
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 2, FEBRUARY 2002 169

An Esterel Compiler for Large Control-Dominated
Systems

Stephen A. Edwards, Member, IEEE

Abstract—Embedded hard real-time software systems often
need fine-grained parallelism and precise control of timing, things
typical real-time operating systems do not provide. The Esterel
language has both, but compiling large Esterel programs has been
challenging, producing either needlessly slow or large code. This
paper presents the first Esterel compiler able to compile large
Esterel programs into fast, small code. By choosing a concurrent
control-flow graph (CCFG) as its intermediate representation,
it preserves many of the control constructs to produce code that
can be 100 times faster and half the size than code from other
compilers with similar capacity. The primary contribution is an
algorithm that generates efficient sequential code from a CCFG.
While developed specifically for compiling Esterel, the algorithm
could be used to compile other synchronous languages with
fine-grained parallelism.

Index Terms—Code generation, compilers, concurrency,
embedded systems, Esterel, reactive, real-time language, syn-
chronous.

I. INTRODUCTION

M ANY applications in reactive real-time embedded
systems are most naturally described as concurrent

systems, yet many are implemented using sequential languages
like C or assembly on sequential processors. A real-time
operating system (RTOS) capable of scheduling the execution
of multiple independent sequential processes is a common way
of providing concurrency to such languages, but the behavior
of such an RTOS can be unpredictable, making it difficult to
guarantee precise system timing.

The synchronous approach [1] provides precise timing con-
trol by operating a system in lockstep with a global periodic
clock signal. Although timing within a particular clock cycle
is essentially uncontrolled, a system has exact control over the
clock cycle in which each event occurs.

The synchronous approach is natural in hardware, where
global clocks often drive sequential elements, but is used
less frequently in software. A few synchronous languages for
software have been proposed (Esterel [2] and Lustre [3]), but
they have proven challenging to compile.

Implementing a concurrent synchronous language such as
Esterel using concurrency supplied by an operating system
would be very inefficient because of the large number of threads
in a typical Esterel program (thousands in large programs) and
the need for synchronization within each cycle. Since each

Manuscript received February 29, 2000; revised May 23, 2001. This paper
was recommended by Associate Editor R. Gupta.

The author was with Synopsys, Inc., Mountain View, CA USA. He is now
with the Department of Computer Science, Columbia University, New York,
NY 10027 USA (e-mail: sedwards@cs.columbia.edu).

Publisher Item Identifier S 0278-0070(02)01046-1.

Fig. 1. A simple Esterel module modeling a shared resource. The first thread
generates requests (R) in response to external requests (I), and the second thread
responds to them (A) in alternate cycles. TheS input resets both threads.

thread needs to run at least once every cycle, and possibly
much more depending on communication, context switching
cost could dominate a single-processor implementation. A
multiple-processor implementation, such as the one proposed
by Caspiet al. [4], trades some context switching overhead for
communication and synchronization overhead.

This paper describes EC, a new compiler for Esterel that can
produce small, fast code for large programs, avoiding the short-
comings of earlier compilers, and making large synchronous
specifications practical. An executable produced by EC can run
100 times faster than one from another compiler able to handle
large programs and can be exponentially smaller than code from
the compiler that produces the fastest known code (EC’s code
is about half as fast).

This paper is structured around the small Esterel program in
Fig. 1. In Section II, we introduce the Esterel language and
explain the behavior of the example. Section III is a review
of existing Esterel compilers. Section IV describes EC’s input
format—the intermediate representation IC—and the example’s
manifestation in it (Fig. 3).

The bulk of the paper describes the new compiler. Section V
begins with an overview of the three compilation steps: con-
structing a concurrent control-flow graph (CCFG) from Esterel,
scheduling the CCFG, and finally synthesizing a sequential con-
trol-flow graph (SCFG) from the concurrent one. Section VI de-
scribes the recursive unrolling algorithm that translates an In-

0278–0070/02$17.00 © 2002 IEEE

170 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 2, FEBRUARY 2002

termediate Code (IC) graph into an equivalent CCFG. The main
issues here are adhering to IC’s complicated semantics and cor-
rectly unrolling the graph when certain instructions may execute
more than once in a cycle. Section VII describes how a SCFG
is synthesized from the concurrent one using a simulation pro-
cedure. After scheduling the nodes in the graph, the procedure
steps through each one, copying it to the sequential graph and in-
serting code that simulates the effects of a context switch when it
encounters a node from a different thread. Finally, Section VIII
shows how to generate attractive C code from the SCFG. Fig. 17
shows the C code EC generates for the example.

Section IX describes experiments that compare the quality of
the code EC generates with that from other Esterel compilers.
The paper concludes with suggestions about how to extend the
work.

II. THE ESTERELLANGUAGE

Intended for specifying reactive real-time systems, Esterel [2]
has the control constructs of an imperative language like C but
includes concurrency, preemption, and a synchronous model of
time like that used in synchronous digital circuits. In each clock
cycle, the program resumes running its concurrent threads, reads
its inputs, computes its reaction, and suspends until the next
cycle.

An Esterel program communicates through signals that are ei-
ther present or absent in each cycle. In each cycle, each signal is
absent unless anemitstatement for the signal runs. Conditional
presentstatements test signals and perform different actions de-
pending on the presence of a signal. The presence of an emitted
signal is seen immediately in the cycle it was emitted and does
not hold its value in later cycles.

In Esterel, a statement that tests the value of a signal in a clock
cycle blocks until the presence or absence of the signal is estab-
lished in that clock cycle. Put another way, any statement that
emits a signal must run before any statement that reads it. This
constrains the order in which statements running in concurrent
threads may execute within a cycle and can lead to deadlock.
For example, code that attempts to test a signal before emitting
it is erroneous: the data dependency contradicts the control de-
pendency.

EC uses a simpleminded structural check to detect deadlock
conditions and reject programs that contain them, but this can
reject useful programs. Unfortunately, the alternative, used in
the V5 compiler described in Section III, requires exploring the
state space of the program (currently only practical with sym-
bolic methods that are still quite expensive) and resynthesizing
the program. EC’s greatest shortcoming is its inability to do this
analysis and accept a larger class of programs; we discuss how
this problem might be addressed at the end of the paper.

A. An Example

Fig. 1 shows a simple Esterel program with two concurrent
threads. Meant to model an arbiter for a shared resource, the
first thread passes requests from the environment to the second
thread, which responds to requests. The first thread waits for an

signal before holding the signal present until the signal

Fig. 2. A timing diagram for an execution of the Esterel program in Fig. 1.
Inputs are listed on the left; the signals generated by the program in response
are listed on the right. Each horizontal tick denotes a clock cycle.

arrives, at which point it emits the signal and terminates. The
second thread emits in response to in alternate cycles. Fig. 2
illustrates this behavior with a depiction of the program’s re-
sponse for a particular input sequence.

The body of the first thread starts with anawait statement
that waits for the next cycle in which its signal is present.Await
always waits one cycle before it can terminate, so this thread
does nothing in the cycle when it first appears. Following the
await is aweak abort. When this runs (i.e., in the cycle in which
signal is present), it immediately starts its body (in this case,
a sustainstatement that makes signalpresent in every cycle
until the statement is terminated) and watches for thesignal.
Because this is a weakabort, thesustainruns in the cycle when

is present, but terminates. Moreover, since the predicate is
“immediate ,” the signal is checked in the first cycle the
abort statement runs (abort normally starts checking the next
cycle, just likeawait).

