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Abstract

We argue that at least for embedded software applications, computer architec-
ture, software, and networking have gone too far down the path of emphasizing
average case performance over timing predictability. In architecture, techniques
such as multi-level caches and deep pipelines with dynamic dispatch and specu-
lative execution make worst-case execution times (WCET) highly dependent on
both implementation details of the processor and on the context in which the soft-
ware is executed. Yet virtually all real-time programming methodologies depend
on WCET. When timing properties are important in the software and when con-
current execution is affected by timing, the result is brittle designs. In this paper,
we argue for precision timed (PRET) machines, which deliver high performance,
but not at the expense of timing predictability. We summarize a number of re-
search approaches that can be used to create PRET machines, and discuss how the
software, operating system, and networking abstractions built above the machine
architecture will have to change.

1 The Problem
Patterson and Ditzel [12] did not invent reduced instruction set computers (RISC) in
1980. Earlier computers all had reduced instruction sets. Instead, they argued that
trends in computer architecture had gotten off the sweet spot, and that by dropping
back a few years and forking a new version of architectures, leveraging what had been
learned, they could get better computers by employing simpler instruction sets.

It is again time for a change in direction in computer architecture. Architectures
currently strive for superior average-case performance that regrettably ignores pre-
dictability and repeatability of timing properties. “Correct” execution of the SPECint
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benchmark suite has nothing to do with how long it takes to perform any particular
action. C says nothing about timing, so timing is not considered part of correctness.
Architectures have developed deep pipelines with speculative execution and dynamic
dispatch. Memory architectures have developed multi-level caches and TLBs. The
performance criterion is simple: faster (on average) is better.

The biggest consequences have been in embedded computing. Avionics offers an
extreme example: in “fly by wire” aircraft, where software interprets pilot commands
and transports them to actuators through networks, certification of the software is ex-
tremely expensive. Regrettably, it is not the software that is certified but the entire
system. If a manufacturer expects to produce a plane for 50 years, it needs a 50-year
stockpile of fly-by-wire components that are all made from the same mask set on the
same production line. Even a slight change or “improvement” might affect timing and
require the software to be re-certified.

Nearly every abstraction provided by computing has failed our poor aircraft man-
ufacturer. The instruction-set architecture, meant to hide hardware implementation
details from the software, has failed because the user of the ISA cares about timing
properties that the ISA does not guarantee. The programming language, which hides
details of the ISA from the program logic, has failed because no widely used pro-
gramming language expresses timing properties. Timing is merely an accident of the
implementation. A real-time operating system hides details of the programs from the
concurrent orchestration, yet this fails because the timing may affect the orchestration.
The RTOS provides no guarantees. The network hides details of electrical or optical
signaling from systems, but standard networks provide no timing guarantees, and hence
again fail to provide an appropriate abstraction. The aircraft manufacturer is stuck with
a system design (not just implementation) in silicon and wires.

All embedded systems designers face less extreme versions of this problem. “Up-
grading” a microprocessor in an engine control unit for a car requires thorough re-
testing of the system. Even “bug fixes” in the software can be extremely risky, since
they can change timing behavior and produce effects that were never seen in testing.

Even general-purpose computing suffers from these decisions. Since timing is nei-
ther specified in programs nor enforced by execution platforms, a program’s timing
properties are not repeatable. Buggy concurrent software often has timing-dependent
behavior; small changes in the timing of one part of a program can affect seemingly
unrelated parts.

Designers traditionally covered these failures by computing worst case execution
time (WCET) bounds and using real-time operating systems (RTOSes) with predictable
scheduling policies. But these require substantial margins for reliability, and ultimately
reliability is (weakly) determined by bench testing of the complete implementation.

Modern processor architectures render WCET virtually unknowable; even sim-
ple problems demand heroic efforts. For example, Ferdinand et al. [5] determine the
WCET of astonishingly simple avionics code from Airbus running on a Motorola Cold-
Fire 5307, a pipelined CPU with a unified code and data cache. Despite the software
consisting of a fixed set of non-interacting tasks containing only simple control struc-
tures, their solution required detailed modeling of the seven-stage pipeline and its pre-
cise interaction with the cache, generating a large integer linear programming problem.
The technique successfully computes WCET, but only with many caveats that are in-



creasingly rare in software. Fundamentally, the ISA of the processor has failed to
provide an adequate abstraction.

