
SLAP 2005 Preliminary Version

SHIM: A Language for Hardware/Software
Integration

Stephen A. Edwards

Department of Computer Science, Columbia University
1214 Amsterdam Avenue, New York, New York, 10027

Abstract

Virtually every system designed today is an amalgam of hardware and software. Un-
fortunately, software and circuits that communicate across the hardware/software
boundary are tedious and error-prone to create. This suggests a more automatic
way to synthesize them.

This paper presents the shim language, which combines imperative C-like seman-
tics for software and rtl-like semantics for hardware to allow a unified description
of hardware/software systems. Hardware processes and software functions commu-
nicate through shared variables, hardware for which is automatically synthesized by
the shim compiler, which generates C and synthesizable vhdl.

I demonstrate the effectiveness of the language by re-implementing an I2C bus
controller. The shim source is half the size of an equivalent manual implementation,
slightly faster, and has a smaller memory footprint. Partial and complete hardware
implementations in shim are also presented, showing that shim is succinct and
effective.

Key words: Hardware-software codesign, language design,
interface synthesis

1 Introduction

As integrated circuit technology advances relentlessly, the size and complexity
of a typical design continues to spiral upward. As always, managing com-
plexity is the designer’s greatest challenge. The design must be right the first
time and be completed faster than before. While validation methods such as
simulation and formal verification work well to discover mistakes, moving to
higher levels of abstraction, such as from the gate level to the register transfer

1 Edwards is supported by an NSF CAREER award, a grant from Intel corporation, an
award from the SRC, and by New York State’s NYSTAR program.
2 Email: sedwards@cs.columbia.edu

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



Edwards

level, is more effective because it helps designers to avoid mistakes in the first
place. In this paper, I describe a language that raises the abstraction level for
hardware/software systems.

My intention with shim (Software/Hardware Integration Medium), the
language I propose here, is to provide seamless communication between hard-
ware and software modules. It arose in part from observing beginning design
students tackle combined hardware/software systems: they understood C well,
and could learn vhdl, but had difficulty making the two worlds communicate.

Rather than propose a completely new semantics for shim, I chose to inte-
grate the two well-known, well-established semantics typically used to design
hardware and software systems: C-like imperative semantics (single-threaded)
for the software and register-transfer level (concurrent) semantics for the hard-
ware. By itself, each is deterministic, but their combination turns out not to
be because the relative speeds of the hardware and software are not specified.
I adopted this model because it closely reflects current industrial practice,
in which validation must often be performed with a cycle-accurate processor
simulator running in concert with a cycle-accurate hardware simulation.

While it would be an interesting exercise to consider other, perhaps deter-
ministic, semantics, the objective of this work was to explore the consequences
of adopting commonly-used techniques.

The syntax of shim mimics C, which I chose both for its familiarity (C,
C++, Java, and C# programmers all know it well) and its succinctness. Al-
though from a technical standpoint, language syntax is nearly irrelevant, it
can be a significant barrier to user adoption of a language.

The shim compiler takes a single specification—a collection of software
functions and hardware processes—and generates both C and synthesizable
vhdl source. No attempt is made to do automatic partitioning between the
two domains: it is the user’s responsibility to mark everything as hardware,
software, or shared. This is partially to simplify the compiler, but the more
serious issue is the very different semantics of the two domains.

Hardware and software in shim must be coded differently; although the
syntax is similar, is usually not possible to turn a software function into hard-
ware by writing hw in front of it. This is perhaps unfortunate, but I believe
inescapable. When I began this project, I wanted to make switching function-
ality between the two domains this easy, but the semantics of rtl and software
are just too different: how many clock cycles should a piece of software code
take, and how is concurrency implemented in software? Hardware-like soft-
ware and software-like hardware languages (e.g., Esterel [2] and Handel-C [4])
have been proposed, but all deviate significantly from software and rtl se-
mantics and none are widely accepted. See my review of C-like hardware
languages for more details [9,10].