The second thread is an infinite loop. Eachpausestatement
delays a cycle when control reaches it. This happens in the first
and second cycle in which the loop runs. In the third, signal
is checked, and its presence causesto be emitted. After this,
the loop is immediately restarted and the firstpauseis executed
again.

The two threads are enclosed in anevery-doloop that can
preempt the two threads. The body of the statement (the pair of
threads) is restarted in the cycle in which the signalis present
before the body has a chance to resume.

There is a subtle and often critical difference between the
strong preemption of theevery-do, which checks its predicate
before its body resumes, and the weak preemption ofweak
abort-when, which checks its predicate after its body resumes.
We used weak abortion to preemptsustain Rbecause strong
abortion would have caused a deadlock: emittingcan cause

to be emitted. Had this been strong preemption, the presence
of would have prevented from being emitted—a contra-
diction. Strong preemption around the two threads does not
cause deadlock. It makes the program ignorein cycles when

is present.

EDWARDS: ESTEREL COMPILER FOR LARGE CONTROL-DOMINATED SYSTEMS 171

III. RELATED WORK

Three other techniques for compiling Esterel are based on
automata, logic gates, and event graphs.

The earliest compilers, such as Berryet al.’s V3 [2], built
a single automaton for an Esterel program through exhaustive
simulation. Each state of this automaton corresponds to set of
control points from which the Esterel program will resume in the
next cycle. The code for each state is a tree containing actions
(such as emitting signals), conditionals that test external signals,
and leaves that set the next state.

Automata compilers produce very fast code, but it can be ex-
ponentially larger than the source program since they generate
separate code for each possible state of the program. Two ap-
proaches have been proposed to reduce this code size. The Polis
group’s automata compiler [5], [6] uses a binary decision dia-
gram to identify code that can be shared between states. Castel-
luccia et al. [7] also share subtrees to reduce code size, but
also attempt to improve code speed by inlining called functions,
swappingthenandelsebranches to improve branch prediction,
moving away infrequently executed code to improve cache per-
formance, and reordering tests to put the common cases first.
While both techniques can significantly improve the quality of
generated code, they are still limited to small programs where it
is practical to enumerate the states.

EC-generated code is slower than automata code because it
has more overhead (due to internal communication and context
switches), but EC code can be exponentially smaller because
code is duplicated far less. As a result, EC is superior for all but
the smallest Esterel programs.

The second class of compilation technique, exemplified
by Berry et al.’s V5 compiler, translates Esterel into a netlist
of Boolean logic gates and then generates a levelized com-
piled-code simulator for it. Capacity is the main advantage of
this approach. Unlike automata compilers, each Esterel source
instruction is translated into a small group of instructions in the
executable; nothing is duplicated. The disadvantage is slower
code; because the generated code is forced to perform compu-
tation for idle portions of the program, it can run hundreds of
times slower than an automaton implementation of the same
program.

Compared to gate-based compilers, EC generates code that is
slightly more compact, but because it does not need to do work
for idle portions of the program, the code can run hundreds of
times faster. The key advantage of gate-based compilers over
EC is their ability to analyze and compile programs that appear
to have cyclic dependencies. However, this is a costly procedure
that requires symbolic state-space exploration and circuit resyn-
thesis [8].

The third approach, pioneered by a group from France
Telecom [9], [10], treats Esterel as having discrete-event
semantics and generates a compiled event-driven simulator.
For each segment of code between apauseor signal test,
their compiler generates a small C function dispatched by a
hard-coded scheduler. Each such function typically produces
side effects and may schedule other functions to execute later
in the same cycle or in the next cycle.

While this approach avoids doing work for most idle sec-
tions of code (improving performance over gate-based compila-
tion), its scheduler does not take advantage of mutual exclusion
among parts of the program (e.g., between branches of a con-
ditional). EC exploits this, instead using program counters af-
fecting multiway branches. EC produces faster code as a result.

The overall flow of EC—building a concurrent interme-
diate representation, scheduling it, and generating sequential
code—was inspired by Lin’s compiler [11], which compiles a
concurrent variant of C. Lin translates his language into Petri
nets that work well for Lin’s rendezvous-style communication,
but are awkward for Esterel’s synchronous style. Lin sched-
ules and then simulates these Petri nets to generate very fast
automata-style code. Unfortunately, this technique can cause
an exponential explosion in code size, even with an optimal
schedule.

Later, Zhu and Lin [12] proposed an algorithm that avoids the
exponential increase in code size by allowing each process to
suspend and resume at interprocess communication points (i.e.,
where it might have to wait for another process to handshake).
The result is a collection of processes implemented as corou-
tines invoked in round-robin order.

EC improves upon Lin’s work by generating more compact
code that is less affected by poor quality schedules. Lin’s com-
piler would benefit from using EC’s sequential code generator.
EC also improves upon Zhu and Lin’s work because Esterel’s
semantics allow EC to statically schedule the execution of con-
current processes: Zhu and Lin resort to a round-robin scheme
that may waste time deciding what to execute next.

IV. THE IC FORMAT

This section describes the input to EC, the IC format. EC
reads this instead of Esterel source because it is a more con-
venient starting point; IC contains high-level information, yet
it is easier to manipulate and can be assumed correct. We use
the front end of Berry’s group’s compilers to translate Esterel
source into IC.

IC consists of a fairly traditional control-flow graph dangling
from a reconstruction tree (Fig. 3). The reconstruction tree (dark
nodes and arcs) coordinates exceptions, preemption, and con-
currency by dictating how the program resumes (“reconstructs
its state”) in each cycle. Gonthier developed IC as part of his
thesis [13] and it has continued to evolve with the Esterel lan-
guage.

In a cycle, an Esterel program executes in three phases. In the
first phase, the program tries to resume where it paused in the
last cycle after checking strong preemption conditions such as
every S. After this, normal statements such asemitandpresent
run until control reaches a statement such aspause. In the final
phase, termination and exceptions are checked and handled. IC
models these three phases by sending control down the recon-
struction tree toward leaves that were reached at the end of the
last cycle, through nodes in the control-flow graph, and finally
back up the tree.

Before the first cycle, control flows from the start node to ini-
tialize the program. In the example, this immediately sends con-
trol to the halt associated with theevery Sstatement [Fig. 4(a)].

172 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 2, FEBRUARY 2002

Fig. 3. The IC graph for the program in Fig. 1. Each node is drawn to the
right of its instruction where possible. The thin lines and outlined nodes are a
control-flow graph with concurrency. The thick lines and solid nodes form the
reconstruction tree, responsible for restarting the program at the beginning of
each cycle.

When control reaches a halt, it starts walking up the reconstruc-
tion tree toward the root, marking its path at each reconstruction
instruction to prepare the program to resume where it halted.
When control reaches the root, the program is finished for the
cycle.

At the beginning of each cycle, control starts at the root node
and walks down the reconstruction tree along the path taken
up the tree at the end of the last cycle. When control reaches
a watchdog statement it takes a detour, usually to check a pre-
emption signal. For the example in the first cycle, control starts
at the root then flows to the first watchdog and to the test for.
If is absent, control is sent back to the watchdog, which sends
control to the halt and back up the reconstruction tree [Fig. 4(b)].
If is present, control flows to the fork [Fig. 4(c)].