Timing behavior in RTOSes is coarse and becomes increasingly uncontrollable as
the complexity of the system increases, e.g., by adding inter-process communication.
Locks, priority inversion, interrupts and similar issues break the formalisms, forcing
designers to rely on bench testing, which is nearly impotent at flushing out subtle timing
bugs. Worse, these techniques produce brittle systems in which small changes can
cause big failures.

Synchronous digital hardware—the technology on which most computers are built—
can deliver astonishingly precise, repeatable timing behavior, thanks in part to consid-
erable efforts on the part of hardware designers and design tool builders. Software
abstractions, however, lose several orders of magnitude in timing precision. Consider
the nanosecond-scale precision with which hardware can raise an interrupt request to
the imprecision with which a user-level software thread sees the effects (perhaps mil-
liseconds).

Commercial RTOSes market predictable timing, but modern processors have ren-
dered such numbers only vague bounds. Real-time software developers have long de-
manded predictable timing; processor architectures no longer deliver.

2 The Solution
It is time for a new era of processors whose temporal behavior is as easily controlled
as their logical function. We call them precision timed (PRET) machines. Our basic
argument is that real-time systems, in which temporal behavior is as important as logi-
cal function, are an important and growing application; processor architecture needs to
follow suit.

This is an enormous problem, but it is easy to start making progress. The problem
is challenging because it spans nearly all abstraction layers in computing, including
programming languages, virtual memory, memory hierarchy, pipelining techniques,
power management, I/O, DRAM design, bus architectures, memory management, just-
in-time (JIT) compilation, multitasking (threads and processes), task scheduling, soft-
ware component technologies, and networking.

Our first step is to develop FPGA-targeted PRET cores suitable for high-reliability
embedded applications. Substantial progress can be made in months; the revolution
may take decades. Our ultimate goal is networked real-time software that delivers the
reliability and timing precision of synchronous digital hardware with the simplicity of
software.

Timing precision is easy to achieve if you are willing to forgo performance; the
engineering challenge in PRET machines is to deliver both. While we cannot aban-
don structures such as caches and pipelines and 40 years of progress in programming
languages, compilers, operating systems, and networking, many will have to be re-
thought.

Fortunately, there is much work on which to build. ISAs can be extended with
instructions that deliver precise timing with low overhead [7]. Scratchpad memories
can be used in place of caches [1]. Deep pipelines with pipeline interleaving can de-



liver precise timing [10]. Memory management pause times can be bounded [2]. Pro-
gramming languages can be extended with timed semantics [6]. Appropriately chosen
concurrency models can be tamed with static analysis [3]. Software components can
be made intrinsically concurrent and timed [11]. Networks can provide high-precision
time synchronization [8]. Schedulability analysis can provide admission control, de-
livering run-time adaptability without timing imprecision [4].

Our vision of a mature PRET machine incorporates most of these techniques.
At the ISA level, it provides cycle-accurate timers, a predictable memory hierarchy
based on scratchpad memories, and an interleaved pipeline that provides predictable
hardware-efficient concurrency. It will be programmed in a C-like language that in-
cludes user-specified timing constraints and concurrency, perhaps with synchronous
semantics. Both compile- and run-time checks will ensure the program meets timing
constraints, similar to array bounds checking. A PRET operating system will resemble
an RTOS, but its scheduling policies will provide guarantees and admission control.
Such a processor will communicate through a network able to provide timing guaran-
tees, probably leveraging time synchronization.

Many open challenges remain. How do we achieve high-precision I/O (classical in-
terrupts destroy all temporal predictability)? How do we manage disk systems, DRAM
behavior, and virtual memory? How do we scale to deep sub micron without losing the
precision of synchronous digital logic (see http://www.tauworkshop.com)? How do we
adapt operating systems to provide timing guarantees? How do we handle exceptions?
How do we handle variable clock rates (essential power management)? How do we get
precise timing in networking? How do we evolve the many fledgling research results
into mainstream software engineering?

PRET machines are essential for embedded systems, but are also valuable for
general-purpose systems. In concurrent software, non-repeatable behavior is a ma-
jor obstacle to reliability [9]. PRET machines would improve reliability of concurrent
software through repeatable concurrent behavior.

Patterson and Ditzel’s [12] plea for RISC machines was simultaneously heeded and
ignored. Architectural complexity continued to grow unabated, but at least architects
began to analyze where it would have the most benefit. It forced architects to evaluate
the benefits of their elaborations relative to the costs. A similar change is needed with
respect to techniques that blithely ignore predictable timing.
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