Aside from minor improvements in rtl syntax (shim’s rtl can be half as
verbose as the equivalent vhdl), shim’s major contribution is the automatic
synthesis of communication between the software and hardware components

2



Edwards

module timer {

shared uint:32 counter;

hw void count() {

counter = counter + 1;

}

out void reset_timer() {

counter = 0;

}

out uint get_time() {

return counter;

}

}

#ifndef _TIMER_H

#define _TIMER_H

extern void reset_timer(void);

extern unsigned int get_time(void);

#endif /* _TIMER_H */

(a) (b)

#include "timer.h"

#include "xio.h"

#define IO_BASE 0xfeff0200

#define counter (IO_BASE + 0x0)

void reset_timer() {

XIo_Out32(counter, 0);

}

unsigned int get_time() {

return XIo_In32(counter);

}

signal counter : UNSIGNED(31 downto 0);

count : process(Clk)

begin

if Clk’event and Clk = ’1’ then

counter <= counter + 1;

if cs1 = ’1’ and RNW = ’0’ then

if offset = 0 then

counter <= DBus;

end if; end if; end if;

end process count;

read_shared_variables : process(Clk)

begin

if Clk’event and Clk = ’1’ then

if cs1 = ’1’ and RNW = ’1’ then

DBus_out <= read_data;

else DBus_out <= "0"; end if;

if offset = 0 then

read_data <= counter;

end if; end if;

end process read_shared_variables;

(c) (d)

Fig. 1. (a) A simple shim program: a hardware timer. (b) The C header file gen-
erated by the shim compiler. (c) Generated C source. (d) A fragment of generated
vhdl. These two processes implement the shim count process and the ability to
read the value of count from software. In the first process, count is incremented or
read from the bus if chip select and write are true. The second process places the
value of count on the bus if chip select and read are true.

based on a shared memory model. While algorithmically simple, such synthe-
sis simplifies the designer’s task, avoids errors, and improves code portability.

Figure 1a shows a simple shim program that represents a hardware timer.
It manages the shared variable counter, whose value is stored in the hardware

3



Edwards

but can also be read and written by the two software functions reset_timer
and get_time. From this description, the compiler produces a C header file
(Figure 1b) that describes the external software interface for the module,
a C source file containing code implementing reset_timer and get_time

(Figure 1c), and vhdl for a peripheral that attaches to a processor bus and
implements the count process and circuitry that allows the shared variable to
be read and written from the C program (Figure 1d).

Much of the generated code in Figure 1 is specific to the target for which
shim currently generates code—a Xilinx fpga containing a Microblaze soft
processor core communicating with peripherals over an on-chip peripheral bus
(opb)—but illustrates the code the shim compiler generates. The C code
in Figure 1c uses two Xilinx-supplied macros—XIo_Out32 and XIo_In32—
that write to and read from arbitrary memory locations to communicate with
the synthesized hardware module. The #defines above them contain the
addresses to which the shim compiler has assigned the timer peripheral.

The vhdl code in Figure 1d is only a fragment of the complete implemen-
tation. Not shown is the chip-select logic that generates cs1 whenever the
processor is accessing one of this peripheral’s memory addresses; the offset

variable contains the low-order address bits that indicate which shared vari-
able is being written (there may be many in general; this example only has
one). The RNW signal indicates whether the processor is reading from or writing
to a peripheral, DBus contains data coming from the processor, and DBus_out

sends data to the processor.

This example illustrates how shim simplifies coding hardware/software
systems: the shim source is only fifteen lines, but the shim compiler generates
twenty lines of C and nearly 100 lines of vhdl from it, code a designer would
have otherwise had to write manually. The fractional improvement is high for
such a small example because most of the code is related to the bus interface,
but large examples remain smaller and easier to code.

As its name suggests, shim is designed for creating “glue” that connects
hardware and software. It specifically does not try to be a general-purpose
software language or a full hardware description language. Instead, it provides
facilities for connecting subsystems written in hardware and software and ex-
ternal interfaces: externally-visible functions and variables in software, ports
in hardware. Figure 4 illustrates how these facilities can be used.