When control reaches a watchdog from a sequential node
[e.g., when is absent in Fig. 4(b) and (d)], the watchdog sends
control to the child along the path taken up the reconstruction
tree at the end of the last cycle. So if control followed the path
in Fig. 4(b) in the last cycle, the path to the halt was marked and
control will flow like Fig. 4(b) in the next cycle. If instead con-
trol reached nodes beneath the parallel in the last cycle, the path
leading to the parallel would have been marked and control will
follow the path in Fig. 4(d) in the next cycle.

Fork and parallel nodes start and resume threads. Ifis
present, control flows through the topmost watchdog, through

Fig. 4. Flow of control around IC nodes implementing theevery Sstatement.
(a) Initialization: control begins at the start node, flows to the halt and stops. (b)
S is absent and the halt was active last cycle (i.e., the body of theeveryis not
running): the watchdog sends control to the halt. (c) S is present: control flows
to the fork. (d) S is absent and the parallel was active last cycle (i.e., theevery
is running): the watchdog sends control to the parallel.

the conditional, and to the fork [Fig. 4(c)], thus implementing
the every S doinstruction. Control splits when it reaches the
fork, starting two threads and sending control to two halts (one
just afterawait I, the other after the firstpause). If is absent
in the next cycle, control flows to the parallel [Fig. 4(d)] and
splits toward both thread nodes, resuming the two threads.

In addition to restarting threads, a parallel node handles
thread termination and exceptions by checking the exit levels of
the threads beneath it when control is passed to it from below.
When a thread is done for the cycle, it can terminate by running
an exit at level 0, pause by reaching a halt, corresponding to
level 1, and throw an exception by running an exit at level 2
or higher. An exit node sends control directly to the parallel
for its thread; a halt sends control back up the reconstruction
tree to the closest parallel. Once all of a parallel’s threads have
returned control to it, the parallel sends control either back up
the reconstruction tree or to an exception handler, depending
on the highest exit level of all its threads. Using the highest
exit level means the parallel only terminates if all its threads
have terminated, and exceptions take precedence over paused
or terminated threads.

To illustrate exit level behavior, consider the case when the
sustain Rstatement is terminated. The node that emitssends
control to the halt immediately beneath it, indicating an exit at
level 1 (i.e., halt), and control flows up to the second parallel.
Meanwhile, this causes the test forto succeed and causes
to be emitted, sending control to the second-to-last halt (an exit
at level 1) and up the reconstruction tree to the first parallel.
The presence of is noted and causes the exit at level 2 to be
executed. The exit level of the threads at the second parallel is
therefore 2, so the parallel sends control to the node that emits

and exits at level 0. Both threads under the second parallel are
now terminated because the right thread under the top parallel
has terminated. The topmost parallel has an exit level of 1 since
the other thread halted, so control flows back up the reconstruc-
tion tree to the root and the program is done for the cycle.

V. OVERVIEW OF THE NEW COMPILER

The EC compiler produces better code for sequential proces-
sors by choosing a more appropriate intermediate representation

EDWARDS: ESTEREL COMPILER FOR LARGE CONTROL-DOMINATED SYSTEMS 173

Fig. 5. The CCFG EC generates for the program in Fig. 1. Dashed lines
represent data dependencies. Variabless0, s1, s2, ands3 store state between
cycles;e2 holds the exit level of the group of threads. Initially,s0 = 2 and all
other variables are uninitialized.

than other compilers. The representation—a CCFG—is seman-
tically closer to the Esterel source and the final generated code
than the automata, netlists, or event graphs used by other Esterel
compilers. The result is code that looks more like a direct im-
plementation of the Esterel program instead of a simulation of
its behavior as a circuit or a discrete-event system.

EC interprets the control flow of the IC format much like the
gate compilers, so the generated code is of comparable (usu-
ally linear) size and avoids the exponential increase of the au-
tomata compilers. However, unlike the gate compilers, EC is
able to avoid wasting time performing computations in inactive
portions of the program because it preserves control flow. The
result is code about the same size as that from a gate-based com-
piler that can run as much as 100 times faster.

The CCFG EC uses as an intermediate representation can be
translated into software almost as easily as the branching pro-
grams of the automata compilers and has concurrent semantics
so it can be generated from IC using an algorithm almost exactly
like that in the gate-based compiler. Removing concurrency is
the one challenge. We present an efficient algorithm for this in
Section VII.

EC translates the IC graph in Fig. 3 into the CCFG in Fig. 5
using the algorithm in Fig. 7. This mainly transforms the recon-
struction tree into semantically simpler conditional, fork, and
join nodes, but also compiles away much of the walk up the re-
construction tree. Rather than storing information about the path
taken up the reconstruction tree at each reconstruction node, this
information is stored in one variable per thread (0, 1, 2, and
3) encoded using the algorithm described in Section VI-D.

A CCFG has software-like semantics, but its concurrency
must be removed. Removing concurrency is complicated mainly

Fig. 6. The SCFG EC generates for the program in Fig. 1. Three context
switches—tests and assignments oft2 andt3—were introduced to interleave
the execution of the threads.

by Esterel’s ability to communicate between threads in the same
cycle. In a program such as Fig. 1, the execution of the two
threads must be interleaved, i.e., the second thread must run after
the first thread runsemit Rbut before the first thread runsemit
O. The dashed lines in Fig. 5 show these dependencies.

EC interleaves concurrently running threads by inserting code
that simulates a context switch. Instead of using a costly oper-
ating-system-like mechanism to save and restore the processor’s
state, each thread simply writes its control state to a variable (a
single constant) and resumes with a multiway branch. In effect,
the C compiler becomes responsible for saving and restoring
context (register contents and the program counter) and can do
it more efficiently since it knows which variables are live. In
Fig. 6 (the SCFG EC generated from the CCFG in Fig. 5), EC
has inserted three such context switches, which write and test
variables 2 and 3.

EC can only handle programs where the instructions can run
in the same order in all states, much like the acyclic circuits
generated by the gate-based compilers. This is a fundamental
limitation since EC is based on static scheduling. Although each
instruction may or may not execute in each cycle, the statements

174 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 2, FEBRUARY 2002

appear in a particular order in the generated code and can only be
executed in that order. Thus, EC is unable to compile all valid
Esterel programs, but the class of programs it can compile is
broad, interesting, and includes all the large Esterel programs
we know of.

VI. TRANSLATING IC INTO A CONCURRENTCONTROL-FLOW

GRAPH

EC starts by translating an Esterel program expressed as an IC
graph (Fig. 3) into a CCFG such as Fig. 5. This replaces preemp-
tion conditions with simple conditionals, inserts multiway con-
ditionals to resume threads at the beginning of each cycle, and
replicates code that is executed twice or more in the same cycle
(Section VI-B explains this “reincarnation” problem in detail).
The result is a representation that is close to the natural represen-
tation of code on a sequential processor (i.e., a flowchart), but
concurrent. Section VII explains how to remove concurrency.

