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Abstract—Embedded hard real-time software systems often module Example:

need fine-grained parallelism and precise control of timing, things

typical real-time operating systems do not provide. The Esterel input S, I;

language has both, but compiling large Esterel programs has been output O;

challenging, producing either needlessly slow or large code. This ‘ .

paper presents the first Esterel compiler able to compile large signal R, A in

Esterel programs into fast, small code. By choosing a concurrent every S do

control-flow graph (CCFG) as its intermediate representation, await I;

it preserves many of the control constructs to produce code that weak abort

can be 100 times faster and half the size than code from other sustain R

compilers with similar capacity. The primary contribution is an when immediate A;

algorithm that generates efficient sequential code from a CCFG. emit O

While developed specifically for compiling Esterel, the algorithm Il

could be used to compile other synchronous languages with loop

fine-grained parallelism. pause; pause;
Index Terms—Code generation, compilers, concurrency, enzresent R then emit A end;

embedded systems, Esterel, reactive, real-time language, syn- end

chronous.
end

I. INTRODUCTION end module

ANY applications in reactive real-time embeddedfig.- 1. A simple Esterel module modeling a shared resource. The first thread

. erates requestR)in response to external requedis &nd the second thread
systems are most naturally described as Concurréﬁ?ponds to themY) in alternate cycles. Th& input resets both threads.

systems, yet many are implemented using sequential languages
like C or assembly on sequential processors. A real-time
operating system (RTOS) capable of scheduling the executifiead needs to run at least once every cycle, and possibly
of multiple independent sequential processes is a common waych more depending on communication, context switching
of providing concurrency to such languages, but the behavitst could dominate a single-processor implementation. A
of such an RTOS can be unpredictable, making it difficult tultiple-processor implementation, such as the one proposed
guarantee precise system timing. by Caspiet al. [4], trades some context switching overhead for
The synchronous approach [1] provides precise timing coPmmunication and synchronization overhead.
trol by operating a system in lockstep with a global periodic This paper describes EC, a new compiler for Esterel that can
clock signal. Although timing within a particular clock cycleproduce small, fast code for large programs, avoiding the short-
is essentially uncontrolled, a system has exact control over ¢@mings of earlier compilers, and making large synchronous
clock cycle in which each event occurs. specifications practical. An executable produced by EC can run
The synchronous approach is natural in hardware, whe@0 times faster than one from another compiler able to handle
global clocks often drive sequential elements, but is uséfge programs and can be exponentially smaller than code from
less frequently in software. A few synchronous languages fite compiler that produces the fastest known code (EC’s code
software have been proposed (Esterel [2] and Lustre [3]), batabout half as fast).
they have proven challenging to compile. This paper is structured around the small Esterel program in
Implementing a concurrent synchronous language suchFdg. 1. In Section Il, we introduce the Esterel language and
Esterel using concurrency supplied by an operating systexplain the behavior of the example. Section Il is a review
would be very inefficient because of the large number of threadbexisting Esterel compilers. Section 1V describes EC’s input
in a typical Esterel program (thousands in large programs) aftdmat—the intermediate representation IC—and the example’s
the need for synchronization within each cycle. Since eaomanifestation in it (Fig. 3).
The bulk of the paper describes the new compiler. Section V
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termediate Code (IC) graph into an equivalent CCFG. The main |-
issues here are adhering to IC’s complicated semantics and cor —+ Nothing happens until
rectly unrolling the graph when certain instructions may execute S-- the first S restarts the threads
more than once in a cycle. Section VIl describes how a SCFG T~
is synthesized from the concurrent one using a simulation pro- FRAO O emitted immediately when A is present
cedure. After scheduling the _noo!es in the graph_, the procedu_re i First thread has terminated, 1 ignored
step_s through each one, copying itto the sequential g_raph and in gl await I ignores 1 the first cycle it runs
serting code that simulates the effects of a context switchwhenit | g R sustained but second thread in other state
encounters a node from a different thread. Finally, Section VIl 1 RAO R emitted before sustain R is terminated
shows how to generate attractive C code from the SCFG. Fig. 17 S4-
shows the C code EC generates for the example. T

Section IX describes experiments that compare the quality of SI-
the code EC generates with that from other Esterel compilers.
The paper concludes with suggestions about how to extend the. 4me
work.

S preempts both threads; R not emitted

Fig. 2. A timing diagram for an execution of the Esterel program in Fig. 1.
Il. THE ESTERELLANGUAGE Inputs are listed on the left; the signals generated by the program in response
are listed on the right. Each horizontal tick denotes a clock cycle.

Intended for specifying reactive real-time systems, Esterel [2]

has the control constructs of an imperative language like C Bitiyes at which point it emits the signal and terminates. The
includes concurrency, preemption, and a synchronous model@f g thread emitsin response tak in alternate cycles. Fig. 2

time like that used in synchronous digital circuits. In each cloglf irates this behavior with a depiction of the program’s re-
cycle, the program resumes running its concurrent threads, re?ﬂénse for a particular input sequence

its inputs, computes its reaction, and suspends until the next ] ) ]
cycle. The body of the first thread starts with amvait statement

An Esterel program communicates through signals that areq‘:’It waits f$r the next Icyct:)lefln W.TCh |tst S'gnal Its presﬁ‘}ma;:] d
ther present or absent in each cycle. In each cycle, each sign ygays wails oné cycie belore It can terminate, so this threa
absent unless amitstatement for the signal runs. Conditiona oes nothing in the cycl® when it first appears. Following the

presentstatements test signals and perform different actions dg- aitis aweak abortWhen this runs (i.e., in the cycle in which

pending on the presence of a signal. The presence of an emitctlf'gc?"’“I Is present), it immediately starts its body (in this case,
: ; %S%ustainstatement that makes sigrfalpresent in every cycle

until the statement is terminated) and watches forAtsgnal.

not hold its value in later cycles. . . .
y B?(cause this is a weabort, thesustainruns in the cycle when

In Esterel, a statement that tests the value of a signal in a clo . . . .
. X ; &bs present, but terminates. Moreover, since the predicate is
cycle blocks until the presence or absence of the signal is estab-

lished in that clock ¢ upmediateA,” the A signal is checked in the first cycle the
ycle. Put another way, any statement th .

emits a signal must run before any statement that reads it. Tﬁ|sort s_tatement ru_nsabort normally starts checking the next
constrains the order in which statements running in concurreC|¥tC|e’ Just likeawai).
threads may execute within a cycle and can lead to deadlockIhe second thread is an infinite loop. Egqudusestatement
For example, code that attempts to test a signal before emitti#Jays a cycle when control reaches it. This happens in the first
it is erroneous: the data dependency contradicts the control @8d second cycle in which the loop runs. In the third, sighal
pendency. is checked, and its presence caude® be emitted. After this,

EC uses a simpleminded structural check to detect deaddBRr loop is immediately restarted and the fpatiseis executed
conditions and reject programs that contain them, but this cagain.
reject useful programs. Unfortunately, the alternative, used inThe two threads are enclosed in every-doloop that can
the V5 compiler described in Section I1l, requires exploring thereempt the two threads. The body of the statement (the pair of
state space of the program (currently only practical with syrthreads) is restarted in the cycle in which the sigha present
bolic methods that are still quite expensive) and resynthesizipgfore the body has a chance to resume.
the program. EC’s greatest shortcoming is its inability to do this There is a subtle and often critical difference between the
analysis and accept a larger class of programs; we discuss k@sng preemption of thevery-dg which checks its predicate
this problem might be addressed at the end of the paper.  before its body resumes, and the weak preemptiomedik
abort-when which checks its predicate after its body resumes.
We used weak abortion to preempistain Rbecause strong
abortion would have caused a deadlock: emitfingan cause

Fig. 1 shows a simple Esterel program with two concurrek to be emitted. Had this been strong preemption, the presence
threads. Meant to model an arbiter for a shared resource, tieA would have prevente& from being emitted—a contra-
first thread passes requests from the environment to the secdiudion. Strong preemption around the two threads does not
thread, which responds to requests. The first thread waits for@ause deadlock. It makes the program ignoie cycles when
I signal before holding th& signal present until thé signal S is present.