Shim can also be thought of as a language for simultaneously writing
peripherals and their device drivers. As such, it is applicable to systems
where hardware can be customized, such as asics with processor cores; field-
programmable gate arrays, especially those with processors such as the Vir-
tex II Pro; and more programmable SoCs that consist of multiple processor
cores, hard peripherals, and a substantial amount of programmable logic. This
latter class of chip, a platform with a mix of programmable hardware and soft-
ware, seems a likely architecture of the future since the cost of designing com-
plete chips is skyrocketing; it seems more likely that standard programmable

4



Edwards

platforms will grow more popular. When the hardware is provided and im-
mutable, the ndl language [8] would be better-suited.

Shim currently generates code (hardware and software) for the Xilinx Mi-
croblaze soft processor core driving ibm’s CoreConnect On-Chip Peripheral
Bus (opb). I chose this configuration because we have target boards from
xess and a development environment from Xilinx, but there is nothing opb-
specific about the shim language. The synthesis code is about 1/6th of the
compiler and could be easily retargeted to a different processor and bus.

2 Related Work

Unlike other hardware/software codesign systems, shim uses imperative C
semantics for software and rtl for hardware. Polis [1] describes its sys-
tems with communicating extended finite-state machines. Cosmos (Jerraya
et al. [13]), cosyma (Ernst et al. [11]), and CoWare (Bolsens et al. [3]) all
use concurrently-running processes communicating through remote procedure
calls (rpc). FIFO-based communication among concurrently-running pro-
cesses is another choice (see, e.g., Gupta and De Micheli [12]).

Although such higher-level semantics enable automatic hardware/software
partitioning (a focus of earlier work), they raise efficiency issues. While
rpc is natural in software, it seems overly sequential for hardware. Further-
more, some techniques employ high-level hardware synthesis, which industry
has largely rejected due to efficiency concerns. Cosyma describes a hard-
ware/software system using a C-like imperative language, partitions it, and
passes certain processes to high-level synthesis.

Most other work proposes synthesizing communication mechanisms far
more complicated than shared memory. Jerraya et al. [5] propose synthesizing
wrappers. CoWare layers protocols. It is unclear whether these approaches
are general enough and produce efficient hardware.

Shim synthesizes bus-based communication, but is not wedded to it. Chou
et al. [6,7] target microcontrollers communicating through a limited number
of I/O pins.

Other languages, such as Mérillon et al.’s Devil [15] (generates C macros
for communicating with peripherals), Thibault et al.’s gal [16] (generates
graphics adapter drivers), and Conway et al.’s ndl [8] (synthesizes Unix device
drivers), focus only on synthesizing software and assume the hardware is given.

Lavagno and Sentovich’s ecl [14], which combines Esterel-like synchrony [2]
with imperative C, partially inspired shim. Like shim, their compiler uses sim-
ple rules to split a program into the two domains, but they interleave Esterel
and C at the statement (instead of function) level and they do not target
hardware/software systems.

5



Edwards

3 The SHIM Language

Shim was designed to be simple. A shim program is a module containing
global variables and functions. Each variable is either unmarked, marked hw,
or marked shared indicating it is to be visible in software only, hardware only,
or both. The translation of hardware- and software-only variables is straight-
forward; the state of a shared variable is held in hardware and the compiler
synthesizes circuitry that allows it to be read and written from software. Each
variable can also be marked in or out, indicating its value comes from outside
the module or is visible outside (variables are only module-visible by default).

Functions may either be unmarked (indicating software) or marked hw.
The translation of a software function is nearly one-to-one. A hardware func-
tion becomes a concurrently-running synchronous hardware process clocked
by the bus to which the synthesized peripheral is attached. Currently, all
hardware functions take no arguments, do not return a value, and may not be
explicitly called (they are implicitly called once per clock cycle).

Shim supports bit vectors, arrays of bit vectors, and string literals. Bit
vectors can be manipulated as integers and are either signed (int) or unsigned
(uint). The width of each bit vector may be specified or may be omitted (it
defaults to a standard value). Array dimensions must be given.

The body of a shim function contains the familiar set of C statements, if,
switch, for, while, and return; expressions; and local variable declarations.
Expressions follow the usual C syntax with a few extensions: applying the
array index operator to a bit vector returns a bit, e.g., a[1] is the second least-
significant bit of vector a. Looping statements are not allowed in hardware
processes.