A CCFG contains action, conditional, fork, and join nodes,
each with an expression. When control reaches a node, the
node’s expression is evaluated and control flows along one
or more arcs leaving the node. An action node has a single
outgoing arc and its expression is usually an assignment.
Control leaves a conditional node along the arc whose integer
label matches the value of the expression. These becomeif or
switchstatements in C.

Fork and join nodes start and collect groups of parallel
threads. Control flows out all arcs leaving a fork, starting a
group of threads that will rendezvous at a matching join node
before continuing. Fork and join nodes may nest, but control
may not pass between threads. Specifically, all paths from a
particular fork meet for the first time at the matching join.
The CCFGs built by the translation algorithm described below
always have this structure.

A. The Translation Algorithm

Fig. 7 presents the recursive algorithm for converting an IC
graph into a CCFG, an adaptation of the algorithm Berry de-
veloped for synthesizing gates from Esterel. It consists of two
recursive functions with side effects, seqNode and recNode, that
visit IC nodes and build the CCFG on the way. The algorithm is
split into two routines mainly to distinguish the two ways con-
trol can reach a watchdog node. The arguments to the two rou-
tines are , the IC node being copied,, the reincarnation level
(explained in the next section),, the thread of node, and ,
the join node for the current group of threads.

The two functions perform a modified depth-first traversal of
the IC graph, adding and copying nodes to the CCFG as they
go. The seqNode function begins with a test to see whether the
node has been visited before; recNode needs no such test since
the reconstruction nodes form a tree.

Exit and halt nodes have no successors, so they terminate
the recursion. Each becomes a pair of nodes, one that sets
its thread’s state (encoding these variables is described in
Section VI-D) and one that sets the exit level for the parallel
that spawned the threads. The last of these two nodes branches
to the join for the current group of threads.

Fig. 7. How to translate an IC graph into a CCFG (after Berry). The recursive
procedures seqNode and recNode visit and copy IC nodes by following
sequential and reconstruction arcs, respectively.n: IC node being visited,l:
reincarnation level (see Section VI-B),t: thread in whichn resides,j: CCFG
join node for the thread.

The basic recursive step happens for conditional and emit
nodes. These are simply copied to the CCFG and arcs added
to copies of their successors.

There are two ways to reach a watchdog. From a sequential
node such as a conditional or emit, a watchdog becomes a con-
ditional that checks its thread’s state and branches to one of its
reconstruction children. This is the rule for a Watchdog node in
seqNode. From a reconstruction node, a watchdog sends control
to its single sequential successor. This is the rule in recNode.

Not surprisingly, fork and parallel nodes are the most com-
plicated. In both cases, they synthesize new threads after adding
fork and join nodes that reset and test the exit level associated
with the parallel. (Exit and halt nodes set this level, as described
above.) Fork is easier to understand: for each of its successors,

EDWARDS: ESTEREL COMPILER FOR LARGE CONTROL-DOMINATED SYSTEMS 175

Fig. 8. Reincarnation.Emit Sexecutes three times: (a) once at the beginning
of the cycle when the two parallels are restarted (level 2), (b) once whenexit
T3 terminates and restarts the inner loop (level 1), and (c) once whenexit T2
executes and is executed and causes the outer loop to restart (level 0).

it synthesizes the nodes in that thread, instructing them to con-
nect to the just-created join node for the group. After this, it adds
arcs from the join node to every reachable exception handling
routine on the matching parallel.

The rule for the Parallel is slightly more complicated. For
each of its threads, it generates a conditional that checks the
state of the thread and either branches to one of the thread node’s
children or directly to the join if the state is zero (i.e., when the
thread is no longer running but one of the other threads under
the same parallel is).

B. Unrolling to Remove Reincarnation

A simple depth-first traversal of the IC graph can produce
cyclic CCFGs even though Esterel prohibits single-cycle infinite
loops. The sequentializing algorithm we present in Section VII
requires an acyclic CCFG, so the CCFG synthesis algorithm
must remove these cycles by duplicating nodes, visiting them
more than once. Berry first developed this unrolling technique
to remove cycles from the output of his gate-based compiler.

Even if an Esterel statement is enclosed in a loop, it generally
cannot execute twice in a cycle because Esterel forbids loops
whose bodies can execute entirely within one cycle. However,
if a concurrently running thread throws an exception, the loop
can be restarted in the same cycle and the first statement in the
loop can run again.

Fig. 8 shows a program with reincarnation.Emit Sruns three
times because it is the first statement in a loop that is terminated
and instantly restarted by exceptions.Emit Sruns first when it is
restarted through the reconstruction tree [Fig. 8(a)]. Meanwhile,
exit T3runs and restarts the inner loop, sending control back to
emit Sthrough the arc labeled 0,3 [Fig. 8(b)]. Similarly,exit T2
also runs, terminating and restarting the outermost loop and run-
ningemit Sfor a third and final time [Fig. 8(c)]. This behavior is
unambiguous because the effects of a trap are always felt after
all parallel threads have finished for the cycle.

The CCFG synthesis procedure in Fig. 7 distinguishes the
three invocations ofemit Sby maintaining the parallel nesting

Fig. 9. The CCFG generated for the program with reincarnation in Fig. 8.

level . In general, all the nodes in a thread are at the same level.
Nodes in a thread reached from a parallel are at one level greater,
but nodes reached through a fork are at the same level.

In Fig. 8,emit Scan be reached at levels 0 [through the two
forks, Fig. 8(c)], 1 [through the top parallel and lower fork,
Fig. 8(b)], and 2 [through the two parallels, Fig. 8(c)]. The
CCFG synthesis algorithm considers these three separate visits
and makes three copies ofemit S, one per reincarnation, as
shown in Fig. 9.

Theemit Rin Fig. 3 can be reached at levels 1 (through the
first parallel and the second fork) and 2 (through the two paral-
lels). Since it cannot be reached at level 0 (there is no path to it
that does not pass through at least one parallel), only two copies
of emit Rappear in Fig. 5.

C. Computing Reachable Exit Levels

The rules for synthesizing fork and parallel nodes in Fig. 7
involve an iteration over all reachable exception successors of
a parallel node. To avoid cycles in the CCFG, it is crucial to
distinguish between the exceptions that can be taken by the code
in a thread reachable from a parallel and that reachable through
the fork. For example, in Fig. 8 only exit level 1 can be reached
from the lower fork. This is important since if exit level 3 was
erroneously considered reachable, the join node synthesized for
the fork would branch back to the fork and create a loop. EC
calculates the reachable exits from each fork and parallel using
a conservative algorithm due to Berry that considers all paths
from a conditional reachable. The information is used both to
limit which exception handlers are synthesized from each join
and for a variety of other optimizations.

The recursive algorithm for computing exit levels, shown in
Fig. 10, builds two sets for each thread, the set of exit levels that
can be reached from the fork, i.e., when the thread is first started

176 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 2, FEBRUARY 2002

Fig. 10. The algorithm for computing reachable exit levels in the IC graph. The
two recursive functions seqlevels and reclevels return the exit levels reachable
from a node when entered through a sequential arc and arc in the reconstruction
tree, respectively. Parexits computes the exit levels reachable at a parallel. The
implementation in EC of these functions memoizes two values of the functions,
one for the levels visible from a fork, the other from a parallel.

and the set that can be reached when the thread is restarted
through the parallel.