A. An Example
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lll. RELATED WORK While this approach avoids doing work for most idle sec-
g%ns of code (improving performance over gate-based compila-
. tion), its scheduler does not take advantage of mutual exclusion
automata, logic gates, and event graphs.
. ) , .. among parts of the program (e.g., between branches of a con-

The earliest compilers, such as Begyal’'s V3 [2], built s : > .

. ditional). EC exploits this, instead using program counters af-
a single automaton for an Esterel program through exhaust*ve . i b hes. EC prod f d |
imulation. Each state of this automaton corresponds to set% fing multiway branches. proguces aster co casaresu t
simu ) he overall flow of EC—building a concurrent interme-

control points from which the Esterelprogram WlIIre§u_me|nt_h&iate representation, scheduling it, and generating sequential
next cycle. The code for each state is a tree containing acti

e " i e—was inspired by Lin’s compiler [11], which compiles a
(such as emitting signals), conditionals that test external signal§p ey rrent variant of C. Lin translates his language into Petri

and leaves that set the next state. _ nets that work well for Lin’s rendezvous-style communication,
Automata compilers produce very fast code, but it can be x5t are awkward for Esterel’'s synchronous style. Lin sched-

ponentially larger than the source program since they genergigs and then simulates these Petri nets to generate very fast
separate code for each possible state of the program. Two ggromata-style code. Unfortunately, this technique can cause
proaches have been proposed to reduce this code size. The Rgligxponential explosion in code size, even with an optimal
group’s automata compiler [5], [6] uses a binary decision digchedule.
gram to identify code that can be shared between states. Castelater, Zhu and Lin [12] proposed an algorithm that avoids the
luccia et al. [7] also share subtrees to reduce code size, hefponential increase in code size by allowing each process to
also attempt to improve code speed by inlining called functionsuspend and resume at interprocess communication points (i.e.,
swappingthenandelsebranches to improve branch predictionwhere it might have to wait for another process to handshake).
moving away infrequently executed code to improve cache péire result is a collection of processes implemented as corou-
formance, and reordering tests to put the common cases fitstes invoked in round-robin order.
While both techniques can significantly improve the quality of EC improves upon Lin’s work by generating more compact
generated code, they are still limited to small programs wheresitde that is less affected by poor quality schedules. Lin's com-
is practical to enumerate the states. piler would benefit from using EC’s sequential code generator.

EC-generated code is slower than automata code becauggGtalso improves upon Zhu and Lin’s work because Esterel's
has more overhead (due to internal communication and contégimantics allow EC to statically schedule the execution of con-
switches), but EC code can be exponentially smaller becagsrent processes: Zhu and Lin resort to a round-robin scheme
code is duplicated far less. As a result, EC is superior for all bif{at may waste time deciding what to execute next.
the smallest Esterel programs.

The second class of compilation technique, exemplified IV. THE IC FORMAT
by Berry et al's V5 compiler, translates Esterel into a netlist ) ) . )
of Boolean logic gates and then generates a levelized com NiS section describes the input to EC, the IC format. EC
piled-code simulator for it. Capacity is the main advantage {ﬁads this instead of Esterel source because it is a more con-

this approach. Unlike automata compilers, each Esterel souf&&1€Nt starting point; IC contains high-level information, yet

instruction is translated into a small group of instructions in 1S easier to manipulate and can be assumed correct. We use

executable; nothing is duplicated. The disadvantage is slo soFu:cr:(()anitn(teomleOf Berry’s group’s compilers to translate Esterel

code; because the generated code is forced to perform compti-c consists of a fairly traditional control-flow graph dangling

tation for idle portions of the program, it can run hundreds qf . . .

. . : rom a reconstruction tree (Fig. 3). The reconstruction tree (dark
times slower than an automaton implementation of the same . . .
program nodes and arcs) coordinates exceptions, preemption, and con-

. currency by dictating how the program resumes (“reconstructs
Compared to gate-based compilers, ECgenerates:codethﬁéér y Ly v prog (

lightl but b it d dtod %tate”) in each cycle. Gonthier developed IC as part of his
S |g_ tly mor_e compact, but because it does not need to do WefiEsis [13] and it has continued to evolve with the Esterel lan-
for idle portions of the program, the code can run hundreds &Eage.

times faster. The key advantage of gate-based compilers oVef, 3 cycle, an Esterel program executes in three phases. In the
EC is their ability to analyze and compile programs that appegk; phase, the program tries to resume where it paused in the
to have cyclic dependencies. However, this is a costly procedysg; cycle after checking strong preemption conditions such as
that requires symbolic state-space exploration and circuit res@yary S After this, normal statements suchesitandpresent
thesis [8]. run until control reaches a statement suclpasse In the final

The third approach, pioneered by a group from Franghase, termination and exceptions are checked and handled. IC
Telecom [9], [10], treats Esterel as having discrete-evemfodels these three phases by sending control down the recon-
semantics and generates a compiled event-driven simulatfuction tree toward leaves that were reached at the end of the
For each segment of code betweerpauseor signal test, last cycle, through nodes in the control-flow graph, and finally
their compiler generates a small C function dispatched byback up the tree.
hard-coded scheduler. Each such function typically producesBefore the first cycle, control flows from the start node to ini-
side effects and may schedule other functions to execute laialize the program. In the example, this immediately sends con-
in the same cycle or in the next cycle. trol to the halt associated with tlewery Sstatement [Fig. 4(a)].

Three other techniques for compiling Esterel are based
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e Qe
Sd g“‘ .,.“ "......:
every S do i & T
0
(b)
await I;
weak abort i
sustain R ()
Fig. 4. Flow of control around IC nodes implementing #very Sstatement.
when (a) Initialization: control begins at the start node, flows to the halt and stops. (b)
immediate S is absent and the halt was active last cycle (i.e., the body @fbigis not
A running): the watchdog sends control to the halt. (c) S is present: control flows
’ to the fork. (d) S is absent and the parallel was active last cycle (i.eevémy
QO startor loop is running): the watchdog sends control to the parallel.
emit O [ emit
I <> conditional the conditional, and to the fork [Fig. 4(c)], thus implementing
loop 2\ fork the every S ddnstruction. Control splits when it reaches the
pause; O exit fork, starting two threads and sending control to two halts (one
just afterawait |, the other after the firgbause. If S is absent
pause; @ root in the next cycle, control flows to the parallel [Fig. 4(d)] and
present R then @ thread splits toward both thread nodes, resuming the two threads.
emit A @~ watchdog In addition to restarting threads, a parallel node handles
end A parallel thread termination and exceptions by checking the exit levels of
end B halt the threads beneath it when control is passed to it from below.

end When athread is done for the cycle, it can terminate by running

Fin 3 The I - i 1. Each node is d an exit at level 0, pause by reaching a halt, corresponding to
ig. 3. e IC graph for the program in Fig. 1. Each node is drawn to t ; ; ;

right of its instruction where possible. The thin lines and outlined nodes arggavel_ 1, and thrO\_N an exception by runn_lng an exit at level 2

control-flow graph with concurrency. The thick lines and solid nodes form tHer higher. An exit node sends control directly to the parallel

reconstruction tree, responsible for restarting the program at the beginnindef its thread; a halt sends control back up the reconstruction

each cycle. tree to the closest parallel. Once all of a parallel’s threads have

) . returned control to it, the parallel sends control either back up
When control reaches a halt, it starts walking up the reconstryge reconstruction tree or to an exception handler, depending

tion tree toward the root, marking its path at each reconstructigp the highest exit level of all its threads. Using the highest
instruction to prepare the program to resume where it halted;i jeyel means the parallel only terminates if all its threads
When control reaches the root, the program is finished for thg\e terminated, and exceptions take precedence over paused
cycle. o or terminated threads.