Software functions have the usual sequential semantics; there is a single
program counter; bit vectors are call-by-value, and arrays are call-by-reference.

Hardware processes have rtl semantics. Every hardware process is effec-
tively invoked once per clock cycle. Each shared or hardware-only variable
may be written by a single process only, a syntactic constraint common in
rtl, but may be read by multiple processes. Outputs are latched, meaning
that if a process writes a variable, the new value can be seen by other pro-
cesses only in the next cycle, but the same process can see the new value in
the same cycle.

When software-only variables have an initial expression, the value is as-
signed once when the variable enters scope (e.g., when the program starts for
global variables, and when control enters the enclosing block for local vari-
ables) and stored. Software-only variables marked const must be given an
initial value that can be determined at compile-time and may not be written.

Hardware-only variables may also be assigned to an expression, but their
semantics differ: hardware variables assigned to an expression always take the
value of that expression (i.e., are effectively continuous assignments) and may
not be assigned in other processes. Such variables generate combinational

6



Edwards

logic and conceptually execute after all the processes have executed for the
cycle and updated their outputs. That is, they can be used to communicate
among processes, but only across clock-cycle boundaries.

4 Compiling SHIM

The shim compiler comprises some 3000 lines of ocaml code. The largest
single module (about 500 lines) performs the interface synthesis. Much of it
comes from explicit construction of shim code for the bus controller.

The compiler’s structure is typical: an automatically-generated scanner
and parser generates an abstract syntax tree, which is sent through a static
semantic analyzer that resolves names and types and dismantles certain con-
structs to produce an ast-like intermediate representation.

The interface generator takes the interface-agnostic ir from the dismantler,
enumerates the shared variables (a simple walk through the symbol table),
and assigns each an I/O address. It transforms the body of each software
function by changing reads and writes of shared variables to the appropriate
I/O function call.

Interface synthesis for hardware is more complicated. At the end of each
process, the compiler adds code that reads from the bus each shared variable
written in that process. This generates at most one read of each shared vari-
able since each such variable may be written by at most one hardware process
(software functions have no such restriction). Furthermore, placing the read
at the end of the process means a write from the software domain takes prece-
dence over a write from hardware. I chose these semantics because hardware
writes every cycle are a common idiom (e.g., the count variable in Figure 1).
Users who dislike software taking precedence over hardware can use separate
shared variables for each communication direction.

Two additional hardware processes are synthesized: one reads all the un-
written shared variables from the bus (e.g., those shared variables that are only
written from software, never from hardware). The other copies each shared
variable to the bus when requested (i.e., when software generates a read cycle
to an I/O address).

Finally, the interface synthesis procedure adds interface ports for all the
bus signals and processes that decode the address bus and speak the bus
protocol. After this, the ir contains all the necessary interface code.

Once the interface synthesis procedure runs, C source, C header, or vhdl

source is generated. Syntax-directed translators transform the ir into simple
asts for C or vhdl, which are then pretty-printed. Using another intermedi-
ate representation guarantees syntactically-correct output.

7



Edwards

Example SHIM C VHDL

I2C Software (by hand) 259 133

I2C Software 171 175 136

I2C Bit-level 283 173 337

I2C Byte-level Receive 299 163 358

I2C Byte-level Send/Receive 323 116 344

Timer 15 20 98

The first line is a reference implementation of an I2C bus controller written without

the aid of shim. The next four lines list shim implementations with the same

functionality with an increasing fraction of the system in hardware. The final line

lists statistics for the simple example in Figure 1. For all but the first line, the shim

column represents the number of lines written by the designer; the C and vhdl

columns are lines of code generated by the shim compiler.

Table 1
Lines of code for various examples.

