHI0

PHI0

LDPS_N

HPE_N

HCOUNT[6:0]

VCOUNT[8:0]

COLOR_DELAY_N

Figure 3: Behavior of the clock generator at the end of a line

-- To generate the once-a-line hiccup: D1 pin 6

COLOR_DELAY_N <=

not (not COLOR_REF and (not AX and not CAS_N) and PHI0 and not H(6));

-- The DRAM signal generator

C2_74S195: process (CLK_14M)

begin

if rising_edge(CLK_14M) then

if Q3 = ’1’ then -- shift

(Q3, CAS_N, AX, RAS_N) <=

unsigned’(CAS_N, AX, RAS_N, ’0’);

else -- load

(Q3, CAS_N, AX, RAS_N) <=

unsigned’(RAS_N, AX, COLOR_DELAY_N, AX);

end if;

end if;

end process;

-- The main clock signal generator

B1_74S175 : process (CLK_14M)

begin

if rising_edge(CLK_14M) then

COLOR_REF <= CLK_7M xor COLOR_REF;

CLK_7M <= not CLK_7M;

PHI0 <= PRE_PHI0;

if AX = ’1’ then

PRE_PHI0 <= not (Q3 xor PHI0); -- B1 pin 10

end if;

end if;

end process;

LDPS_N <= not (PHI0 and not AX and not CAS_N);

LD194 <= not (PHI0 and not AX and not CAS_N and not CLK_7M);

-- Four four-bit presettable binary counters

-- Seven-bit horizontal counter counts 0, 40, 41, ..., 7F (65 states)

-- Nine-bit vertical counter counts $FA .. $1FF (262 states)

D11D12D13D14_74LS161 : process (CLK_14M)

begin

if rising_edge(CLK_14M) then

-- True the cycle before the rising edge of LDPS_N: emulates

-- the effects of using LDPS_N as the clock for the video counters

if (PHI0 and not AX and ((Q3 and RAS_N) or

(not Q3 and COLOR_DELAY_N))) = ’1’ then

if H(6) = ’0’ then H <= "1000000";

else

H <= H + 1;

if H = "1111111" then

V <= V + 1;

if V = "111111111" then V <= "011111010"; end if;

end if;

end if;

end if;

end if;

end process;

Listing 1: VHDL for the timing generator

The CPU and Memory

Like Woz, I didn’t create a 6502

processor from scratch. Instead, I used a

6502 core written by Peter Wendrich for

his FPGA-based Commodore 64. The

main challenge here was making sure it

was clocked properly given the odd way

the Apple II+ generates its occasionally

stretched processor clock.

Semiconductor memory has changed a

lot since 1977. The Apple II+

used 24 4116 16-kilobit DRAM chips

with 150 ns access times to provide 48

kilobytes of memory. Today, it is difficult

to find memory chips this small.

While it would have been nice to place

all of the Apple’s memory on the FPGA I

was using, it (an Altera Cyclone II 2C35)

has about 59K of on-chip RAM, which is

just a little too small to fit 48K of RAM

plus 12K of ROMs. I chose instead to use

off-chip SRAM (the DE2 has 512K) for

the 48K of main memory and store the

ROMs on-chip. Storing the ROMs in

FPGA memory is more convenient

because their contents are initialized

when the FPGA is programmed.

Asynchronous SRAM is much easier

to interface than DRAM. The only real

issue is generating an approriately timed

write enable signal and making sure the

tri-state data pins are only driven when

the processor is writing to the RAM.

The Video Generator

The Apple II+ has three main video

modes: a 40×24 uppercase-only text

display, a 40×48 16-color “lores”

graphics mode, and a 280×192 6-color

“hires” graphics mode. The graphics

modes also have a mixed mode in which

the bottom four lines of text are displayed

instead.