At the beginning of each cycle, control starts at the root nodeq, jjjystrate exit level behavior, consider the case when the
and walks down the reconstruction tree along the path takghsiain Rstatement is terminated. The node that emisends
up the tree at the end of the last cycle. When control reachgsiro) 1o the halt immediately beneath it, indicating an exit at
a watchdog statement it takes a detour, usually to check a P& 1 (j.e., halt), and control flows up to the second parallel.

emption signal. For the example in the first cycle, control stafffeanwhile. this causes the test farto succeed and causas
at the root then flows to the first watchdog and to the tes8for 1, e emitted, sending control to the second-to-last halt (an exit
If S is absent, control is sent back to the watchdog, which sendsie\e| 1) and up the reconstruction tree to the first parallel.

control to the haltand back up the reconstruction tree [Fig. 4(bjl,e presence ok is noted and causes the exit at level 2 to be

If S is present, control flows to the fork [Fig. 4(c)]. _ executed. The exit level of the threads at the second parallel is

When control reaches a watchdog from a sequential nogiefore 2, so the parallel sends control to the node that emits
[e.g., wherS is absent in Fig. 4(b) and (d)], the watchdog senq§ anq exits at level 0. Both threads under the second parallel are
control to the child along the path taken up the reconstruction terminated because the right thread under the top parallel
tree at the end of the last cycle. So if control followed the paj{Ls terminated. The topmost parallel has an exit level of 1 since

in Fig. 4(b) in the last cycle, the path to the halt was marked aggh gther thread halted, so control flows back up the reconstruc-
control will flow like Fig. 4(b) in the next cycle. If instead con-4jon, tree to the root and the program is done for the cycle.
trol reached nodes beneath the parallel in the last cycle, the path

leading to the parallel would have been marked and control will
follow the path in Fig. 4(d) in the next cycle.

Fork and parallel nodes start and resume threads. i The EC compiler produces better code for sequential proces-
present, control flows through the topmost watchdog, througbrs by choosing a more appropriate intermediate representation

V. OVERVIEW OF THE NEW COMPILER
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L9
o7
[]

[s2=1][s3=1]

[s1=3] [s1=1] [51=3]
I

s0=1

Fig. 5. The CCFG EC generates for the program in Fig. 1. Dashed lin
represent data dependencies. Variab&ss1, s2, ands3 store state between
cycles;e2 holds the exit level of the group of threads. InitiaH®, = 2 and all
other variables are uninitialized.

than other compilers. The representation—a CCFG—is semi
tically closer to the Esterel source and the final generated cc
than the automata, netlists, or event graphs used by other Est
compilers. The result is code that looks more like a direct in
plementation of the Esterel program instead of a simulation
its behavior as a circuit or a discrete-event system.

EC interprets the control flow of the IC format much like thesig 6. The SCFG EC generates for the program in Fig. 1. Three context
gate compilers, so the generated code is of comparable (usttches—tests and assignments 2fandt3—were introduced to interleave
ally linear) size and avoids the exponential increase of the &t execution of the threads.
tomata compilers. However, unlike the gate compilers, EC is

able to avoid wasting time performing computations in inactivgy Esterel's ability to communicate between threads in the same
portions of the program because it preserves control flow. T@gcle. In a program such as Fig. 1, the execution of the two
resultis code about the same size as that from a gate-based @fig=ads must be interleaved, i.e., the second thread must run after
piler that can run as much as 100 times faster. the first thread runsmit Rbut before the first thread ruresnit

The CCFG EC uses as an intermediate representation cargo&he dashed lines in Fig. 5 show these dependencies.
translated into software almost as easily as the branching progC interleaves concurrently running threads by inserting code
grams of the automata compilers and has concurrent semangigg simulates a context switch. Instead of using a costly oper-
so it can be generated from IC using an algorithm almost exac#ljing-system-like mechanism to save and restore the processor’s
like that in the gate-based compiler. Removing concurrencydgate, each thread simply writes its control state to a variable (a
the one challenge. We present an efficient algorithm for this #ingle constant) and resumes with a multiway branch. In effect,
Section VII. the C compiler becomes responsible for saving and restoring

EC translates the IC graph in Fig. 3 into the CCFG in Fig. fontext (register contents and the program counter) and can do
using the algorithm in Fig. 7. This mainly transforms the recont more efficiently since it knows which variables are live. In
struction tree into semantically simpler conditional, fork, angig. 6 (the SCFG EC generated from the CCFG in Fig. 5), EC
join nodes, but also compiles away much of the walk up the reas inserted three such context switches, which write and test
construction tree. Rather than storing information about the patxiablest2 andt3.
taken up the reconstruction tree at each reconstruction node, thieC can only handle programs where the instructions can run
information is stored in one variable per thread, €1,s2, and in the same order in all states, much like the acyclic circuits
s3) encoded using the algorithm described in Section VI-D. generated by the gate-based compilers. This is a fundamental

A CCFG has software-like semantics, but its concurrendynitation since EC is based on static scheduling. Although each
must be removed. Removing concurrency is complicated mainhstruction may or may not execute in each cycle, the statements
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appear in a particular order in the generated code and can only by fanction seqNode(r, 1,1, /)

executed in that order. Thus, EC is unable to compile all valid

Esterel programs, but the class of programs it can compile is
broad, interesting, and includes all the large Esterel programs
we know of.

VI. TRANSLATING IC INTO A CONCURRENTCONTROL-FLOW
GRAPH

EC starts by translating an Esterel program expressed as an I(
graph (Fig. 3) into a CCFG such as Fig. 5. This replaces preemp-
tion conditions with simple conditionals, inserts multiway con-
ditionals to resume threads at the beginning of each cycle, anc
replicates code that is executed twice or more in the same cycle
(Section VI-B explains this “reincarnation” problem in detail).
The resultis arepresentation thatis close to the natural represen
tation of code on a sequential processor (i.e., a flowchart), but
concurrent. Section VII explains how to remove concurrency.

A CCFG contains action, conditional, fork, and join nodes,

if node n already exists at level / then
return sequential node for n at level /
case n of

Exit, Halt :
n’ = new assignment(z.state = - - -)
n” = new assignment(z.parallel.exitLevel = - - )

addarcsn’ — 0" —j
Conditional, Emit :
n’ = copy of n
for all successors s of n do
add arc n’ — seqNode(s, /, ¢, 1)
Watchdog :
n' = new conditional(z.state)
for all reconstruction children s of n do
add arc n’ — recNode(s, [, £, )
Fork :
n' = new fork(n.parallel.exitLevel = - - -)
J = new join(n.parallel.exitLevel)
for all successors s of n do
' = thread of successor s
add arc n’ — seqNode(s, L7, j)

for all reachable exception successors s of n.parallel do
add arc j' — seqNode(s, 1, 1, )
return n’

each with an expression. When control reaches a node, the
node’s expression is evaluated and control flows along one
or more arcs leaving the node. An action node has a single
outgoing arc and its expression is usually an assignment. function recNode(n, ., 7, )

Control leaves a conditional node along the arc whose integer  case n of
label matches the value of the expression. These bedoone Halt :
switchstatements in C. return seqNode(n, [, 1)

Fork and join nodes start and collect groups of paralle]l ~ Yatchdog: ,
threads. Control flows out all arcs leaving a fork, starting a Parr:ltl‘;m seqNode(n.successor, [, £.)
group of threads that will rendezvous at a matching join node n' = new fork(n.exitLevel = - - -)

before continuing. Fork and join nodes may nest, but control
may not pass between threads. Specifically, all paths from a
particular fork meet for the first time at the matching join.
The CCFGs built by the translation algorithm described below
always have this structure.