5 An Example: An I2C Bus Controller

To test shim, I re-implemented a simple hardware/software interface with it.
In an embedded systems class, we use XSB–300E boards from xess Corpo-
ration that contain, among other things, a Xilinx Spartan IIE fpga and a
Philips SAA7114H video decoder. An I2C bus connecting the two can write
to the 7114’s many configuration registers. The I2C bus is a low-speed two-
wire clocked bus designed for exactly such an application, and is very lenient
about timing. The bus has no maximum delays between transitions so it can
be controlled completely from software.

One of my students (Marcio Buss) implemented a simple all-software I2C
bus controller to program the 7114. Its only task is to send a series of com-
mands to write over eighty configuration registers. Marcio spent a few days
writing its 259 lines of C and 133 lines of vhdl. The vhdl interfaces with
the On-chip Peripheral Bus and provides two shared variables that control the
two I2C bus pins. The C program handles the bus protocol.

Table 1 shows how the handwritten implementation of the I2C bus con-
troller compares to designs written in shim. The software version implements
the protocol in software; the hardware does little more than control the pair
of tri-state drivers called for by the bus interface. The other versions of the
I2C controller do more in hardware: the first implements the bit-level proto-
col in hardware (each byte is sequenced by software), the second moves the
complete receive functionality to hardware, and the third performs both send
and receive in hardware (bytes are still sequenced in software).

8



Edwards

shared out bool SCL; // I2C clock

shared out bool SDA; // I2C data out

shared out bool SDA_oe; // Output enable for data

shared bool SDA_data; // I2C data in

void send(uint:8 byte) {

SDA_oe = 0; delay();

for (int i = 7 ; i >= 0 ; i = i - 1) {

SDA = (byte & 0x80) >> 7; delay();

SCL = 1; byte = byte << 1; delay();

SCL = 0; delay();

}

SDA_oe = 1; delay();

SCL = 1; delay();

bool acknowledge_received = SDA_data;

if (!acknowledge_received)

xio.print("Acknowledge not received\r\n");

delay();

SCL = 0; delay();

}

Fig. 2. A fragment of the shim code in the all-software version of the I2C protocol
that sends a single byte to a slave and looks for an acknowledgement. Each output
bit is placed on the data wire and the clock is toggled, then the data wire is set to
read, the clock is toggled, and the acknowledge bit from the slave is read.

The first two lines of this table are most telling: Marcio wrote 259+133 =
392 lines of C and vhdl to implement this controller, while I was able to
achieve the same functionality in 171 lines of shim, a reduction of over 55%.

Figure 2 shows a fragment of the all-software shim implementation of the
I2C controller. Controls for the two I2C wires, SDA and SCL, are shared
one-bit variables, and the send function simply toggles them appropriately.

I then implemented more of this controller in hardware using shim, the
sizes of which I report in the next three lines of the table. By design, changing
the implementation of a function from software to hardware is not as simple as
marking it as hw (shim hardware uses rtl semantics, which are very different
from C’s). The main difference is that sequencing must be coded as a state
machine using, say, a switch statement (see Figure 3). This is the main source
of the additional 152 lines of shim.

Figure 3 is a hardware fragment similar to the software of Figure 2. It
toggles the clock and data lines to send a single byte of data. Most of the
code is now devoted to sequencing since traditional rtl, and by design shim,
requires all state machines’ next-state functions to be explicit. Additional
complexity comes from synchronizing with software, done here with a four-
phase handshake. The controller raises ready in the IDLE state to indicate

9



Edwards

stared uint:8 sreg; // Send/receive shift register

shared uint:5 state; // Controller state

shared bool ready; // true => controller idling

shared uint:3 command; // Command for the controller

shared const uint:3 IDLE = 0; // Commands

shared const uint:3 SEND = 2;

hw void controller() {

const uint:5 IDLE = 0; const uint:5 SEND1 = 5;

const uint:5 SEND2 = 6; const uint:5 IDLE0 = 24;

uint:3 bit_counter;

if (reset) state = IDLE;

if (i2c_clock) {

ready = 0;

switch (state) {

case IDLE:

ready = 1;

switch (command) {

case START: state = START1; break;

case SEND: state = SEND1; break;

case RECEIVE: state = RECV1; break;

case STOP: state = STOP1; break;

default: state = IDLE; break;