The seqlevels and reclevels functions in Fig. 10 recursively
compute the exit levels visible from a node reached through
a sequential arc and the reconstruction tree, respectively. The
rule for conditional considers both true and false branches and
simply combines the two sets. The rule for watchdog combines
the levels reachable from each of its children in the reconstruc-
tion tree.

Not surprisingly, the rules for parallel and fork are the most
complicated. Both compute the exit levels that each of their
threads can reach. They then pass this information to the parexits
function, which looks at the exit levels of each thread to find the
exit levels that can be taken by the parallel once the threads are
finished for the cycle, and finally combines the levels that can
arise from handling any of these exceptions.

The rules in parexit assume that any combination of the exit
levels from each thread may appear. However, since the highest
exit level always prevails at a thread, parexit first computes the
minimum exit level of each thread and uses the highest such
value to place a lower bound on the lowest exit level that will
be considered. For example, if one thread can exit at levels 0, 2,

and 3, and another can exit at levels 1 or 2, the pair can only exit
at levels 1, 2, or 3, since if the first thread exits at level 0, the
second always takes priority since it exits at levels 1 or 2. This
situation occurs frequently since threads often contain infinite
loops and thus never terminate at level 0.

D. State Assignment

At the beginning of each cycle, control flows down the re-
construction tree along the path taken up the tree at the end of
the last cycle. When control reaches it, each reconstruction node
must decide to which of its children it should send control. The
state assignment problem amounts to choosing a representation
that makes these decisions easy.

The V3 compiler keeps a variable at each node that stores
the index of the child that will receive control when the node is
next executed. This makes the decisions very easy but tends to
waste memory because most nodes have only a few children
to distinguish. Furthermore, executing a halt instruction may
require setting many variables.

This section presents an encoding that requires less memory
and time. The key observation is that an Esterel program can be
divided into threads, sections of the reconstruction tree through
which at most one path is taken. These are blocks of code sepa-
rated by statements and amount to areas where there is at most
a single point of control. In the reconstruction tree, a thread is
a subtree rooted at a thread node or the root whose leaves are
halts or other parallels.

Instead of one variable per watchdog, EC represents the state
of each thread using a single variable. This saves memory, since
fewer variables are needed, and time, since a halt simply assigns
one constant to one variable instead of walking up the recon-
struction tree, but the code at a watchdog is slightly more com-
plicated because it must shift and mask the state before testing
it. Fig. 11 illustrates the technique. The code for a path is formed
by concatenating the sequence of labels along the branches. The
least significant bits are labels at the root. For example, the halt
labeled 10110 in Fig. 11 takes its value by being along the path
labeled 10, 01, and finally 1. Most branches are labeled 0, 1, 2,
etc. encoded in binary using just enough bits to distinguish them.
Branches from the root are slightly different; since the all-zero
state is used to represent when the thread has terminated, the la-
bels at the root of the thread start at 1.

Such an encoding allows the code at each watchdog to decide
which branch to take by a shift and a mask (drawn to the right of
the nodes in Fig. 11). The shift is unnecessary at the first deci-
sion point within the thread, and the mask is unnecessary at the
last. In practice, many threads contain very simple reconstruc-
tion subtrees and these optimizations often greatly simplify the
code.

This encoding is very compact when the number of branches
at each node in the reconstruction tree is a power of two. Codes
are wasted, for example, when a node has nine branches beneath
it, since this requires four bits and nearly half of the possible
codes are unused.

A single thread with many levels of nested watchdogs could
overflow the single integers used to represent the state of a single
thread. Using more bytes to represent a thread’s state is the ob-
vious solution, but we did not implement this because none of

EDWARDS: ESTEREL COMPILER FOR LARGE CONTROL-DOMINATED SYSTEMS 177

Fig. 11. Encoding states within a thread (a subtree of the reconstruction tree).
The encoding of each state (written below each halt or parallel) is formed by
concatenating the labels along the path from the top parallel. The expression
evaluated at each node is written to its right.

the benchmarks had this problem. In handwritten code, most
state trees (e.g., Fig. 11) are wide (i.e., contain many pauses),
not tall (i.e., do not contain many sequences of nested preemp-
tion conditions). The state encoding is trivial for small examples
such as Fig. 1.

VII. REMOVING CONCURRENCY

After EC translates the IC graph representation of an Esterel
program into a CCFG using the algorithm in the last section,
it generates a SCFG by statically analyzing the concurrent be-
havior of the program, interleaving the code for each thread and
inserting code that simulates context switches. The result is a
SCFG that can easily be translated into a C function using the
algorithm in Section VIII. Code generated this way runs faster
than V5’s gate code because it is a better fit to a processor’s
natural control behavior. The code from V3 runs faster because
it avoids the overhead of context switching and internal com-
munication, which it exhaustively analyzes when the program
is compiled. But this comes at the expense of extensive code
duplication. In effect, the code generated by V3 uses a distinct
value of the program counter for each possible combination of
program counters and internal signal states in the Esterel pro-
gram.

The sequentializing procedure operates in three steps. First, it
adds data dependency arcs to represent the constraint that each
write of a signal must precede each read (the dashed lines in
Fig. 5). Second, it schedules the nodes in the CCFG by placing
them in a topological order that respects both the existing con-
trol dependencies and the newly added data dependencies. Fi-
nally, it copies each CCFG node in scheduled order to a SCFG,
along the way inserting nodes that save and restore control state
where the schedule implies a context switch. (For example, the
nodes that write and test variables2 and 3 in Fig. 6.)

A. Scheduling

A schedule is an order of all the instructions in the program
such that each runs when its predecessors have run and its data
is ready. EC uses a schedule to determine the order instructions
in concurrent threads will run and when one thread must be sus-
pended and another resumed, i.e., when to context switch.

TABLE I
EXAMPLES USED IN EXPERIMENTS

TABLE II
NUMBER OF IC, CCFG,AND SCFG NODES IN THEEXAMPLES

Any topological order of the CCFG augmented with data arcs
is a correct schedule, but certain orders are better than others be-
cause they require fewer context switches. For example, a better
choice of schedule in Fig. 6 would have eliminated the assign-
ments and test of3; the nodes3 and 3 2 appeared too early.
Unfortunately, finding a schedule with a minimum number of
context switches is NP-complete, but a bad schedule does not
significantly slow or bloat the generated code. Theoretically,
the slowdown or bloat may be quadratic, but in practice EC
produces acceptable code using a simple depth-first scheduler.
Table II shows the sequentializing procedure fed with a simple
scheduler increases the number of nodes at most 65% for the
largest 16 500-node example.

