
Concurrency and Communication:

Lessons from the SHIM Project

Stephen A. Edwards

Columbia University, New York, ny, usa
sedwards@cs.columbia.edu

Abstract. Describing parallel hardware and software is difficult, es-
pecially in an embedded setting. Five years ago, we started the shim
project to address this challenge by developing a programming language
for hardware/software systems. The resulting language describes asyn-
chronously running processes that has the useful property of scheduling-
independence: the i/o of a shim program is not affected by any scheduling
choices. This paper presents a history of the shim project with a focus
on the key things we have learned along the way.

1 Introduction

Shim, an acronym for “software/hardware integration medium,” started as an
attempt to simplify the challenges of passing data across the hardware-software
boundary. It has since turned into a language development effort centered around
a scheduling-independent (i.e., race-free) concurrency model and static analysis.

The purpose of this paper is to lay out the history of the shim project with
a special focus on what we learned along the way. It is deliberately light on
technical details (which can be found in the original publications) and instead
tries to contribute intuition and insight.

We begin by discussing the original motivations for the project, how it evolved
into a study of concurrency models, how we chose a particular model, and how
we have added language features to that model. We conclude with a section
highlighting the central lessons we have learned along with open problems.

2 Embryonic shim

We started developing shim in 2004 after observing the difficulties our students
were having building embedded systems [1,2] that communicated across the
hardware/software boundary. The central idea was to provide variables that
could be accessed equally easily by either hardware processes or software func-
tions, both written in C-like dialect. Figure 1 shows a simple counter in this
dialect of the language. The count function resides in hardware; the other two
are in software. When a software function like get time would reads the hard-
ware register counter, the compiler would automatically insert code that would
fetch its value from the hardware and synthesize vhdl that could send the data

S. Lee and P. Narasimhan (Eds.): SEUS 2009, LNCS 5860, pp. 276–287, 2009.
c© IFIP International Federation for Information Processing 2009

Concurrency and Communication: Lessons from the SHIM Project 277

module timer {
shared uint:32 counter; /∗ Hardware register visible from software ∗/
hw void count() { /∗ Hardware function ∗/

counter = counter + 1; /∗ Direct access to hardware register ∗/
}
out void reset timer() { /∗ Software function ∗/

counter = 0; /∗ Accesses register through bus ∗/
}
out uint get time() { /∗ Software function ∗/

return counter; /∗ Accesses register through bus ∗/
}

}

Fig. 1. An early fragment of shim [1]

on a bus when requested. We wrote a few variants of an i2c bus controller in
the language, starting with an all-software version and ending with one that
implemented byte-level communication completely in hardware.

The central lesson of this work was that the shared memory model, while
simple, was a very low-level way to implement such communication. Invariably,
it is necessary to layer over it another communication protocol (e.g., some form
of handshake) to ensure coherence. We had not included an effective mechanism
for implementing communication libraries that could hide this fussy code, so it
was back to the drawing board.

3 Kahn, Hoare, and the shim Model

We decided we wanted reliable communication, including any across the hard-
ware/software boundary, to be a centerpiece of the next version of shim. Er-
roneous communication is a central source of bugs in hardware designs: our
embedded system students’ favorite mistake was to generate a value in one cycle
and read it in another. This rarely produces even a warning in usual hardware
simulation, so it can easily go unnoticed.

We also found the inherent nondeterminism of the first iteration of shim a key
drawback. The speed at which software runs on processors is rarely known, let
alone controlled. Since software and hardware run in parallel and communicate
using shared variables, the resulting system was nondeterministic, making it
difficult to test. It also ran counter to what we had learned from Esterel [3].

Table 1 shows our wishlist. We wanted a concurrent, deterministic (i.e., inde-
pendent of scheduling) model of computation and started looking around. The
synchronous model [4] was unsuitable because it generally assumes either a single
or harmonically related clocks and would not work well with software.