The memory layout for all three modes

is similar and non-linear. To

accommodate 40-character text lines

using only a single four-bit binary adder

and wasting little memory, Woz divided

the screen into three horizontal stripes,

each 64 scan lines high (equivalently,

eight character rows). Memory for each

display mode is divided into 128-byte

segments that hold three 40-byte lines

(i.e., the last eight bytes in each segment

are not displayed). The first line in each

segment appears in the top stripe, the

second in the middle stripe, and the third

in the bottom. The result is that bits 3 to 6

of the video address are a funny sum of

horizontal and vertical counter bits.

All three modes fetch one byte from

video memory every PHI0 cycle. In text

mode, the data is fed to the top six

address bits of the character ROM and the

output of the ROM is loaded into a ’166

eight-bit parallel-to-serial shift register.

In lores mode, the byte is loaded into a

pair of four-bit recycling shift registers

and clocked out repeatedly. In hires

mode, the byte is loaded into an eight-bit

shift register and clocked out.

The VGA Line Doubler

The Apple II+ generates a composite

color NTSC signal that was usually sent

through an RF modulator and displayed

on a standard television set. Since

computers have not used composite color

monitors since the early 1980s, one of my

goals was to generate an analog color

VGA signal (now also obsolete) suitable

for a standard computer LCD monitor.

This presented two problems. The first

is one of rate: the Apple II+ generates

composite color non-interlaced NTSC

video: 60 frames a second, 262 lines per

frame. This leads to a horizontal refresh

rate of about 15.70 kHz.

The VGA standard, which has been

around since 1987, is an analog RGB

component format associated with a

variety of refresh rates, but the most

relevant here is essentially NTSC times

two: a 31 kHz horizontal sweep rate with

a 60 Hz frame rate. By design, this is two

VGA lines for every NTSC line.

So to display an NTSC-rate image on a

VGA monitor, it is enough to display

each NTSC line twice, which is

convenient because it only requires

buffering a line instead of a whole frame.

Rather than redesign Woz’s carefully

crafted video circuitry, I chose to place a

VGA line doubling circuit after his

one-bit video output that both doubles the

horizontal frequency and interprets color

information.

My circuit consists of a dual-ported

memory that stores two lines of the

14 MHz 1-bit video signal. At any time,

the circuit is filling in one line and

displaying the other; the roles of the two

lines swap once every NTSC line.

The Color Decoder

Interpreting colors is the bigger challenge

in converting the Apple II+ output to

color VGA signals. Unlike VGA, which

conveys separate red, green, and blue

signals, composite (color) NTSC video

consists of three signals modulated

together. To a high-bandwidth luminance

(brightness only) signal (about 3 MHz)

called Y, NTSC adds two

lower-bandwidth color signals (“I” and

“Q”) that are quadrature modulated at

3.579545 MHz. A color television

demodulates and combines linear ratios

of these signals to recover red, green, and

blue intensities.

The Apple II+ uses a trick to generate

the modulated signal: it produces a digital

signal that switches at

14.31818 MHz—exactly four times the

colorburst frequency. Figure 4(a) depicts

a small patch of this digital video output

interpreted as black and white pixels. The

sixteen different period-four waveforms

(i.e., whose fundamentals are at the

3.58 MHz colorburst frequency) each

produce a different color (two produce

gray). All 0’s is black and all 1’s is white

since neither has any high-frequency

information; the television interprets

them as purely luminance. Other patterns

produce different levels of Y, I, and Q,

and thus different colors.

NTSC demodulation and YIQ-to-RGB

colorspace conversion is a linear process,

albeit a time-varying one because

quadrature modulation uses phase to

distinguish two signals. So the digital

video signal the Apple II+ produces can

be though of as a linear combination of

(a) (b)

(c) (d)

Figure 4: A hires graphics fragment inter-

preted as (a) monochrome, (b) output from

the KEGS software emulator for the Ap-

ple IIgs, (c) under a four-bit window al-

gorithm, and (d) under the six-bit window

algorithm used in my reconstruction.

four square wave signals that differ only

in their phase. Thus, interpreting groups

of four bits as one of sixteen colors

produces a reasonable display, especially

for solid regions.