J' = new join(n.exitLevel)
for all threads ¢’ beneath n do
¢’ = new conditional(?.state)
add arcsn’ — ¢’ —
for all reconstruction children s in thread ¢ do
add arc ¢’ — seqNode(s, [+ 1,7,j")
for all reachable exception successors s of n do
add arc j/ — seqNode(s, [, £,])
return n’

A. The Translation Algorithm

Fig. 7 presents the recursive algorithm for converting an IC

graph into a CCFG, an adaptation of the algorithm Berry de- _ _
How to translate an IC graph into a CCFG (after Berry). The recursive

veloped for synthesizing gates from Esterel. It consists of t"gﬁgg'cédures seqNode and recNode visit and copy IC nodes by following
recursive functions with side effects, segNode and recNode, thafuential and reconstruction arcs, respectivelylC node being visitedi:
visit IC nodes and build the CCFG on the way. The algorithm [gincarnation level (see Section VI-B},thread in whichn residesy: CCFG

. . . e . oin node for the thread.
split into two routines mainly to distinguish the two ways con:
trol can reach a watchdog node. The arguments to the two rou-
tines aren, the IC node being copied, the reincarnation level The basic recursive step happens for conditional and emit
(explained in the next section), the thread of node, andj, nodes. These are simply copied to the CCFG and arcs added
the join node for the current group of threads. to copies of their successors.

The two functions perform a modified depth-first traversal of There are two ways to reach a watchdog. From a sequential
the IC graph, adding and copying nodes to the CCFG as thayde such as a conditional or emit, a watchdog becomes a con-
go. The seqgNode function begins with a test to see whether thigonal that checks its thread’s state and branches to one of its
node has been visited before; recNode needs no such test siecenstruction children. This is the rule for a Watchdog node in
the reconstruction nodes form a tree. segNode. From a reconstruction node, a watchdog sends control

Exit and halt nodes have no successors, so they termintitéts single sequential successor. This is the rule in recNode.
the recursion. Each becomes a pair of nodes, one that setlot surprisingly, fork and parallel nodes are the most com-
its thread’'s state (encoding these variables is describedpiitated. In both cases, they synthesize new threads after adding
Section VI-D) and one that sets the exit level for the parallérk and join nodes that reset and test the exit level associated
that spawned the threads. The last of these two nodes branchigls the parallel. (Exit and halt nodes set this level, as described
to the join for the current group of threads. above.) Fork is easier to understand: for each of its successors,
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o

loop trap T2 in
pause;
exit T2
loop trap T3 in
pause;

exit T3

loop

emit S;
pause
end loop
end trap end loop
end trap end loop

(@) ) ©

Fig. 8. ReincarnatiorEmit Sexecutes three times: (a) once at the beginnin
of the cycle when the two parallels are restarted (level 2), (b) once wkien
T3 terminates and restarts the inner loop (level 1), and (c) once wkieif2
executes and is executed and causes the outer loop to restart (level 0).

it synthesizes the nodes in that thread, instructing them to cc . D
nectto the just-created join node for the group. After this, it adgls
arcs from the join node to every reachable exception handlina'
routine on the matching parallel.

The rule for the Parallel is slightly more complicated. Fdevell. In general, all the nodes in a thread are at the same level.
each of its threads, it generates a conditional that checks thedes in athread reached from a parallel are at one level greater,
state of the thread and either branches to one of the thread noéiéfisnodes reached through a fork are at the same level.
children or directly to the join if the state is zero (i.e., when the In Fig. 8,emit Scan be reached at levels 0 [through the two
thread is no longer running but one of the other threads undefks, Fig. 8(c)], 1 [through the top parallel and lower fork,

9. The CCFG generated for the program with reincarnation in Fig. 8.

the same parallel is). Fig. 8(b)], and 2 [through the two parallels, Fig. 8(c)]. The
CCFG synthesis algorithm considers these three separate visits
B. Unrolling to Remove Reincarnation and makes three copies efit S one per reincarnation, as

A simple depth-first traversal of the IC graph can producdhown in Fig. 9.
cyclic CCFGs even though Esterel prohibits single-cycle infinite Th€emit Rin Fig. 3 can be reached at levels 1 (through the
loops. The sequentializing algorithm we present in Section St parallel and the second fork) and 2 (through the two paral-
requires an acyclic CCFG, so the CCFG synthesis aIgoritHﬁ{S)- Since it cannot be reached at level O (there is no path tq it
must remove these cycles by duplicating nodes, visiting théfft does not pass through at least one parallel), only two copies
more than once. Berry first developed this unrolling techniqu 8mit Rappear in Fig. 5.
to remove cycles from the output of his gate-based compiler. . )

Even if an Esterel statement is enclosed in a loop, it generafty COmputing Reachable Exit Levels
cannot execute twice in a cycle because Esterel forbids loopShe rules for synthesizing fork and parallel nodes in Fig. 7
whose bodies can execute entirely within one cycle. Howevetyolve an iteration over all reachable exception successors of
if a concurrently running thread throws an exception, the loagpparallel node. To avoid cycles in the CCFG, it is crucial to
can be restarted in the same cycle and the first statement in diitinguish between the exceptions that can be taken by the code
loop can run again. in a thread reachable from a parallel and that reachable through

Fig. 8 shows a program with reincarnati@mit Sruns three the fork. For example, in Fig. 8 only exit level 1 can be reached
times because it is the first statement in a loop that is terminatiedm the lower fork. This is important since if exit level 3 was
and instantly restarted by exceptioBsnit Sruns first wheniitis erroneously considered reachable, the join node synthesized for
restarted through the reconstruction tree [Fig. 8(a)]. Meanwhitbe fork would branch back to the fork and create a loop. EC
exit T3runs and restarts the inner loop, sending control back ¢alculates the reachable exits from each fork and parallel using
emit Sthrough the arc labeled 0,3 [Fig. 8(b)]. Similargxit T2 a conservative algorithm due to Berry that considers all paths
also runs, terminating and restarting the outermost loop and réimm a conditional reachable. The information is used both to
ningemit Sfor a third and final time [Fig. 8(c)]. This behavior islimit which exception handlers are synthesized from each join
unambiguous because the effects of a trap are always felt attad for a variety of other optimizations.
all parallel threads have finished for the cycle. The recursive algorithm for computing exit levels, shown in

The CCFG synthesis procedure in Fig. 7 distinguishes tkg. 10, builds two sets for each thread, the set of exit levels that
three invocations oémit Sby maintaining the parallel nestingcan be reached from the fork, i.e., when the thread is first started
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function seglevels(node n)
case n of
Exit :
return exit level of n
Halt :
return 1
Action :
return seqlevels(successor of n)
Conditional :
return seqlevels(true successor of n) U
seqlevels(false successor of n)

and 3, and another can exit at levels 1 or 2, the pair can only exit
at levels 1, 2, or 3, since if the first thread exits at level O, the

second always takes priority since it exits at levels 1 or 2. This
situation occurs frequently since threads often contain infinite

loops and thus never terminate at level 0.