278 S.A. Edwards

Table 1. The shim Wishlist

Trait Motivation

Concurrent Hardware/software systems fundamentally parallel

Mixes synchronous and
asynchronous styles

Software slower and less predictable than hardware;
need something like multirate dataflow

Only requires bounded resources Fundamental restriction on hardware

Formal semantics No arguments about meaning or behavior

Scheduling-independent i/o should not depend on program implementation

Steve Nowick steered us toward the body of work on delay-independent cir-
cuits (e.g., van Berkel’s Handshake circuits [5]). We compared this class of pro-
cesses to Kahn’s networks [6] and found them to be essentially the same [7].
We studied how to characterize such processes [8], finding that we could char-
acterize them as functions that, when presented with more inputs or output
opportunities, never produced less or different data.

In their classic form, the unbounded buffers of Kahn networks actually make
them Turing-complete [9] and difficult to schedule [10], so we decided on a model
in which Kahn networks were restricted to csp-like rendezvous [11]. Others, such
as Lin [12] had also proposed using such a model.

In 2005, we presented our new shim model and a skeleton of the language,
“Tiny-shim,” and its formal semantics [13]. It amounted to read and write op-
erations sewn together with the usual C-like expressions and control-flow state-
ments. We later extended this work with further examples, a single-threaded C
implementation, and an outline of a hardware translation [14].

In 2006, we published our first real research result with shim: a technique
for very efficient single-threaded code generation [15]. The centerpiece of this
work was an algorithm that could compile arbitrary groups of processes into a
single automaton whose states abstracted the control states of the processes.
Our goal was to eliminate synchronization overhead, so the automaton captured
which processes were waiting on which channels, but left all other details, such
as variable values and details of the program counters, to the automaton.

Figure 2 demonstrates the algorithm from Edwards and Tardieu [15]. The
automaton’s states are labeled with a number (e.g., S0), the state of each channel
in the system (ready “-”, blocked reading “R”, or blocked writing “W”), and, for
each process, whether it is runnable (

√
) or blocked on a channel (×), and a set of

possible program counters. From each state, the automaton generator (a.k.a., the
scheduler) nondeterministically chooses one of the runnable processes to execute
and generates a state by considering each possible pc value for the process.
The code generated for a state with multiple pc values begins with a C switch
statement that splits control depending on the pc value.

Concurrency and Communication: Lessons from the SHIM Project 279

process
sink(int32 B) {

for (;;) B;
}

process
buffer(int32 &B,

int32 A) {
for (;;) B = A;

}

process
source(int32 &A) {

A = 17; A = 42;
A = 157; A = 8;

}

network main() {
sink();
buffer();
source();

}

sink
0 PreRead 1
1 PostRead 1 tmp3
2 goto 0

buffer
0 PreRead 0
1 PostRead 0 tmp2
2 tmp1 := tmp2
3 Write 1 tmp1
4 goto 0

source
0 tmp4 := 17
1 Write 0 tmp4
2 tmp5 := 42
3 Write 0 tmp5
4 tmp6 := 157
5 Write 0 tmp7
6 tmp8 := 8
7 Write 0 tmp8
8 Exit

S0 --√{0}√{0}√{0}

S1 -R

×{1}√{0, 4}√{0, 2, 4, 6, 8}

S2 RR

×{1}
×{1}√{0, 2, 4, 6, 8}

S3 WR

×{1}√{1}
×{2, 4, 6, 8}

S4 -W√{1}
×{4}√{2, 4, 6, 8}

S5 RR

×{1}
×{1}
×{8}

sink

buffer

source

buffer

sink

source

(a) (b) (c)

Fig. 2. An illustration of the shim language and its automaton compilation scheme
from Edwards and Tardieu [15]. A source program (a) is dismantled into intermediate
code (b), then simulated to produce an automaton (c). Each state is labeled with its
name, the state of each channel (blocked on read, blocked on write, or idle), and the
state of each process (runnable, and possible program counter values).

At this point, the language fairly closely resembled the Tiny-shim language of
the Emsoft paper [13]. A system consisted of a collection of sequential processes,
assumed to all startwhen the systembegan. It couldalso containnetworks—groups
of connected processes that could be instantiated hierarchically.

One novel feature of this version, which we later dropped, was the ability to
instantiate processes and networks without supply explicit connections. Instead,
the compiler would examine the interface to each instantiated process and make
sure its environment supplied such a signal. Connections were made implicitly
by name, although this could be overridden. This feature arose from observing
how in vhdl it is often necessary to declare and mention each channel many
times: once for each process, once for each instantiation of each process, and
once in the environment in which it is instantiated.