Unfortunately, this four-bit-at-a-time

approach produces more color fringing

around the edges of white objects than a

television would because of the

bandwidth limits on I and Q, as shown in

Figure 4(c). My solution was to look at

one bit to the left and right of the four-bit

window and generate color only when

these extra bits follow the same pattern as

the middle four. (Figure 4(d))

Figure 5 shows an abstract view of my

color generator. At the top is a six-bit

shift register that amounts to a sliding

window into the video signal. Each bit

consumes 90 degrees of phase; the circuit

mostly considers the middle four bits.

The main color circuitry comprises a

“permute” block that rotates the four

(constant) basis colors depending on

which of the four phases a pixel can be in

relative to the colorburst frequency. Then

each of the four basis colors are ANDed

with the four middle bits of the sliding

window filter and added together to form

a 24-bit RGB value.

At the top right of Figure 5 are three

gates that guess when we are in the

middle of a solid color region. When

Figure 5: Abstract View of the Color Generator

bits 0 and 4 in the filter are equal, and

bits 1 and 5 are also equal, the “color

select” signal is true and the solid color

value generated as described above is

selected as the color for this pixel.

Otherwise, my circuit colors the pixel

black, gray, or white depending on how

many bits are set in the middle two

positions in the shift register. This

approximates the effect of the lower I and

Q bandwidth: when the signal suddenly

changes from dark to light, the luminance

changes more quickly; the color

information changes slower.

It took some experimentation for me to

arrive at this approximation. To evaluate

the algorithms, I wrote a simple C

program that converted a memory dump

of a hires image into a PPM file, which I

then evaluated. Figure 4(d) is the output I

finally implemented.

The Disk II Emulator

Introduced about a year after the Apple II

itself, the Disk II 5.25” floppy disk drive

was another remarkably svelte piece of

hardware [2, 3]. The system consisted of

a digital controller board connected to the

peripheral bus, an analog board in the

drive itself that handled things like

controlling the stepper motor and

conditioning the read signal, and a bare

Shugart SA400 drive mechanism.

My goal was to make it possible for my

reconstruction to boot images of 5.25”

floppy disks. Years ago I converted my

own collection of physical disks to such

images; many more can be found on the

web. Thus, my goal was to make the

software think it was talking to a floppy

drive instead of attempting to reconstruct

the drive and its controller exactly.

The DE2 board has a SD/MMC card

interface, which is just a connector with a

few pins connected directly to the FPGA

and some pull-up resistors. This plus the

quickly falling prices of SD flash memory

cards made it the natural choice.

My emulation circuit consists of two

parts: a module that emulates the

behavior of the Disk II controller, which

interprets CPU access to the relevant I/O

addresses, and a SPI module that fetches

blocks of data from an SD card based on

commands from the first module.

SD/MMC flash memory cards can be

operated in a variety of modes. The

simplest is SPI, a simple,

well-documented, four-wire synchronous

serial protocol. Furthermore, the wiring

on the DE2 was clearly set up to operate

SD cards in such a mode.

The Disk II presented an extremely

low-level interface to software. Head

positioning was performed by directly

activating the stepper motor phases in

sequence. And although the hardware did

provide a facility for clock recovery and

framing, the software was presented with

just a raw stream of encoded bytes from

the disk.

Instead of the FM scheme used by the

Shugart controller, which placed a clock

pulse between every data pulse, the

Disk II used a group code recording

scheme that allowed up to two

consecutive 0’s before a 1 was mandatory,

making it possible to store six bits instead

of four in the space of eight transitions.

This improved formatted capacity to

140K per diskettee over the 90K possible

with FM encoding, but it fell to the

software to decode this data.

My Disk II emulator consists of an SPI

controller responsible for initializing and

reading data from the SD card, a bus

device that interprets and responds to the

6502 like the Disk II controller, and a

dual-ported RAM that holds a single

unformatted track’s worth of data. At

300 rpm at 4 µs per bit, this is 50,000 bits

or 6250 bytes. However, the standard file

format for Apple II raw disk images

(“.nib”) uses 6656 bytes (26 × 256) per

track, so I chose to use that.