The optimum scheduling problem is NP-complete because
it could be used to solve the minimum feedback vertex set
problem. To solve the minimum feedback vertex set problem
for a particular directed graph, create a program with one

178 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 2, FEBRUARY 2002

Fig. 12. Construction to demonstrate the NP-completeness of the minimal
scheduling problem. (a) For each node in a directed graph, construct a thread
like this one for a noden1 with incoming arcsa1 anda2 and outgoing arcsa3,
a4, anda5. The signaln1 is an input,n1a, andn1b are outputs. (b) If this node
is not part of a cycle, the code for the two threads can be grouped under a single
conditional. (c) If code for the node must be split because of a cyclic path in the
graph that passes through the node, the test forn1 must be duplicated.

thread per node, each thread having a single conditional
invoking two threads beneath it [an operation],
such as in Fig. 12(a). The first of these threads depends on
signals corresponding to incoming arcs in the given node;
the second emits signals corresponding to outgoing arcs.
Instructions corresponding to a node that does not participate
in any cycle can be scheduled together to generate code such
as in Fig. 12(b), the code for at least one node in each cycle
must be split as in Fig. 12(c). This requires duplicating a test,
so the code size grows with the number of splits. Splitting a
node is analogous to removing it from the graph, so asking
if there is a schedule that generates code under a certain size
is equivalent to asking if the graph can be made acyclic by
removing fewer than a certain number of nodes—the feedback
vertex set problem.

EC assumes a static schedule exists, i.e., there is a unique
order in which all statements can execute in every cycle. This is
true for many programs, but Esterel programs can have data-de-
pendent orders. These may appear when resources are shared
and used in different orders in different cycles, or when the
system is inherently cyclic, such as a cyclic-ring arbiter. EC is
unable to compile such programs.

Automata compilers permit statements to execute in different
orders in each state, since they generate separate code for each.
Gate-based compilers have a harder time: they must completely
explore the state space of the system before concluding that the
program is valid. As a side-effect, they determine the function of
the system in all of these states and resynthesize the cyclic por-
tions of the netlist. This is the machinery developed by Shiple
et al. [8]. We discuss the possibility of using this technique in
EC in Section X.

B. Building the Graph

Fig. 13 shows the algorithm for synthesizing a SCFG from
a CCFG, the most important algorithm in EC and this paper’s
key contribution. The algorithm walks through the nodes in the
CCFG in scheduled order, copying each (line 2) and attaching
its incoming arcs at each step (line 24). Normally this just copies
the graph, but additional nodes are inserted that save and restore
control state when control must switch between concurrently
running threads.

Fig. 14 depicts a few steps of the algorithm while it is building
Fig. 6. In effect, the algorithm sweeps a line through the con-
current graph, shifting each node across the frontier (the dotted
line) and attaching its incoming arcs according to the arcs that
cross the frontier. Maintaining these arcs—predecessors (indi-
cated with dashed lines)—is the algorithm’s main concern.

A node keeps track of two types of node that may eventu-
ally branch to it. The most common is a “normal predecessor,”
a copy of a CCFG node. Line 21 maintains these predecessors,
indicated by dashed arrows in Fig. 14(a). The other type of pre-
decessor is a “restart predecessor,” a multiway branch created
when a thread is resumed. Line 34 assigns these. Node3 in
Fig. 14(e) is a restart predecessor, indicated by a dotted arrow.

The distinction between normal and restart predecessors
comes when a thread is suspended, in line 44. Only normal
predecessors are saved. Since a restart predecessor indicates
the possibility of something restarting, it is wasteful to save
something that never started.

The algorithm simply copies the CCFG when synthesizing a
sequence of nodes in the same thread (where context switching
is unnecessary). The main loop copies each node (line 2), con-
nects arcs from its predecessors (line 24), and prepares to con-
nect the arcs to its successors (line 21). The resume and suspend
procedures do nothing.

Fig. 14(a) and (b) illustrates this common case, showing
how a node is synthesized when no context switch is needed.
Fig. 14(a) shows 1’s single normal predecessor, created
earlier in line 21 when node was copied. In Fig. 14(b), line 2
has copied1 to the sequential graph (moved above the dotted
line), line 24 has added an arc from1’s predecessor to the
new copy of 1, and line 21 has added the new sequential node
1 as a normal predecessor of both3 and 1 3.

Synthesizing context switches is more complicated. When
one thread is running and a node from another thread must run
(usually when the first thread communicates to the second), the
control state of the running thread is saved and the control state
of the suspended thread is recovered. The suspend and resume
procedures accomplish this by adding nodes that save and re-
store control state. They are recursive because threads are often
nested in Esterel.

Fig. 14(c)–(e) shows how this works. In Fig. 14(c), the two
join nodes labeled2 and an unlabeled join are in the thread to
be suspended (line 20 placed them there when their predecessors
were copied). In Fig. 14(d), the suspend procedure has run; line
43 has added nodes2 3, 2 4, and 2 1 to save
the state of the thread, line 44 has added arcs from the two
nodes, 2 1, and 2 to the new state-saving nodes, and line 45
has added each of the save state nodes as normal predecessors

EDWARDS: ESTEREL COMPILER FOR LARGE CONTROL-DOMINATED SYSTEMS 179

Fig. 13. How to convert a CCFG into a sequential one. The main loop steps through the CCFG in scheduled order, copying each node and calling connect() to
attach arcs from nodes that could run it next. The suspend procedure suspends a running thread under a fork, and resume prepares it to continue running.

Fig. 14. Synthesizing SCFG nodes. The dotted line separates the SCFG (above) from the uncopied part of the CCFG. In (a) and (b), nodes1 is synthesized. In
(a), s1 hasS as its sole predecessor (dashed arrow). In (b),s1 has been copied to the SCFG, an arc has been added fromS to s1 in the SCFG, and nodess3 and
s1= 3 now have the copy ofs1 as their predecessors. (c), (d), and (e) depict the synthesis of a context switch. In (d), the three uncopied nodes in (c) have been
run as nodes that save their thread’s state and the fork has gained them as predecessors. In (e), the fork node has been run as a conditional that tests thestate of the
resumed thread, and nodes in that thread have gained it as a predecessor.

of the unlabeled fork that is the parent of this thread (in the
suspend procedure).

Fig. 14(e) shows the state after the resume procedure has run.
Line 32 has created node3, which tests the state of the thread
being resumed, line 33 has called connect, causing line 21 to
connect arcs from2 3, 2 4, and 2 5 to 3 (these
nodes were the normal predecessors of the fork), and line 34 has
added 3 as the restart predecessor of the node that testsand
the unlabeled join; the two nodes that were about to run before
the thread was suspended.

Currently, EC uses a trivial encoding for the state of threads
suspended within a cycle (this is different from the careful
encoding used to save state between cycles described in
Section VI-D). Each CCFG node is encoded with the unique

small-integer identifier assigned when the node is created.
While this is hardly the most efficient encoding, it matters little.
Most resume branches are two-way, which become compar-
isons to a constant. A more efficient encoding might consider
the sequence of nodes that are suspended and resumed for a
particular thread and try to reuse codes to make the encodings at
each resume dense, perhaps using a graph-coloring algorithm.

VIII. G ENERATING WELL-STRUCTUREDC CODE

This section describes how to generate attractive,
human-readable C code from the SCFG produced by the
algorithms in Section VII. Generating correct C code is easy
(the SCFG representation was chosen to make this trivial), but

180 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 2, FEBRUARY 2002

making it easy-to-read is harder. We did this to aid users of the
compiler when they wish to debug their programs, although
it may also make it easier for the C compiler to optimize the
result.

The SCFGs generated by the algorithm in the last section are
simple. Each node has an expression that is evaluated when the
node runs. If the node has two or more successors, the result of
the expression is used to choose among them. A code generation
algorithm could simply generate the code for each node and
usegoto statements to branch to the appropriate location. The
Polis compiler [5], [6] does this and the results, while correct,
are inscrutable, although this is partly due to the unstructured
control graphs generated from BDD’s.