}

break;

case SEND1: SDA_oe = 0; bit_counter = 0; state = SEND2; break;

case SEND2: SDA = sreg[7]; state = SEND3; break;

case SEND3: SCL = 1; sreg = sreg << 1; bit_counter = bit_counter - 1;

state = SEND4; break;

case SEND4: SCL = 0; if (bit_counter == 0) state = SEND5;

else state = SEND2; break;

// Receive Acknowledge

case SEND5: SDA_oe = 1; state = SEND6; break;

case SEND6: SCL = 1; state = SEND7; break;

case SEND7: acknowledge_received = SDA_in; state = SEND8; break;

case SEND8: SCL = 0; state = IDLE0; break;

case IDLE0: if (command == IDLE_BIT) state = IDLE;

else state = IDLE0; break;

}

}

}

void send(uint:8 byte) {

sreg = byte;

command = SEND_BIT; while (ready) ;

command = IDLE_BIT; while (!ready) ;

}

Fig. 3. A fragment of the all-hardware implementation of the I2C bus controller in
shim. This shows part of the main hardware state machine responsible for toggling
the I2C clock and data lines to send a byte (cf. Figure 2) and the software function
that invokes it with a handshake.

10



Edwards

it is ready to accept a command. The software then writes a command such
as SEND into the command variable, which steps the state machine through a
state sequence ending with IDLE0. In this state, the controller waits until it
receives IDLE from the software, which sends it back to the IDLE state. The
send function at the bottom of Figure 3 performs the software half of this
handshake.

The shim version of a controller can be faster than its handwritten equiv-
alent. In the handwritten version of the I2C controller, which was not written
for efficiency, Marcio chose to pack the four control bits for the SDA and SCL
lines into a single I/O location. While this simplifies address decoding hard-
ware, it requires a read-modify-write operation to change a single bit from
software. The shim-generated code is more efficient since it can modify each
control bit individually.

The size of the shim-generated C code can also be superior to handwritten
code. The object file for the all-software version of the I2C controller generated
by shim is only 2106 bytes. By contrast, the handwritten C is over twice the
size (4370 bytes). The difference is due to additional function calls and read-
modify-write operations.

Figure 4 illustrates how shim integrates existing software components
through C’s usual function-call mechanism and hardware components through
ports (wires). The fragment from the I2C bus controller in Figure 4a shows
how ports are defined in the hardware model (variables marked hw out and
hw in are output and input ports on the synthesized vhdl model respec-
tively). For the moment, the actual integration takes place in a manually-
written vhdl wrapper (Figure 4b) that simply instantiates both the I2C
controller core and a couple of I/O pads (the IOBUF_F_12s) and connects
them accordingly. It would be technically easy to automatically generate such
a wrapper for connecting together shim-generated hardware and foreign IP
blocks, although this has not yet been done.

6 Conclusions

This paper presented the shim language and its compiler. Shim fuses two
widely-accepted computational models—single-threaded imperative software
and register-transfer-level hardware—to allow hardware/software systems to
be written in a unified language. Declaring a shim variable shared allows it
to be read and written from both hardware and software; the shim compiler
synthesizes this interface.

I demonstrated the effectiveness of shim on an example—an I2C bus
controller—and showed that it can reduce by half the number of lines neces-
sary to describe such a system. The savings comes mostly from the automatic
synthesis of a bus interface.

Shim insists that the designer mark each process or function as being
software or hardware. One reviewer wondered whether a modeling style could

11



Edwards

module i2chw_core {

hw out bool SCL;

hw out bool SCL_oe;

hw out bool SDA;

hw out bool SDA_oe;

hw in bool SDA_in;

// ...

void write_register(

int sub_address,

int data) {

start();

send(0x42);

send(sub_address);

send(data);

stop();

xio.print("Wrote ");

xio.putnum(data);

xio.print(" to ");

xio.putnum(sub_address);

xio.print("\r\n");

}

// ...