D. State Assignment

At the beginning of each cycle, control flows down the re-
construction tree along the path taken up the tree at the end of

Watchdog : the last cycle. When control reaches it, each reconstruction node
return reclevels(child ¢;) U - - - U reclevels(child ¢) must decide to which of its children it should send control. The

Fork : state assignment problem amounts to choosing a representation
forl al' S“CIC"SSIOES S) - --» S of n do that makes these decisions easy.
k = Seqievelsisi The V3 compiler keeps a variable at each node that stores
return parexits(parallel of n, [, ..., [;)

the index of the child that will receive control when the node is

function reclevels(node n) next executed. This makes the decisions very easy but tends to

f{asl‘t’f“’f waste memory because most nodes have only a few children
aret‘uml to distinguish. Furthermore, executing a halt instruction may
Watchdog : require setting many variables.

return seqlevels(successor of ) This section presents an encoding that requires less memory
Parallel : and time. The key observation is that an Esterel program can be

for all reconstruction children ¢y, . . ., ¢; of n do divided into threads, sections of the reconstruction tree through
Iy = reclevels(cy) which at most one path is taken. These are blocks of code sepa-
return parexits(n, [y, . . ., ) rated by | statements and amount to areas where there is at most
function parexits(parallel node p, levels 1y, . . ., ) a single point of control. In the reconstruction tree, a thread is
m = max(minimum level in {1, ..., minimum level in /) a subtree rooted at a thread node or the root whose leaves are

{e1, ..., ¢} = J;{max(m,x) : x € [t}
return seqlevels(handler from p fore ) U- - -
U seqlevels(handler from p for e;)

halts or other parallels.
Instead of one variable per watchdog, EC represents the state
of each thread using a single variable. This saves memory, since

) ) . . . fewer variables are needed, and time, since a halt simply assigns
Fig.10. The algorithm for computing reachable exit levelsin the IC graph. The ’ ' Py g

two recursive functions seglevels and reclevels return the exit levels reachd®R€ C_OnStant to one variable instead of vv_alkl_ng up the recon-
from a node when entered through a sequential arc and arc in the reconstrucstnuction tree, but the code at a watchdog is slightly more com-

tree, respectively. Parexits computes the exit levels reachable at a parallel.rigneated because it must shift and mask the state before testing
implementation in EC of these functions memoizes two values of the functions, _. . . .
one for the levels visible from a fork, the other from a parallel. It’Fig. 11 illustrates the technique. The code for a path is formed
by concatenating the sequence of labels along the branches. The
. least significant bits are labels at the root. For example, the halt
and the set that can be reached when the thread is resta g%(iled 10110 in Fig. 11 takes its value by being along the path
through the parallel.

The seglevels and reclevels functions in Fig. 10 recursiv;a%beled 10, 01, and finally 1. Most branches are labeled 0, 1, 2,

) " c. encoded in binary using just enough bits to distinguish them.
compute the exit levels visible from a node reached throu ; ; e
. : . ranches from the root are slightly different; since the all-zero
a sequential arc and the reconstruction tree, respectively. The, .
o ; state is used to represent when the thread has terminated, the la-
rule for conditional considers both true and false branches an
simply combines the two sets. The rule for watchdog combin8s. atthe root of the thread start at 1.
Py . 9 Such an encoding allows the code at each watchdog to decide

the levels reachable from each of its children in the reconstr%hich branch to take by a shift and a mask (drawn to the right of

tiontree. the nodes in Fig. 11). The shift is unnecessary at the first deci-
Not surprisingly, the rules for paraliel and fork are the mog,, int within the thread, and the mask is unnecessary at the
complicated. Both compute the exit levels that each of thgllg; | practice, many threads contain very simple reconstruc-
threads can reach. They then pass this information to the parexii§ sypirees and these optimizations often greatly simplify the
function, which looks at the exit levels of each thread to find thg,qe.
exit levels that can be taken by the parallel once the threads argjs encoding is very compact when the number of branches
finished for the cycle, and finally combines the levels that cagt each node in the reconstruction tree is a power of two. Codes
arise from handling any of these exceptions. are wasted, for example, when a node has nine branches beneath
The rules in parexit assume that any combination of the epit since this requires four bits and nearly half of the possible
levels from each thread may appear. However, since the highésdes are unused.
exit level always prevails at a thread, parexit first computes theA single thread with many levels of nested watchdogs could
minimum exit level of each thread and uses the highest sugberflow the single integers used to represent the state of a single
value to place a lower bound on the lowest exit level that withread. Using more bytes to represent a thread’s state is the ob-
be considered. For example, if one thread can exit at levels OyRyus solution, but we did not implement this because none of
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TABLE |

state & 0x3 EXAMPLES USED IN EXPERIMENTS
(01 10 Example IC Nodes Lines States Threads
o1 *State >>2) & 0x3 Berry’s runner 50 55 7 7
oo™ 1 10 Reflex game [17] 11 74 8 11
Combination lock 154 101 33 11
0010 1010 GSM [10] 220 432 19 33
state >> 4 Turbochannel bus 412 687 287 85
Wristwatch [18] 465 1088 42 87
KO 1\. Comm. protocol [19] 589 > 10000 40
Video generator 892 948 152 138
00110 10110 Task sequencer [20] 1318 >700 247
) ) . ) Shock absorber [21] 3485 2243 135
Fig. 11. Encoding states within a thread (a subtree of the reconstruction tree).ChOrus [10] 4053 1565 563

The encoding of each state (written below each halt or parallel) is formed by " ™.
concatenating the labels along the path from the top parallel. The expressionA"fonfCS ﬁ_‘el 4260 4594 944
evaluated at each node is written to its right. Avionics display [20] 9305 3330

The second column lists the number of IC nodes required to represent the pro-
. . gram. The third lists the number of Esterel source lines including comments and
the benchmarks had this problem. In handwritten code, MOStwhitespace. The fourth lists the number of states the V3 compiler identified,
state trees (e_g', F|g 11) are wide (i'e_, contain many pauses)\xﬁlerfe 1thwials able to, findl:he ﬁfth1 lists the number of independent threads, not
. . ali O which can run sunultaneousty.
not tall (i.e., do not contain many sequences of nested preemp- ¥
tion conditions). The state encoding is trivial for small examples

such as Fig. 1. TABLE I
NUMBER OFIC, CCFG,AND SCFG NDDES IN THEEXAMPLES

IC CCFG Nodes SCFG Nodes Total

VIl. REMOVING CONCURRENCY 50 57 14% 65 14% 30%
111 126 14 141 12 27
After EC translates the IC graph representation of an Esterel 154 135 —11 204 51 32
program into a CCFG using the algorithm in the last section, 220 245 11 279 14 27
it generates a SCFG by statically analyzing the concurrent be- 412 456 11 573 26 39
havior of the program, interleaving the code for each thread and 465 604 30 870 44 87
inserting code that simulates context switches. The result is a 87 610 4 737 21 25
SCFG that can easily be translated into a C function using the1318 }(7);? ;Z ;23(5) 4218 ‘9%
algorithm in Section VIII. Code generated this way runs faster 3 1831 10 1179 9 20
than V5's gate code because it is a better fit to a processor's, s, 4492 1 6512 45 61
natural control behavior. The code from V3 runs faster because,,¢, 6204 46 677 40 104
it avoids the overhead of context switching and internal com- 9305 16505 77 27188 65 192

munication, which it exhaustively analyzes when the program ) - ] ]
. iled. But thi t th f t . d The percentage increase in each is a rough measure of code size and speed.
IS co_mp_l €d. bu IS comes al € expense or ex enSIVe_ C_O €ror example, the avionics display example started with 9305 IC nodes. These
duplication. In effect, the code generated by V3 uses a distinctbecame 16505 CCFG nodes after unrolling using the algorithm in Figure 7, a
R H H 77% increase. The sequentialization algorithm in Figure 13 produced 27188

value of the program cqunter for.each pOSSIb,le combination of SCFG nodes from these, a 65% increase over the CCFG, and a 192% increase
program counters and internal signal states in the Esterel pro-over the original number of IC nodes.
gram.