However, in the process of writing more elaborate test cases, such as a jpeg
decoder [16], we decided that this connection-centric specification style (which
we adopted from hardware description languages) was inadequate for any sort
of interesting software. We wanted function calls.

280 S.A. Edwards

4 Recursion

In 2006, we introduced function calls and recursion to shim, making it very C-
like [17]. Our main goal was to make basic function calls work, allowing the usual
re-use of code, but we also found that recursion, especially bounded recursion,
was a useful mechanism for specifying more complex structures.

void buffer(int i, int &o) {
for (;;) {

recv i;
o = i;
send o;

}
}

void fifo(int i, int &o, int n) {
int c; int m = n − 1;
if (m)

buffer(i, c) par fifo(c, o, m);
else

buffer(i, o);
}

Fig. 3. An n-place fifo specified using recursion, from Tardieu and Edwards [17]

Figure 3 illustrates this style. The recursive fifo procedure calls itself repeat-
edly in parallel, effectively instantiating buffer processes as it goes. This recursion
runs only once, when the program starts, to set up a chain of single-place buffers.

5 Exceptions

Next, we added exceptions [18], certainly the most technically difficult addition
we have made. Inspired by Esterel [3], where exceptions are used not just for
occasional error handling but as widely as, say, if-then-else, we wanted our ex-
ceptions to be widely applicable and be concurrent and scheduling-independent.

For sequential code, the semantics of exceptions were clear: throwing an ex-
ception immediately sends control to the most-recently-entered handler for the
given exception, terminating any functions that were called in between.

For concurrently running functions, the right behavior was less obvious. We
wanted to terminate everything leading up to the handler, including any con-
currently running relatives, but we insisted on maintaining shim’s scheduling
independence, meaning we had to carefully time when the effect of an excep-
tion was felt. Simply terminating siblings when one called an exception would
be nondeterministic: the behavior would then depend on the relative execution
rates of of the processes and thus not be scheduling independent.

Our solution was to piggyback the exception mechanism on the communica-
tion system, i.e., a process would only learn of an exception when it attempted
to communicate, the only point at which processes agree on the time.

To accommodate exceptions, we introduced a new, “poisoned,” state for a pro-
cess that represents when it has been terminated by an exception and is waiting
for its relatives to terminate. Any process that attempts to communicate with a
poisoned process will itself become poisoned. In Figure 5, the first thread throws

Concurrency and Communication: Lessons from the SHIM Project 281

void main() {
int i; i = 0;
try {

i = 1;
throw T;
i = i ∗ 2; // is not executed

} catch(T) { i = i ∗ 3; } // i = 3
}

void main() {
int i; i = 0;
try { // thread 1

throw T;
} par { // thread 2

for (;;) i = i + 1; // runs forever
} catch(T) {}

}
(a) (b)

Fig. 4. (a) Sequential exception semantics are classical. (b) Thread 2 never feels the
effect of the exception because it never communicates. From Tardieu and Edwards [18].

void main() {
chan int i = 0, j = 0;
try { // thread 1

while (i < 5) next i = i + 1;
throw T; // poisons itself

} par { // thread 2
for (;;) next j = next i + 1; // poisoned by thread 1

} par { // thread 3
for (;;) recv j; // poisoned by thread 2

} catch (T) {}
}

Fig. 5. Transitive Poisoning: throw T poisons the first process, which poisons the sec-
ond when the second attempts next i. Finally the third is poisoned when it attempts
recv j and the whole group terminates.

an exception; the second thread is poisoned when it attempts to rendezvous on
i, and the third is poisoned by the second when it attempts to rendezvous on j.

The idea was simple enough, and the interface it presented to the programmer
could certainly be used and explained without much difficulty, but implementing
it turned out to be a huge challenge, despite there being fairly simple set of
structural operational semantics rules for it.

The real complexity came from having to consider exception scope, which
limits how far the poison propagates (it does not propagate outside the scope of
the exception) and the behavior of multiple, concurrently thrown exceptions.

6 Static Analysis

Shim has always been designed for aggressive compiler analysis. We have at-
tempted to keep its semantics simple, scheduling-independent, and restrict it to
finite-state models. Together, these have made it easier to analyze.