}

opb_i2ccontroller_0_i : i2chw_core

GENERIC MAP (

c_baseaddr => X"feff0200",

c_highaddr => X"feff02ff",

c_opb_awidth => 32,

c_opb_dwidth => 32)

PORT MAP (

OPB_Clk => OPB_Clk,

OPB_ABus => OPB_ABus,

OPB_BE => OPB_BE,

OPB_DBus => OPB_DBus,

OPB_RNW => OPB_RNW,

OPB_Rst => OPB_Rst,

OPB_select => OPB_select,

OPB_seqaddr => OPB_seqaddr,

Sln_DBus => Sln_DBus,

Sln_errAck => Sln_errAck,

Sln_retry => Sln_retry,

Sln_toutSup => Sln_toutSup,

Sln_xferAck => Sln_xferAck,

SDA => SDA,

SDA_oe => SDA_oe,

SDA_in => SDA_in,

SCL => SCL,

SCL_oe => SCL_oe

);

sda_pad : IOBUF_F_12 port map (

I => SDA,

IO => VID_I2C_SDA,

O => SDA_in,

T => SDA_oe

);

scl_pad : IOBUF_F_12 port map (

I => SCL,

IO => VID_I2C_SCL,

O => open,

T => SCL_oe

);

(a) (b)

Fig. 4. Interfacing shim with existing components (IP blocks). (a) The interface to
the tri-state drivers (pins) used by the I2C bus controller and a function that calls
Xilinx library functions. (b) The (handwritten) vhdl code that connects the bus
controller to both the bus and these pins.

allow code to be easily migrated from software to hardware. The answer is a
qualified yes, but the style is quite restrictive. The hardware aspects of the
language are largely a subset of the software aspects, so writing software in a
hardware-friendly way (e.g., prohibit loops and function calls) would make it
easily migrated to software, but this is fairly restrictive.

12



Edwards

Along the same lines, another reviewer asked whether the shim compiler
could perform architectural exploration instead of insisting the designer pre-
scribe the hardware/software boundary. While such exploration is certainly
useful, shim was designed primarily to make it easier to get complex designs
functionally correct. Functional correctness is less of an issue during architec-
tural exploration; higher-level languages would be more appropriate.

I believe shim is successful in its aim to fuse two computational models
but it raises the question of whether these two models are the best choices.
A particularly glaring issue is that shim models are not easy to simulate.
This is due to the models themselves: the two domains run asynchronously
and while the hardware is timed, the software effectively is not, meaning
that the behavior of the system may be nondeterministic or at least very
difficult to predict without careful modeling of software timing, such as by
using an instruction-set simulator. The timer example in Figure 1 is perhaps
the simplest example illustrating this problem: the hardware effectively counts
the number of clock cycles between calls of reset_timer and get_time, which
is a complicated function of the processor and C compiler used to implement
the system. Of course, such a performance timer is often desired for analyzing
software, but more frequently the behavior of hardware/software systems is
meant to be timing independent.

My feeling is that the shared-variable model of hardware/software com-
munication, while the de facto standard, is too flexible and more complicated,
but timing-independent protocols are almost always implemented on top of
it. For example, a peripheral usually provides status registers and interrupts
that inform the software when it is ready for the next command, and expects
that software will obey its protocol. In implementing the I2C bus controller
described in Section 5, I implemented a four-phase handshake protocol to en-
sure that the software waited for the hardware to complete its task before
starting the next. Although this works and is robust in practice, it can be
error-prone and is certainly more verbose than it needs to be.

Part of the problem is that the hardware/software boundary represents
true parallelism and concurrency. Peripherals run truly independently from
their processors (in most cases, that is the point of a peripheral), and so are
truly concurrent systems posing all the classical problems such as races and
deadlocks. However, since hardware/software systems are neither completely
hardware nor software, using classical software techniques such as semaphores
and critical regions or the standard hardware technique of a global clock seems
inappropriate, although not impossible.

I leave this question for future work: what is an appropriate general,
timing-independent model of computation for hardware/software systems?
Single-threaded imperative software and rtl hardware with shared variables,
such as in shim, is reasonably general, but is too low-level, easily nondeter-
ministic, and error-prone. There must be something higher-level that avoids
tedious manual protocol implementation and ensures correctness.