The sequentializing procedure operates in three steps. First, i

adds data dependency arcs to represent the constraint that eac )
write of a signal must precede each read (the dashed linedSif correct schedule, but certain orders are better than others be-

Fig. 5). Second, it schedules the nodes in the CCFG by placifH'Se they require f_ewe_r context switches._qu example, a b_etter
them in a topological order that respects both the existing cdiloice of schedule in Fig. 6 would have eliminated the assign-
trol dependencies and the newly added data dependenciesN§nts and test aB3; the nodes3 ands3 = 2 appeared too early.
nally, it copies each CCFG node in scheduled order to a SCRéfifortunately, finding a schedule with a minimum number of
along the way inserting nodes that save and restore control sg@Btext switches is NP-complete, but a bad schedule does not
where the schedule implies a context switch. (For example, ignificantly slow or bloat the generated code. Theoretically,

nodes that write and test variablgsandt3 in Fig. 6.) the slowdown or bloat may be quadratic, but in practice EC
produces acceptable code using a simple depth-first scheduler.

Table Il shows the sequentializing procedure fed with a simple

scheduler increases the number of nodes at most 65% for the
A schedule is an order of all the instructions in the prograftargest 16 500-node example.

such that each runs when its predecessors have run and its datde optimum scheduling problem is NP-complete because

is ready. EC uses a schedule to determine the order instructignsould be used to solve the minimum feedback vertex set

in concurrent threads will run and when one thread must be spseblem. To solve the minimum feedback vertex set problem

pended and another resumed, i.e., when to context switch. for a particular directed graph, create a program with one

y topological order of the CCFG augmented with data arcs

A. Scheduling
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loop B. Building the Graph
present nl then
present al then emit nla end; Fig. 13 shows the algorithm for synthesizing a SCFG from
present aZ then emit nlb end a CCFG, the most important algorithm in EC and this paper’s

3 . . _ key contribution. The algorithm walks through the nodes in the

enzm;e:;;mt ad; emit as CCFG in scheduled order, copying each (line 2) and attaching

pause ! its incoming arcs a_tgach step (line 2_4). Normally this just copies

end loop @ the graph, but additional nodes are mserted that save and restore
control state when control must switch between concurrently

running threads.

if (nl) { if (nl) {
a3 = 1; a3 = 1; Fig. 14 depicts a few steps of the algorithm while it is building
ad = 1; ad = 1; Fig. 6. In effect, the algorithm sweeps a line through the con-
a5 = 1; a5 = 1; current graph, shifting each node across the frontier (the dotted
if (al) nla=1; I line) and attaching its incoming arcs according to the arcs that
} if (a2) nlb=l; /; e *: cross the frontier. Maintaining these arcs—predecessors (indi-
1 n

if (1) nlacl; cated with dashed lines)—is the algorithm’s main concern.
if (a2) n1b=l; A node keeps track of two types of node that may eventu-
} ally branch to it. The most common is a “normal predecessor,”
b ©) a copy of a CCFG node. Line 21 maintains these predecessors,
indicated by dashed arrows in Fig. 14(a). The other type of pre-
Fig. 12. Construction to demonstrate the NP-completeness of the minin"i’@Cessor is a “restart predecessor,” a multiway branch created
scheduling problem. (a) For each node in a directed graph, construct a thredden a thread is resumed. Line 34 assigns these. Nadie

like this one for a node1 with incoming arca.1 anda2 and outgoing arcs3,  Eig. 14 i r rt or r.indi row.
a4, anda5. The signah1 is an inputpla, andn1b are outputs. (b) If this node g. 14(e) is a restart predecessor, indicated by a dotted arrow.

is not part of a cycle, the code for the two threads can be grouped under a singld he distinction between normal and restart predecessors
conditional. (c) If code for the node must be split because of a cyclic path in totemes when a thread is suspended, in line 44. Only normal
graph that passes through the node, the testfanust be duplicated. predecessors are saved. Since a restart predecessor indicates
the possibility of something restarting, it is wasteful to save
thread per node, each thread having a single conditiors@mething that never started.
invoking two threads beneath it [a@(V + E) operation], The algorithm simply copies the CCFG when synthesizing a
such as in Fig. 12(a). The first of these threads depends g#fuence of nodes in the same thread (where context switching
signals corresponding to incoming arcs in the given nodis;unnecessary). The main loop copies each node (line 2), con-
the second emits signals corresponding to outgoing are€cts arcs from its predecessors (line 24), and prepares to con-
Instructions corresponding to a node that does not participact the arcs to its successors (line 21). The resume and suspend
in any cycle can be scheduled together to generate code spubcedures do nothing.
as in Fig. 12(b), the code for at least one node in each cycleFig. 14(a) and (b) illustrates this common case, showing
must be split as in Fig. 12(c). This requires duplicating a testpw a node is synthesized when no context switch is needed.
so the code size grows with the number of splits. Splitting Big. 14(a) showss1's single normal predecess§r, created
node is analogous to removing it from the graph, so askimgrlier in line 21 when nod& was copied. In Fig. 14(b), line 2
if there is a schedule that generates code under a certain $ias copiedl to the sequential graph (moved above the dotted
is equivalent to asking if the graph can be made acyclic llipe), line 24 has added an arc frast’s predecessds to the
removing fewer than a certain number of nodes—the feedbawbw copy ofs1, and line 21 has added the new sequential node
vertex set problem. s1 as a normal predecessor of betandsl = 3.

EC assumes a static schedule exists, i.e., there is a uniqu8ynthesizing context switches is more complicated. When
order in which all statements can execute in every cycle. Thisdse thread is running and a node from another thread must run
true for many programs, but Esterel programs can have data-gisually when the first thread communicates to the second), the
pendent orders. These may appear when resources are she@etfol state of the running thread is saved and the control state
and used in different orders in different cycles, or when th#f the suspended thread is recovered. The suspend and resume
system is inherently cyclic, such as a cyclic-ring arbiter. EC grocedures accomplish this by adding nodes that save and re-
unable to compile such programs. store control state. They are recursive because threads are often

Automata compilers permit statements to execute in differemested in Esterel.
orders in each state, since they generate separate code for eadfig. 14(c)—(e) shows how this works. In Fig. 14(c), the two
Gate-based compilers have a harder time: they must complefein nodes labeled2 and an unlabeled join are in the thread to
explore the state space of the system before concluding thathieessuspended (line 20 placed them there when their predecessors
programis valid. As a side-effect, they determine the function afere copied). In Fig. 14(d), the suspend procedure has run; line
the system in all of these states and resynthesize the cyclic pt8-has added node2 = L3, t2 = L4, andt2 = L1 to save
tions of the netlist. This is the machinery developed by Shipthe state of the thread, line 44 has added arcs from theRtwo
et al. [8]. We discuss the possibility of using this technique imodess2 = 1, ands2 to the new state-saving nodes, and line 45
EC in Section X. has added each of the save state nodes as normal predecessors
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1: for all nodes » in scheduled order do 27: procedure resume(z)
2 copy # to new node n’ in the SCFG 28:  f=forkoft
3 t = thread of n 29:  if f is not the top then resume(thread of f)
4 resume(r) 30:  if f is Running but not running ¢ then suspend(f)
5: if n is a join then 31:  if f is Runnable then
6 f = n’s corresponding fork 32: r = new restart node for ¢
7 suspend(f) 33 connect(f, r)
8 connect(f, n') 34 make r the restart predecessor of each node n in ¢
9; remove f from thread ¢ 35 mark f as Running
10:  else 36: set ¢ as the running thread of f
11 connect(n, n’
(n, 1) 37: procedure suspend(f)
12: remove n from thread ¢ oo .
e 38 if f is Running then
13:  if nis a fork then .
39: t = running thread of f
14: mark fork # as Runnable -
; 40: for all nodes n in 7 do
15: add n’ as a normal predecessor of n o -
41: if n is a fork then suspend(n)
te: add 7 to thread ¢ 42: if n has normal predecessors then
17: add each successor s of fork n to the thread of s ’ P
43; g = new save state node
18:  else
44: add arc p — ¢ from each normal predecessor p of n
19: for all successors s of n do 4 make ¢ a normal predecessor of f
20: add s to thread ¢ ’ s 4 P
, 46: clear n’s predecessors
21: add n’ as a normal predecessor of s . -
P 47 if any node in ¢ had a restart predecessor r then
22: if s is a fork then mark s as Runnable
48: make r a predecessor of f
23: procedure connect(n, n’) 49: mark the running thread of f as none
24:  add arc s — n’ from each normal predecessor s of n 50: mark f as Runnable

25:  if n has a restart predecessor r then add arc r — n’
26:  clear n’s predecessors

Fig. 13. How to convert a CCFG into a sequential one. The main loop steps through the CCFG in scheduled order, copying each node and calling connect() to
attach arcs from nodes that could run it next. The suspend procedure suspends a running thread under a fork, and resume prepares it to continue running.