282 S.A. Edwards

We developed a technique for removing bounded recursion from shim pro-
grams [19]. One goal was to simplify shim’s translation into hardware, where
general recursion would require memory for a stack and choosing a size for it,
but it has found many other uses. In particular, if a program has only bounded
recursion, it is finite-state, simplifying other analysis steps.

The basic idea of our work was to unroll recursive calls by exactly tracking the
behavior of variables that control the recursion. Our insight was to observe that
for a recursive function to terminate, the recursive call must be within the scope
of a conditional. Therefore, we need to track the predicate of this conditional,
see what can affect it, and so forth.

Figure 6 illustrates what this procedure does to a simple fifo. To produce the
static version in Figure 6(b), our procedure observes that the n variable controls
the predicate around fifo’s recursive call of itself. It then notices that n is initially
bound to 3 by fifo3 and generates three specialized versions of fifo—one with
n = 3, n = 2, and n = 1—simplifies each, then inlines each function, since each
is only called once.

Of course, in the worst case our procedure could end up trying to track every
variable in the program, which would be impractical, but in many examples we
tried, recursion control only involved a few variables, making it easy to resolve.

A key hypothesis of the shim project has been that scheduling independence
should be a property of any practical concurrent language because it greatly
simplifies reasoning about a program, both by the programmer and by automated
tools. Our work on static deadlock detection reinforces this key point.

Shim is not immune to deadlocks (e.g., { recv a; recv b; } par { send b; send
a; } is about the simplest example), but they are simpler in shim because of
its scheduling-independence. Deadlocks in shim cannot occur because of race
conditions. For example, because shim does not have races, there are no race-

void fifo3(chan int i, chan int &o) {
fifo(i, o, 3);

}

void fifo(chan int i, chan int &o,
int n) {

if (n > 1) {
chan int c;
buf(i, c); par fifo(c, o, n−1);

} else buf(i, o);
}

void buf(chan int i, chan in &o) {
for (;;) next o = next i;

}

void fifo3(chan int i,
chan int &o) {

chan int c1, c2, c3;
buf(i, c1);

par
buf(c1, c2);

par
buf(c2, o);

}

void buf(chan int i, chan in &o) {
for (;;) next o = next i;

}

(a) (b)

Fig. 6. Removing bounded recursion, controlled by the n variable, from (a) gives (b).
After Edwards and Zeng [19].

Concurrency and Communication: Lessons from the SHIM Project 283

induced deadlocks, such as the “grab locks in opposite order” deadlock race
present in many other languages.

In general, shim does not need to be analyzed under an interleaved model of
concurrency since most properties, including deadlock, are the same under any
schedule. So all the clever partial order tricks used by model checkers such as
spin [20], are not necessary for shim.

We first used the synchronous model checker nusmv [21] to detect deadlocks in
shim [22]—an interesting choice since shim’s concurrency model is fundamentally
asynchronous. Our approach was to abstract away data operations and choose
a specific schedule in which each communication event takes a single cycle. This
reduced the shim program to a set of communicating state machines suitable for
the nusmv model checker.

We continue to work on deadlock detection in shim. Most recently [23], we
took a compositional approach where we build an automaton for a complete
system piece by piece. Our insight is that we can usually abstract away internal
channels and simplify the automaton without introducing or avoiding deadlocks.
The result is that even though we are doing explicit model-checking, we can often
do it much faster than a state-of-the art symbolic model checker such as nusmv.

We have also used model checking to search for situations where buffer mem-
ory can be shared [24]. In general, each communication channel needs storage for
any data being communicated over it, but in certain cases, it is possible to prove
that two channels can never be active simultaneously. We use the nusmv model
checker to identify these cases, which allow us to share potentially large buffers
across multiple channels. Because this is optimization, if the model checker be-
comes overloaded, we can we safely analyze the system in smaller pieces.

7 Backends

We have developed a series of backends for the shim compiler; each works off a
slightly different intermediate representations.

First, we developed a code generator that produced single-threaded C [14] for
a variant of Tiny-shim, which had only point-to-point channels. The runtime
system maintained a linked list of runnable processes, and for each channel,
tracked what process, if any, was blocked on it. Each process was compiled into a
separate C function, which stored its state as a global integer and used an switch
statement to restore it. This worked well, although we could improve runtimes
by compiling away communication overhead through static scheduling [15].