Structuring control-flow graphs has been studied in a
few contexts. Baker [14] proposed an algorithm for finding
high-level control constructs (e.g., if–then–else, while loops)
in goto-riddled FORTRAN programs. Cifuentes [15] used
a similar procedure to reconstruct high-level information in
control-flow graphs generated by decompiling executables.
Since loops are the main concern in both works, and the SCFG
our compiler generates have no loops, the algorithms are not a
good fit for the problem here.

The algorithm in EC generates sequences of statements for
sequences of action nodes in the control-flow graph and condi-
tionals—if–then–elsefor two-way branches;switchstatements
for three or more—for nodes with more than one outgoing arc.
The challenge is deciding which nodes to include in the body of
a conditional and which to place outside.

We choose the immediate postdominator of a conditional
node as the first node outside the scope of the body of the
conditional. A node postdominates nodeif every path from

to the exit of the control-flow graph passes through. The
immediate postdominator is the uniquesuch that no other
node both postdominatesand is postdominated by. This is
a classical relationship in graph theory, and we use the standard
fast algorithm by Lengauer and Tarjan to compute it [16].

Fig. 15 shows the immediate postdominators for the condi-
tional nodes in Fig. 6. As expected, they are choke-points in the
control-flow graph and match what a programmer would prob-
ably choose.

Fig. 16 shows the recursive algorithm used to build an abstract
syntax tree (i.e., that can be easily traversed to produce C source
code) from a control-flow graph. The function takes three argu-
ments—the node to be synthesized, the node that follows it, and
a flag indicating whether a break statement is necessary to reach
this nod—-and returns an AST for the node.

Fig. 16 actually builds the program backward, constructing
the nodes that will appear later in the program before those that
will appear earlier. This is to ensure allgotostatements are for-
ward, which is expected when the control-flow graph contains
no loops. This is why code for anelsebranch is computed be-
fore thethenbranch, and why code for eachcaseof a switch
statement is inserted at the beginning of its body rather than at
the end.

Fig. 17 shows the code Fig. 16 generates from the SCFG in
Fig. 6. Because the successors of a multiwayswitchstatement
are built in an undefined order, some arbitrary choices were

Fig. 15. Postdominators of the conditional nodes in Fig. 6. The solid line
from each conditional leads down to the first instruction outside the body of the
conditional. The immediate postdominator of a node is the closest node through
which all paths from the conditional pass.

Fig. 16. The algorithm for building an AST from a SCFG such as Fig. 6. This
recursive function builds later statements first (e.g., the else before the then
branch) to ensure allgotostatements branch forward.

made. For example, the twocases in the second switch state-
ment could have been reversed, but the code after6 would still
have appeared in the later case since Fig. 16 ensures allgotos
are forward.

IX. EXPERIMENTAL RESULTS

We ran experiments to compare the quality of code generated
by the new compiler to that from the V3 automata compiler,
the V5 gate-based compiler, the output of V5 after being passed
through logic synthesis, and the compiler by Bertinet al. [9],
[10]. To measure average cycle times, we ran the generated pro-
gram for a second and counted the number of cycles it executed.
We generated pseudorandom input patterns with an testbench
generated by the algorithm of Yuanet al.[22] to produce inputs
that observed environmental constraints (e.g., mutually exclu-
sive input signals) but did not weight the inputs. Measured times

EDWARDS: ESTEREL COMPILER FOR LARGE CONTROL-DOMINATED SYSTEMS 181

Fig. 17. Code generated from Fig. 6 by the algorithm in Fig. 16. This behaves
like the concurrent Esterel program in Fig. 1 and is the final output of the
compiler.

do not include time to run the testbench. We ran the testbench
separately and subtracted out its effects, which was as high as
75% of the execution time for the small examples, and probably
distorted their times, but was less than 1% for the large exam-
ples.

The example programs, listed in Table I, were all handwritten
and range from toy examples (hundreds of lines) to industrial
size (nearly 10 000 lines).

Fig. 18 shows the average cycle times and executable sizes
we measured for these examples on two machines: a 336-MHz
UltraSPARC-II and a 233-MHz Intel Pentium. Compared to EC,
the V5 compiler produces consistently slower, larger code, but
running the output of V5 through an aggressive logic optimizer

can eliminate the gap, albeit only after many minutes of work
and only for the smaller examples. Logic optimization did not
finish in an hour on the examples over 1000 lines; EC was able
to compile the largest example in 10 s.

The V3 compiler, when it runs, generally produces faster
code, but at the expense of very large executables. It did not
complete in an hour for any example larger than 1000 lines, and
failed on a 600-line example. More precisely, V3 appears not to
be able to compile programs with more than about 300 states.

Bertinet al.’s compiler produces code about twice as big and
twice as fast as that from EC. The missing data points for large
examples were due to the source not being available for some
and because of a bug in their compiler that incorrectly rejected
some programs. In theory, their approach should scale as well
as EC’s.

Small programs run faster on the lower clock-rate Pentium,
but larger examples run slower. We suspect this is due to dif-
ferent cache sizes on the two processors.

The speed of V5 without logic optimization very closely
tracks the size of the program. This is expected since each
source statement becomes a few gates, and each gate is executed
once per cycle, thus the speed should be directly proportional
to the source program size. The speed of the code from the
other compilers appears to have little to do with the size of
the source. This is expected, since the speed of the code from
these compilers is related to the number of source instructions
that must execute each cycle, which differs from the number of
instructions in the program an varies among programs.

The wristwatch example (465 nodes) shows the least vari-
ance among the different compilers because it calls a substantial
number of external routines. Much of its execution time is spent
in these routines, so the quality of the generated code matters
less.

Compilation time becomes noticeable for the larger exam-
ples, but the C compiler is the bottleneck. For example, V5
without logic optimization was able to produce C code for the
largest example in 7 s, and EC was able to produce it in 10 s, but
it took Sun’s CC about 2 min to compile the output from EC,
and 45 min to compile V5’s output.

Compilation times for V3 can range from very short to unac-
ceptably long (hours). Unfortunately, patience in running V3 is
not rewarded since long runs produce impractically large exe-
cutables.

X. CONCLUSION AND FUTURE WORK

This paper has presented a new way to compile the syn-
chronous language Esterel that preserves much of the program’s
original control structure for a code size and speed advantage.
It translates Esterel’s preemption and exception constructs into
conditional branches and compiles away its concurrency by
statically scheduling the instructions and inserting code that
saves control state in variables and restores it with conditional
branches. Ultimately, it produces mostly structured C code that
contains somegotos.

Experiments show EC produces code that can be 100 times
faster and half the size of code from other high-capacity com-
pilers.

182 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 2, FEBRUARY 2002

Fig. 18. Average cycle times for random inputs and executable sizes as a function of source program size for the examples in Table I. The four compilers are
the automata-based V3, the gate-based V5, the output of V5 run through logic optimization, the new compiler EC, and Bertinet al.’s compiler (SX). Missing data
points indicate part of the compilation chain failed or the source code was not available. (a) Average per-cycle execution times as a function of the source program
size for a 336-MHz Sun UltraSPARC-II with a 4-MB cache, (b) sizes of the executable (generated by Sun’s “cc -O”), (c) average cycle times on a 233-MHz
Pentium with a 512-kB cache, and (d) executable sizes for the Pentium (generated by egcs 2.91.66 -O).