The SA400 had a single read/write

head whose position over the floppy was

controlled by a stepper motor. My Disk II

controller observes how the software

activates the four phases of the stepper

motor and responds to each track change

by reading a track’s worth of data into the

track buffer. Once in the buffer, the

controller simply cycles through the track

data, emulating the movement of the head

over the track.

The stepper motor has four phases, and

every two phases corresponds to a distinct

track (of which there are 35), but because

the software is free to turn on two (or

more) phases simultaneously, my

controller models both when the head is

at a particular phase and when it is

between two adjacent phases. It

constantly monitors the state of the four

phases and updates the head position

based on its current position. When it

observes a track change, it signals the SPI

controller to fetch the new track and

transfer it into the track buffer.

I added a rudimentary user interface

for selecting different disk images: ten

switches supply the image number in

binary, which I displayed in hex on two of

the seven-segment LEDs. On the SD

card, the images are laid out one after the

other, i.e., not in a file system. To create

such a collection, I wrote a script that

finds all the .dsk files in a directory,

converts each to the “nibblized” format,

and adds it to an image file. All 500 of the

5.25′′ floppies I owned fit into 112 MB,

which now resides comfortably on a $5

SD card. How times have changed.

The PS/2 Keyboard Interface

The Apple II plus had an integrated

keyboard consisting of an array of

discrete keyswitches scanned by a

General Instruments AY-5-3600 keyboard

encoder that produced a seven-bit ASCII

code. When a key was pressed, it would

latch the code and send a pulse that

indicated a new key was pressed. The

Apple II would latch the pulse as bit 7 of

the keyboard I/O location and clear it

when another I/O location was accessed,

providing a simple handshake.

Instead of directly connecting a

keyswitch array to the FPGA, I decided to

employ one of the many PS/2-compatible

keyboards littering my office. This was

especially attractive since the DE2 board

board already had a PS/2 connector.

The PS/2 keyboard interface is a

simple but idiosyncratic synchronous

serial protocol that sends and receives

data a byte at a time. The usual message

is “make,” which indicates a particular

key has been pressed. Other messages

include “break” followed by a code for a

key that has been released. Unfortunately,

the scan codes are not ASCII (perhaps

reflecting the wiring of an early

keyboard) and use “extended codes” for

keys such as the arrows, since they were

not on the original keyboard.

My solution uses the free PS/2

controller distributed by ALSE, which

speaks the low-level protocol and

performs the serial-to-parallel conversion,

and a simple state machine that looks at

the returned messages and interprets them

as ASCII. The code is sloppy but works.

Because all of this was never part of the

Apple II, I was not concerned with being

faithful to the original design, or even

elegant.

Sound

The Apple II+’s sound system is

simultaneously humorous and amazing: a

speaker connected to a Darlington

transistor driven by a flip-flop configured

to toggle when a particular I/O address is

accessed. The amazing part is that

programmers managed to drive such a

trivial circuit to generate four-voice

synthesized sound and even speech.

Emulating the audio address decoding

and flip-flop was trivial; doing something

useful with the resulting signal was more

of a challenge.

The DE2 board includes a Wolfson

MW8731 CODEC, a CD-quality stereo

audio chip capable of driving an audio

amplifier, complete overkill for Apple II+

audio, but already there on the board.

Using it presented two challenges:

generating the appropriate set of signals

to feed its serial interface and initializing

its registers through an I2C bus.

I implemented one module that

generates the various square waves for the

codec’s clocks (a bit clock and a word or

channel clock) and shifts out sixteen bits

of amplitude data. The main trick here

was choosing the proper divider values

and sending out each bit at the right time.

The I2C bus controller was more tricky.

While I only needed to support a small

part of the bus protocol, it still required

three state machines: one to handle the

low-level details of clock and data bit

generation, one to transmit single packets,

and one to prepare the proper sequence of

packets to initialize the Wolfson chip’s

registers.