To handle multi-way rendezvous, exceptions, and recursion on parallel hard-
ware we needed a new technique. Our next backend [25] generated C code that
made calls to the posix thread library to ask for parallelism. The challenge was
to minimize overhead. Each communication action would acquire the lock on
a channel, check whether every process connected to it had also blocked (i.e.,
whether the rendezvous could occur), and then check if the channel was con-
nected to a poisoned process (i.e., a relevant exception had been thrown). All of
these checks ran quickly; actual communication and exceptions took longer.

284 S.A. Edwards

We also developed a backend for ibm’s cell processor [26]. A direct offshoot
of the pthreads backend, it allows the user to assign computationally intensive
tasks to the cell’s synergistic processing units (spus); remaining tasks run on
the cell’s powerpc core (ppu). Our technique replaces the offloaded functions
with wrappers that communicate across the ppu-spu boundary. Cross-boundary
function calls are technically challenging because of data alignment restrictions
on function arguments, which we would have preferred to be stack-resident. This,
and many other fussy aspects of coding for the cell, convinced us that such
heterogeneous multicore processors demand languages at a higher level than C.

8 Lessons and Open Problems

8.1 Function Calls

Early version of the language did not support classical software-like function
calls. However, these are extremely useful, even in dataflow-centric descriptions,
that they really need to be part of just about any language. We were initially
deceived by the rare use of function calls in vhdl and Verilog, but we suspect
this is because they do not fit easily into the register-transfer model.

8.2 Two-Way vs. Multi-way Rendezvous

Initial versions of shim only used two-way rendezvous, but after a discussion
with Edward Lee, we became convinced that multi-way rendezvous was useful
to provide at the language level. Debugging was one motivation: with multiway
rendezvous, it becomes easy to add a monitor that can observe data flowing
through a channel; modeling the clock of a synchronous system was another.

Unfortunately, implementing multiway rendezvous is much more complicated
than implementing two-way rendezvous, yet we found that most communication
in shim programs is point-to-point, so we are left with a painful choice: slow
down the common case to accommodate the uncommon case, or do aggressive
analysis to determine when we can assume point-to-point communication.

We would like to return shim to point-to-point communication only but pro-
vide multiway rendezvous as a sort of syntactic sugar, e.g., by introducing extra
processes responsible for communication on channels. How to do this correctly
and elegantly remains an open question, unfortunately.

8.3 Exceptions

Exceptions have been an even more painful feature than multi-way rendezvous.
They are extremely convenient from a programming standpoint (e.g., shim’s
rudimentary i/o library wraps each program in an exception to allow it to ter-
minate gracefully; virtually every compiler testcase includes at least a single
exception), but extremely difficult to both implement and reason about.

We have backed away from exceptions for now (all our recent work addresses
the exception-free version of shim); we see two possibilities for how to proceed.

Concurrency and Communication: Lessons from the SHIM Project 285

One is to restrict the use of exceptions so that the complicated case of multiple,
concurrent exceptions is simply prohibited. This may prohibit some interesting
algorithms, but should greatly simplify the implementation, and probably also
analysis, of exceptions.

Another alternative is to turn exceptions into syntactic sugar layered on the
exception-free shim model. We always had this in the back our minds: an excep-
tion would just put a process into an unusual state where it would communicate
its poisoned state to any process that attempts to communicate with it. The
problem is that the complexity tends to grow quickly when multiple, concurrent
exceptions and scopes are considered. Again, exactly how to translate exceptions
into a simpler shim model remains an open question.

8.4 Semantics and Static Analysis

We feel we have proven one central hypothesis of the shim project: that sim-
ple, deterministic semantics helps both programming and automated program
analysis. That we have been able to devise truly effective mechanisms for clever
code generation (e.g., static scheduling) and analysis (e.g., deadlock detection)
that can gain deep insight into the behavior of programs vindicates this view.
The bottom line: if a programming language does not have simple semantics, it
is really hard to analyze its programs quickly or precisely.

We have also validated the utility of scheduling independence. Our test suite,
which consists of many parallel programs, has reproducible results that lets us
sleep at night. We have found few cases where the approach has limited us.