SCFG 0 o
9 4

¢
: e2=1
@ . .11.3. T PO P B
1
U3[5st] [51=3 [ 1[s2=1] [s1=3
{é ! [2=13] [@=L1] [2=L4]
S1=3 CCFG s1=3
L
" B
(@) (b) © (D ©

Fig. 14. Synthesizing SCFG nodes. The dotted line separates the SCFG (above) from the uncopied part of the CCFG. In (a) and. (k)symtthesized. In

(a),s1 hasS as its sole predecessor (dashed arrow). Instbhas been copied to the SCFG, an arc has been added&ftost in the SCFG, and node8 and

s1 = 3 now have the copy ofl as their predecessors. (c), (d), and (e) depict the synthesis of a context switch. In (d), the three uncopied nodes in (c) have been
run as nodes that save their thread'’s state and the fork has gained them as predecessors. In (e), the fork node has been run as a conditionstisteadieises the
resumed thread, and nodes in that thread have gained it as a predecessor.

of the unlabeled fork that is the parent of this threddr(the small-integer identifier assigned when the node is created.
suspend procedure). While this is hardly the most efficient encoding, it matters little.

Fig. 14(e) shows the state after the resume procedure has Most resume branches are two-way, which become compar-
Line 32 has created nod8, which tests the state of the threadsons to a constant. A more efficient encoding might consider
being resumed, line 33 has called connect, causing line 21the sequence of nodes that are suspended and resumed for a
connect arcs from2 = L.3,t2 = L4, andt2 = LL5 to t3 (these particular thread and try to reuse codes to make the encodings at
nodes were the normal predecessors of the fork), and line 34 kash resume dense, perhaps using a graph-coloring algorithm.
addedt3 as the restart predecessor of the node that Reairsd
the unlabeled join; the two nodes that were about to run before
the thread was suspended.

Currently, EC uses a trivial encoding for the state of threadsThis section describes how to generate attractive,
suspended within a cycle (this is different from the careflluman-readable C code from the SCFG produced by the
encoding used to save state between cycles describedalgorithms in Section VII. Generating correct C code is easy
Section VI-D). Each CCFG node is encoded with the uniguéhe SCFG representation was chosen to make this trivial), but

VIII. GENERATING WELL-STRUCTUREDC CODE
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making it easy-to-read is harder. We did this to aid users of t
compiler when they wish to debug their programs, althoug
it may also make it easier for the C compiler to optimize th
result.

The SCFGs generated by the algorithm in the last section
simple. Each node has an expression that is evaluated when
node runs. If the node has two or more successors, the resul
the expression is used to choose among them. A code genera
algorithm could simply generate the code for each node a
usegoto statements to branch to the appropriate location. Tl
Polis compiler [5], [6] does this and the results, while correc
are inscrutable, although this is partly due to the unstructured
control graphs generated from BDD's.

Fig. 15. Postdominators of the conditional nodes in Fig. 6. The solid line
from each conditional leads down to the first instruction outside the body of the

Structuring control-flow graphs has been studied in @nditional. The immediate postdominator of a node is the closest node through
few contexts. Baker [14] proposed an algorithm for findinghich all paths from the conditional pass.

high-level control constructs (e.g., if—~then—else, while loops)
in gotoriddled FORTRAN programs. Cifuentes [15] used
a similar procedure to reconstruct high-level information in
control-flow graphs generated by decompiling executables.
Since loops are the main concern in both works, and the SCFG
our compiler generates have no loops, the algorithms are not &
good fit for the problem here.

The algorithm in EC generates sequences of statements fol
sequences of action nodes in the control-flow graph and condi-
tionals—if—-then—elsdor two-way branchesswitchstatements
for three or more—for nodes with more than one outgoing arc.
The challenge is deciding which nodes to include in the body of
a conditional and which to place outside.

We choose the immediate postdominator of a conditional
node as the first node outside the scope of the body of the
conditional. A nodel postdominates nodeif every path from
n to the exit of the control-flow graph passes throufjfThe
immediate postdominator is the unigdesuch that no other
node both postdominatesand is postdominated by This is
a classical relationship in graph theory, and we use the standarc
fast algorithm by Lengauer and Tarjan to compute it [16].

Fig. 15 shows the immediate postdominators for the condi-

function astFor(n, f, b)

if n = f then

return a break statement if b is true; nothing otherwise
if 7 has already been synthesized then

return new “goto n” statement
if » is a conditional then

p = immediate postdominator of n
else

p = successor of n
p’ = astFor(p, f, b)
case number of successors of n of
1:

n’ = new expression statement for n
2
n’ = new if-then-else statement
n' .else = astFor(n.else, p, false)
n’.then = astFor(n.then, p, false)
>3

n’ = new switch statement

for all successors ¢ of n do

insert astFor(c, p, true) at the beginning of n’

append p’ ton’
return n’

control-flow graph and match what a programmer would proky
ably choose.

Fig. 16 shows the recursive algorithm used to build an abstract
syntax tree (i.e., that can be easily traversed to produce C so
code) from a control-flow graph. The function takes three arg{-
ments—the node to be synthesized, the node that follows it,

recursive function builds later statements first (e.g., the else before the then
ranch) to ensure afjoto statements branch forward.

de. For example, the twaases in the second switch state-
ent could have been reversed, but the code Bfievould still
e appeared in the later case since Fig. 16 ensurgstal

aflag indicating whether a break statement is necessary to re8th forward.

this nod—-and returns an AST for the node.
Fig. 16 actually builds the program backward, constructing

IX. EXPERIMENTAL RESULTS

the nodes that will appear later in the program before those thatVe ran experiments to compare the quality of code generated
will appear earlier. This is to ensure glbtostatements are for- by the new compiler to that from the V3 automata compiler,
ward, which is expected when the control-flow graph contairtke V5 gate-based compiler, the output of V5 after being passed
no loops. This is why code for aglsebranch is computed be- through logic synthesis, and the compiler by Bertral. [9],

fore thethenbranch, and why code for eaclaseof a switch

[10]. To measure average cycle times, we ran the generated pro-

statement is inserted at the beginning of its body rather thangaam for a second and counted the number of cycles it executed.

the end.