The Top Level

My reconstruction actually has two

“top-level” modules. The “apple2”

module contains the timing generator,

video generator, processor, ROMs,

address decoder, and various minor

peripheral devices, i.e., all the original

parts of the Apple II+. A second module

is the actual top level, consisting of the

“apple2” module along with the VGA

line doubler, the PS/2 keyboard interface,

Disk II emulator, audio components, a

PLL that divides the DE2’s 50 MHz clock

down to about 28 MHz (i.e., not exactly

the right frequency, but close enough),

and connections for switches and LEDs

on the DE2 board.

I brought out the CPU’s PC to four of

the seven-segment displays on the DE2

and the drive’s current track on another

two. While the PC is usually changing so

fast it becomes a blur, patterns do often

emerge. For example, the PC remains

highly focused when the computer is

waiting at the prompt. Similarly, I have

found a lot of software, including the

operating system when it is moving the

drive head, calls the monitor’s “delay”

routine to slow things down.

Comparing Implementations

This project demonstrates how little

power modern hardware consumes and

how much more efficient it can be than

software. I compared the power

consumed by an actual Apple II+ with

that consumed by my reconstruction as

well as a software emulator running on

ten-year-old x86-based Linux box. I used

an inexpensive “Kill A Watt” power

meter, which only claims 0.2% accuracy,

but this was enough to demonstrate what

was going on.

The results were dramatic. My real

Apple II+ nominally consumed 22 watts,

which rose to 31 watts when the disk was

rotating; my FPGA reconstruction only

consumed 5 watts, even with all its extra

unused peripherals. The Dell

Optiplex GXa (running a now-modest

233 MHz Pentium II) consumed 62 watts

when running the emulation software.

Project Files

Included with all the VHDL files are

project files for Altera’s Quartus

software, a utility program for converting

the more common 140K .dsk files to the

.nib files my reconstruction uses.

For copyright reasons, I did not include

a copy of the Apple ROMs. They are easy

to obtain from an existing computer or

from the Internet. I included the script I

used to convert the binary files into

VHDL files that hold the same data.

But the project will function as it

stands: I wrote a “fake BIOS” that clears

the screen, displays some messages, then

cycles through a simple pair of graphics

demos. I included the 6502 assembly

source, which I compiled with the xa65

cross-assembler. My “BIOS” is not able

to boot any Apple disks, however.

A Slippery Slope

Like most projects, this one could

continue without end. Many important

features are still missing. Many Apple II

games used a joystick, but I have not

emulated it. The DE2 board has a USB

host controller, so in theory I could use a

standard USB joystick to it, but even a

USB controller chip still demands a

processor control it.

The disk emulation presents the most

opportunities for improvement. For

example, it is read-only, which is enough

for running plenty of software, but there

are plenty of reasons to want to write to a

disk. Also, my emulator uses an SD card

but does not support a filesystem. It

would be much easier to manage disk

images if they could be named and stored

in a standard hierarchical filesystem (e.g.,

FAT32). It might be possible to do this

with the 6502 processor, but a separate

processor for managing this might also be

in order. Along the same lines, my

emulator could also support the more

standard 140K disk images if it included

logic to perform the encoding used by

Apple DOS; most software emulators do

this.

There are myriad peripheral cards that

could also be emulated. The 16K

memory expansion card would be a first

step, but it would also be nice to have

others that provided serial ports, printers,

and improved sound.

Perhaps next Christmas I’ll have time.

References

[1] Winston Gayler. The Apple II Circuit

Description. Howard W. Sams &

Co., 1983.

[2] Jim Sather. Understanding the Apple

II. Quality Software, Reseda, CA,

1983.

[3] Don Worth and Pieter Lechner.

Beneath Apple DOS. Quality

Software, Reseda, CA, 1981.

[4] Stephen Wozniak. System

description: The Apple-II. Byte

Magazine, 2(5):34–43, May 1977.

[5] Stephen G. Wozniak. Microcomputer

for use with video display. US Patent

4,136,359, January 1979.