Algorithms where there is a large number of little, variable-sized, but inde-
pendent pieces of work to be done do not mesh well with shim’s scheduling-
independent philosophy as it currently stands. The obvious way to handle this
is to maintain a bucket of tasks and assign each task to a processor once it has
finished its last task. The order in which the tasks is performed, therefore, de-
pends on their relative execution rates, but this does not matter if the tasks are
independent. It would be possible to add scheduling-independent task distribu-
tion and scheduling to shim (i.e., provided the tasks are truly independent or,
equivalently, confluent); exactly how is an open research question.

8.5 Buffers

That buffering is mandatory for high-performance parallel applications is hardly
a revelation; we confirmed it anyway. The shim model has always been able to
implement fifo buffers (e.g., Figure 3), but we have realized that they are suf-
ficiently fundamental to be a first-class type in the language. We are currently
working on a variant of the language that replaces pure rendezvous communi-
cation with bounded, buffered communication. Because it will be part of the
language, it will be easier to map to unusual environments, such as the dma
mechanism for inter-core communication on the cell processor.

286 S.A. Edwards

8.6 Other Applications

The most likely future role of shim will be as inspiration for other languages. For
example, Vasudevan has ported its communication model into the Haskell func-
tional language [27] and proposed a compiler that would impose its scheduling-
independent view of the work on arbitrary programs [28]. Certain shim ideas,
such as scheduling analysis [29], have also been used in ibm’s x10 language.

Acknowledgments

Many have contributed to shim. Olivier Tardieu created the formal semantics,
devised the exception mechanism, and instigated endless (constructive) argu-
ments. Jia Zeng developed the static recursion removal algorithm. Nalini Va-
sudevan has pushed shim in many new directions; Baolin Shao has just started
pushing. The nsf has supported the shim project under grant 0614799.

References

1. Edwards, S.A.: Experiences teaching an fpga-based embedded systems class. In:
Proceedings of the Workshop on Embedded Systems Education (wese), Jersey
City, New Jersey, September 2005, pp. 52–58 (2005)

2. Edwards, S.A.: Shim: A language for hardware/software integration. In: Proceed-
ings of synchron, Schloss Dagstuhl, Germany (December 2004)

3. Berry, G., Gonthier, G.: The Esterel synchronous programming language: Design,
semantics, implementation. Science of Computer Programming 19(2), 87–152 (1992)

4. Benveniste, A., Caspi, P., Edwards, S.A., Halbwachs, N., Guernic, P.L., de Simone,
R.: The synchronous languages 12 years later. Proceedings of the IEEE 91(1), 64–83
(2003)

5. van Berkel, K.: Handshake Circuits: An Asynchronous Architecture for vlsi Pro-
gramming. Cambridge University Press, Cambridge (1993)

6. Kahn, G.: The semantics of a simple language for parallel programming. In: Infor-
mation Processing 74: Proceedings of ifip Congress 74, Stockholm, Sweden, pp.
471–475. North-Holland, Amsterdam (1974)

7. Edwards, S.A., Tardieu, O.: Deterministic receptive processes are Kahn processes.
In: Proceedings of the International Conference on Formal Methods and Models
for Codesign (memocode), Verona, Italy, July 2005, pp. 37–44 (2005)

8. Tardieu, O., Edwards, S.A.: Specifying confluent processes. Technical Report cucs–
037–06, Columbia University, Department of Computer Science, New York, USA
(September 2006)

9. Buck, J.T.: Scheduling Dynamic Dataflow Graphs with Bounded Memory using the
Token Flow Model. PhD thesis, University of California, Berkeley (1993); Available
as ucb/erl M93/69

10. Parks, T.M.: Bounded Scheduling of Process Networks. PhD thesis, University of
California, Berkeley (1995); Available as ucb/erl M95/105

11. Hoare, C.A.R.: Communicating sequential processes. Communications of the
ACM 21(8), 666–677 (1978)

12. Lin, B.: Software synthesis of process-based concurrent programs. In: Proceedings
of the 35th Design Automation Conference, San Francisco, California, June 1998,
pp. 502–505 (1998)

Concurrency and Communication: Lessons from the SHIM Project 287

13. Edwards, S.A., Tardieu, O.: Shim: A deterministic model for heterogeneous em-
bedded systems. In: Proceedings of the International Conference on Embedded
Software (Emsoft), Jersey City, New Jersey, September 2005, pp. 37–44 (2005)