We generated pseudorandom input patterns with an testbench

Fig. 17 shows the code Fig. 16 generates from the SCFGganerated by the algorithm of Yuanal.[22] to produce inputs
Fig. 6. Because the successors of a multiwajtchstatement that observed environmental constraints (e.g., mutually exclu-
are built in an undefined order, some arbitrary choices wes@e input signals) but did not weight the inputs. Measured times
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i; Tzl(sb-&Lg)aff T?iC{Iue small-integer constants */ can eliminate the gap, albeit only after many minutes of work
if (S) | and only for the smaller examples. Logic optimization did not
83 =1; 82 = 1; sl = 1; finish in an hour on the examples over 1000 lines; EC was able
} isfsl 1) to compile the largest example in 10 s.
sl = 3; The V3 compiler, when it runs, generally produces faster
else { code, but at the expense of very large executables. It did not
v fles e sl Tm complete in an hour for any example larger than 1000 lines, and
| else { ’ failed on a 600-line example. More precisely, V3 appears not to
t3 = L2; be able to compile programs with more than about 300 states.
;witch (52 & 3) | Bertinet al’s compiler produces code about twice as big and
case 0: goto LO; twice as fast as that from EC. The missing data points for large
Cai? 1(1) { examples were due to the source not being available for some
€2 = 1; R = 1; t2 = Ld; and because of a bug in their compiler that incorrectly rejected
} else { some programs. In theory, their approach should scale as well
LOfZ =1 as EC’s.
t2 = L1 Small programs run faster on the lower clock-rate Pentium,
} but larger examples run slower. We suspect this is due to dif-
Cagze;‘k' ferent cache sizes on the two processors.

€2 = 1; R = 1; t2 = L3; break; The speed of V5 without logic optimization very closely
} tracks the size of the program. This is expected since each

if (£3 == L2 .
' if( (R) A 2 lf source statement becomes a few gates, and each gate is executed

s3 = 1; once per cycle, thus the speed should be directly proportional
b to the source program size. The speed of the code from the
switch (t2) { . . . .
default: break; other compilers appears to have little to do with the size of
case L4: the source. This is expected, since the speed of the code from
i o &2 Z)Z;Oto e, these compilers is related to the number of source instructions
s2 = 2; ' that must execute each cycle, which differs from the number of
break; instructions in the program an varies among programs.
cats T&i) o2 2. The wristwatch example (465 nodes) shows the least vari-
if (e2 == 1) 82 = 2; ance among the different compilers because it calls a substantial
ié?e { number of external routines. Much of its execution time is spent
O =1; 82 = 0; in these routines, so the quality of the generated code matters
} less.
, break; Compilation time becomes noticeable for the larger exam-
/% LS5: */ ples, but the C compiler is the bottleneck. For example, V5
sl = 1; without logic optimization was able to produce C code for the
so}= 1; largest example in 7 s, and EC was able to produce itin 10 s, but
} else { it took Sun’s CC about 2 min to compile the output from EC,
sl =3; 80 =1; and 45 min to compile V5's output.

Compilation times for V3 can range from very short to unac-
_ ' o _ ceptably long (hours). Unfortunately, patience in running V3 is
Fig. 17. Code generated from Fig. 6 by the algorithm in Fig. 16. This behavggt rewarded since Iong runs produce impractically |arge exe-

like the concurrent Esterel program in Fig. 1 and is the final output of the
compiler. cutables.

do not include time to run the testbench. We ran the testbench X. CONCLUSION AND FUTURE WORK
separately and subtracted out its effects, which was as high agig paper has presented a new way to compile the syn-
75% of the execution time for the small examples, and proballyronous language Esterel that preserves much of the program'’s
distorted their times, but was less than 1% for the large exagliginal control structure for a code size and speed advantage.
ples. It translates Esterel’'s preemption and exception constructs into
The example programs, listed in Table I, were all handwrittegbnditional branches and compiles away its concurrency by
and range from toy examples (hundreds of lines) to industrightically scheduling the instructions and inserting code that
size (nearly 10000 lines). saves control state in variables and restores it with conditional
Fig. 18 shows the average cycle times and executable sibeanches. Ultimately, it produces mostly structured C code that
we measured for these examples on two machines: a 336-Métimtains someotcs.
UltraSPARC-Il and a 233-MHz Intel Pentium. Compared to EC, Experiments show EC produces code that can be 100 times
the V5 compiler produces consistently slower, larger code, faster and half the size of code from other high-capacity com-
running the output of V5 through an aggressive logic optimizgilers.
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Fig. 18. Average cycle times for random inputs and executable sizes as a function of source program size for the examples in Table I. The foureompilers a
the automata-based V3, the gate-based V5, the output of V5 run through logic optimization, the new compiler EC, aatidsrtiompiler (SX). Missing data

points indicate part of the compilation chain failed or the source code was not available. (a) Average per-cycle execution times as a functime®fitogsm

size for a 336-MHz Sun UltraSPARC-II with a 4-MB cache, (b) sizes of the executable (generated by Sun’s “cc -O”), (c) average cycle times on a 233-MHz
Pentium with a 512-kB cache, and (d) executable sizes for the Pentium (generated by egcs 2.91.66 -O).

EC is currently used to generate simulation code in CoCestate an output of the three-valued function is unknown, they
tric System Studio (described under an earlier name by Buplace that output with a 1. This does not affect the behavior of
and Vaidyanathan [23]), an environment that allows designdle program because their technique proves that none of these
to specify systems using a mixture of dataflow graphs and hietates can be reached.
archical finite-state machines. To compile a simulation, SystemHow to apply this Boolean technigue to control-flow graphs is
Studio translates control behavior into IC programs, EC comet obvious, but another approach (suggested to me by Berry) is
piles them into C, and the result is linked code generated pgssible. A cyclic network can always be evaluated by unrolling
System Studio for the dataflow portion. it and simulating it using three-valued logic (i.e., each signal is

Other applications are possible, in addition to compiling E®ither present, absent, or unknown), but simulating three-valued
terel, EC could easily be adapted to compile other synchronosggnals is costly in software, especially when simulating the pro-
concurrent languages, such an Lavagno and Sentovich’s E@am counter. However, it is not necessary when the program
[24]. being evaluated is monotonic and guaranteed to always have de-

Many further optimizations are possible. The automata corfired outputs. Esterel’s constructive semantics [26] guarantees
pilers can produce much better code for small examples. OQm@grams are monotonic; a more defined input always produces
possibility is to apply the automata compilation technique t@n equal or more-defined output. Specifically, changing an input
small segments of a much larger program, such as those with frem unknown to known can only change an undefined output
guent synchronizing communication. Such things usually hateknown or leave the output unchanged. It follows that all un-
far fewer states than a simple product would suggest and are lexewn inputs can be set to arbitrary, known values without af-
actly those where automata code would be far better than tfetting the output provided the program is known never to pro-
from EC. duce undefined outputs.

Handling apparently cyclic programs is another challenge.Concretely, this technique would unroll each strongly con-
One approach would be to resynthesize cyclic portions of thected component of the CCFG using either Bourdoncle’s [25]
circuit as the V5 compiler does using the technique due to Shigleour [27] scheduling algorithm. The amount of unrolling nec-
et al. [8]. They generate an exact three-valued next-state furessary follows from the structure of the program and noting that
tion by unrolling the circuit according to the algorithm of Boureach signal can be either undefined or defined. Signals in the
doncle [25] and try to use it to prove that no state with urSCC would be initialized to absent (the value does not matter)
known outputs is reachable. If they succeed, they resynthesirel constant propagation on the resulting code would then
the cyclic portion of the circuit by forcing the exact three-valuedreatly simplify it. However, there is still the strong possibility
next state function to take two values. Specifically, if in somef a quadratic blow-up in code size with this technique.
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One of the reviewers noted that EC can be thought of af4]

having factored the automata code from V3. In effect, EC shares

code common to two or more states by predicating it with vari-[15

ables that represent control state and internal signals. This ob-
servation raises the possibility of a compiler that analyzes thE-:6]

state space of an Esterel program and generates distinct pieces of

]

code not for single states, but for groups of states for which EQ17]
generates efficient code. The result should be faster but larger
than normal EC output. [
Most future work involves combining the ideas from all the
existing compilers, each of which have certain strengths.We are
confident that the result would be capable of producing fast{lg]
small code for virtually all programs.
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