13



Edwards

References

[1] Balarin, F., P. Giusto, A. Jurecska, C. Passerone, E. Sentovich, B. Tabbara,
M. Chiodo, H. Hsieh, L. Lavagno, A. Sangiovanni-Vincentelli and K. Suzuki,
“Hardware-Software Co-Design of Embedded Systems: The POLIS Approach,”
Kluwer, Boston, Massachusetts, 1997.

[2] Berry, G. and G. Gonthier, The Esterel synchronous programming language:
Design, semantics, implementation, Science of Computer Programming 19

(1992), pp. 87–152.

[3] Bolsens, I., H. J. De Man, B. Lin, K. Van Rompaey, S. Vercauteren and
D. Verkest, Hardware/software co-design of digital telecommunication systems,
Proceedings of the IEEE 85 (1997), pp. 391–418.

[4] Celoxica, “Handel-C Language Reference Manual,” (2003), rM-1003-4.0.
URL http://www.celoxica.com

[5] Cesário, W., A. Baghdadi, L. Gauthier, D. Lyonnard, G. Nicolescu, Y. Paviot,
S. Yoo, A. A. Jerraya and M. Diaz-Nava, Component-based design approach
for multicore SoCs, in: Proceedings of the 39th Design Automation Conference,
New Orleans, Louisiana, 2002, pp. 789–794.

[6] Chou, P., R. B. Ortega and G. Borriello, Synthesis of the hardware/software
interface in microcontroller-based systems, in: Proceedings of the IEEE/ACM
International Conference on Computer Aided Design (ICCAD), San Jose,
California, 1992, pp. 488–495.

[7] Chou, P., R. B. Ortega and G. Borriello, Interface co-synthesis techniques for
embedded systems, in: Proceedings of the IEEE/ACM International Conference
on Computer Aided Design (ICCAD), San Jose, California, 1995, pp. 280–287.

[8] Conway, C. L. and S. A. Edwards, NDL: a domain-specific language for device
drivers, in: Proceedings of Languages, Compilers, and Tools for Embedded
Systems (LCTES), Washington, DC, 2004, pp. 30–36.

[9] Edwards, S. A., The challenges of hardware synthesis from C-like languages,
in: Proceedings of the International Workshop on Logic Synthesis (IWLS),
Temecula, California, 2004, pp. 509–516.

[10] Edwards, S. A., The challenges of hardware synthesis from C-like languages,
in: Proceedings of Design, Automation, and Test in Europe (DATE), Munich,
Germany, 2005, pp. 66–67.

[11] Ernst, R., J. Henkel, T. Benner, W. Ye, U. Holtmann, D. Herrmann and
M. Trawny, The COSYMA environment for hardware/software cosynthesis of
small embedded systems, Microprocessors and Microsystems 20 (1996), pp. 159–
166.

[12] Gupta, R. K. and G. De Micheli, Hardware-software cosynthesis for digital
systems, IEEE Design & Test of Computers 10 (1993), pp. 29–41.

14

http://www.celoxica.com


Edwards

[13] Ismail, T. B., M. Abid and A. Jerraya, COSMOS: A codesign approach for
communicating systems, in: Proceedings of the 3rd International Workshop on
Hardware/software Co-Design, Grenoble, France, 1994, pp. 17–24.

[14] Lavagno, L. and E. Sentovich, ECL: A specification environment for system-
level design, in: Proceedings of the 36th Design Automation Conference, New
Orleans, Louisiana, 1999, pp. 511–516.

[15] Mérillon, F., L. Réveillère, C. Consel, R. Marlet and G. Muller, Devil: An IDL
for hardware programming, in: Proceedings of the 4th Symposium on Operating
Systems Design and Implementation (OSDI), San Diego, California, 2000, pp.
17–30.

[16] Thibault, S. A., R. Marlet and C. Consel, Domain-specific languages: from
design to implementation application to video device drivers generation, IEEE
Transactions on Software Engineering 25 (1999), pp. 363–377.

15


	Introduction
	Related Work
	The SHIM Language
	Compiling SHIM
	An Example: An I2C Bus Controller
	Conclusions
	References