14. Edwards, S.A., Tardieu, O.: Shim: A deterministic model for heterogeneous em-
bedded systems. IEEE Transactions on Very Large Scale Integration (vlsi) Sys-
tems 14(8), 854–867 (2006)

15. Edwards, S.A., Tardieu, O.: Efficient code generation from Shim models. In: Pro-
ceedings of Languages, Compilers, and Tools for Embedded Systems (lctes), Ot-
tawa, Canada, June 2006, pp. 125–134 (2006)

16. Vasudevan, N., Edwards, S.A.: A jpeg decoder in Shim. Technical Report cucs–
048–06, Columbia University, Department of Computer Science, New York, USA
(December 2006)

17. Tardieu, O., Edwards, S.A.: R-shim: Deterministic concurrency with recursion and
shared variables. In: Proceedings of the International Conference on Formal Methods
and Models for Codesign (memocode), Napa, California, July 2006, p. 202 (2006)

18. Tardieu, O., Edwards, S.A.: Scheduling-independent threads and exceptions in
Shim. In: Proceedings of the International Conference on Embedded Software (Em-
soft), Seoul, Korea, October 2006, pp. 142–151 (2006)

19. Edwards, S.A., Zeng, J.: Static elaboration of recursion for concurrent software.
In: Proceedings of the Workshop on Partial Evaluation and Program Manipulation
(pepm), San Francisco, California, January 2008, pp. 71–80 (2008)

20. Holzmann, G.J.: The model checker spin. IEEE Transactions on Software Engi-
neering 23(5), 279–294 (1997)

21. Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: An openSource tool for symbolic model
checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp.
359–364. Springer, Heidelberg (2002)

22. Vasudevan, N., Edwards, S.A.: Static deadlock detection for the schim concurrent
language. In: Proceedings of the International Conference on Formal Methods and
Models for Codesign (memocode), Anaheim,California, June 2008, pp. 49–58 (2008)

23. Shao, B., Vasudevan, N., Edwards, S.A.: Compositional deadlock detection for
rendezvous communication. In: Proceedings of the International Conference on
Embedded Software (Emsoft), Grenoble, France (October 2009)

24. Vasudevan, N., Edwards, S.A.: Buffer sharing in csp-like programs. In: Proceed-
ings of the International Conference on Formal Methods and Models for Codesign
(memocode), Cambridge, Massachusetts (July 2009)

25. Edwards, S.A., Vasudevan, N., Tardieu, O.: Programming shared memory mul-
tiprocessors with deterministic message-passing concurrency: Compiling Shim to
Pthreads. In: Proceedings of Design, Automation, and Test in Europe (date),
Munich, Germany, March 2008, pp. 1498–1503 (2008)

26. Vasudevan, N., Edwards, S.A.: Celling Shim: Compiling deterministic concurrency
to a heterogeneous multicore. In: Proceedings of the Symposium on Applied Com-
puting (sac), Honolulu, Hawaii, March 2009, vol. III, pp. 1626–1631 (2009)

27. Vasudevan, N., Singh, S., Edwards, S.A.: A deterministic multi-way rendezvous
library for Haskell. In: Proceedings of the International Parallel and Distributed
Processing Symposium (ipdps), Miami, Florida, April 2008, pp. 1–12 (2008)

28. Vasudevan, N., Edwards, S.A.: A determinizing compiler. In: Proceedings of Pro-
gram Language Design and Implementation (pldi), Dublin, Ireland (June 2009)

29. Vasudevan, N., Tardieu, O., Dolby, J., Edwards, S.A.: Compile-time analysis and
specialization of clocks in concurrent programs. In: de Moor, O., Schwartzbach, M.
(eds.) CC 2009. LNCS, vol. 5501, pp. 48–62. Springer, Heidelberg (2009)

	Concurrency and Communication: Lessons from the SHIM Project
	Introduction
	Embryonic shim
	Kahn, Hoare, and the shim Model
	Recursion
	Exceptions
	Static Analysis
	Backends
	Lessons and Open Problems
	Function Calls
	Two-Way vs. Multi-way Rendezvous
	Exceptions
	Semantics and Static Analysis
	Buffers
	Other Applications

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