EC is currently used to generate simulation code in CoCen-
tric System Studio (described under an earlier name by Buck
and Vaidyanathan [23]), an environment that allows designers
to specify systems using a mixture of dataflow graphs and hier-
archical finite-state machines. To compile a simulation, System
Studio translates control behavior into IC programs, EC com-
piles them into C, and the result is linked code generated by
System Studio for the dataflow portion.

Other applications are possible, in addition to compiling Es-
terel, EC could easily be adapted to compile other synchronous,
concurrent languages, such an Lavagno and Sentovich’s ECL
[24].

Many further optimizations are possible. The automata com-
pilers can produce much better code for small examples. One
possibility is to apply the automata compilation technique to
small segments of a much larger program, such as those with fre-
quent synchronizing communication. Such things usually have
far fewer states than a simple product would suggest and are ex-
actly those where automata code would be far better than that
from EC.

Handling apparently cyclic programs is another challenge.
One approach would be to resynthesize cyclic portions of the
circuit as the V5 compiler does using the technique due to Shiple
et al. [8]. They generate an exact three-valued next-state func-
tion by unrolling the circuit according to the algorithm of Bour-
doncle [25] and try to use it to prove that no state with un-
known outputs is reachable. If they succeed, they resynthesize
the cyclic portion of the circuit by forcing the exact three-valued
next state function to take two values. Specifically, if in some

state an output of the three-valued function is unknown, they
replace that output with a 1. This does not affect the behavior of
the program because their technique proves that none of these
states can be reached.

How to apply this Boolean technique to control-flow graphs is
not obvious, but another approach (suggested to me by Berry) is
possible. A cyclic network can always be evaluated by unrolling
it and simulating it using three-valued logic (i.e., each signal is
either present, absent, or unknown), but simulating three-valued
signals is costly in software, especially when simulating the pro-
gram counter. However, it is not necessary when the program
being evaluated is monotonic and guaranteed to always have de-
fined outputs. Esterel’s constructive semantics [26] guarantees
programs are monotonic; a more defined input always produces
an equal or more-defined output. Specifically, changing an input
from unknown to known can only change an undefined output
to known or leave the output unchanged. It follows that all un-
known inputs can be set to arbitrary, known values without af-
fecting the output provided the program is known never to pro-
duce undefined outputs.

Concretely, this technique would unroll each strongly con-
nected component of the CCFG using either Bourdoncle’s [25]
or our [27] scheduling algorithm. The amount of unrolling nec-
essary follows from the structure of the program and noting that
each signal can be either undefined or defined. Signals in the
SCC would be initialized to absent (the value does not matter)
and constant propagation on the resulting code would then
greatly simplify it. However, there is still the strong possibility
of a quadratic blow-up in code size with this technique.

EDWARDS: ESTEREL COMPILER FOR LARGE CONTROL-DOMINATED SYSTEMS 183

One of the reviewers noted that EC can be thought of as
having factored the automata code from V3. In effect, EC shares
code common to two or more states by predicating it with vari-
ables that represent control state and internal signals. This ob-
servation raises the possibility of a compiler that analyzes the
state space of an Esterel program and generates distinct pieces of
code not for single states, but for groups of states for which EC
generates efficient code. The result should be faster but larger
than normal EC output.

Most future work involves combining the ideas from all the
existing compilers, each of which have certain strengths.We are
confident that the result would be capable of producing fast,
small code for virtually all programs.

REFERENCES

[1] A. Benveniste and G. Berry, “The synchronous approach to reactive re-
altime systems,”Proc. IEEE, vol. 79, pp. 1270–1282, Sept. 1991.

[2] G. Berry and G. Gonthier, “The Esterel synchronous programming
language: Design, semantics, implementation,”Sci. Comput. Program-
ming, vol. 19, pp. 87–152, Nov. 1992.

[3] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The synchronous
data flow programming language LUSTRE,”Proc. IEEE, vol. 79, pp.
1305–1320, Sept. 1991.

[4] P. Caspi, A. Girault, and D. Pilaud, “Automatic distribution of reactive
systems for asynchronous networks of processors,”IEEE Trans. Soft-
ware Eng., vol. 25, pp. 416–427, May 1999.

[5] M. Chiodo, P. Giusto, A. Jurecska, L. Lavagno, H. Hsieh, K. Suzuki,
A. Sangiovanni-Vincentelli, and E. Sentovich, “Synthesis of software
programs for embedded control applications,” inProc. 32nd Design Au-
tomation Conf., San Francisco, CA, June 1995, pp. 587–592.

[6] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, A.
Sangiovanni-Vincentelli, E. M. Sentovich, and K. Suzuki, “Synthesis
of software programs for embedded control applications,”IEEE Trans.
Computer-Aided Design, vol. 18, pp. 834–849, June 1999.

[7] C. Castelluccia, W. Dabbous, and S. O’Malley, “Generating efficient
protocol code from an abstract specification,”IEEE/ACM Trans. Net-
working, vol. 5, pp. 514–524, Aug. 1997.

[8] T. R. Shiple, G. Berry, and H. Touati, “Constructive analysis of cyclic
circuits,” in Proc. European Design and Test Conf., Paris, France, Mar.
1996, pp. 328–333.

[9] V. Bertin, M. Poize, and J. Pulou, “Une nouvelle méthode de compilation
pour le language ESTEREL [A new method for compiling the Esterel
language],” inProc. GRAISyHM-AAA, Lille, France, Mar. 1999.

[10] D. Weil, V. Bertin, E. Closse, M. Poize, P. Venier, and J. Pulou, “Effi-
cient compilation of Esterel for real-time embedded systems,” inProc.
Int. Conf. Compilers, Architecture, and Synthesis for Embedded Systems
(CASES), San Jose, CA, Nov. 2000, pp. 2–8.

[11] B. Lin, “Software synthesis of process-based concurrent programs,” in
Proc. 35th Design Automation Conf., San Francisco, CA, June 1998, pp.
502–505.

[12] X. Zhu and B. Lin, “Compositional software synthesis of communi-
cating processes,” inProc. IEEE Int. Conf. Computer Design (ICCD),
Austin, TX, Oct. 1999, pp. 646–651.

[13] G. Gonthier, “Sémantiques et modèles d’exécution des langages réactifs
synchrones; application à Esterel. [Semantics and models of execution
of the synchronous reactive languages: Application to Esterel],” Thèse
d’informatique, Université d’Orsay, 1988.

[14] B. S. Baker, “An algorithm for structuring flowgraphs,”J. Assn. Com-
puting Machinery, vol. 24, pp. 98–120, Jan. 1977.

[15] C. Cifuentes, “Structuring decompiled graphs,” inProc. Int. Conf. Com-
piler Construction. Linkoping, Sweden: Springer-Verlag, Apr. 1996,
vol. 1060, Lecture Notes in Computer Science, pp. 91–105.

[16] T. Lengauer and R. E. Tarjan, “A fast algorithm for finding dominators in
a flowgraph,”ACM Trans. Programming Languages and Systems, vol.
1, pp. 121–141, July 1979.

[17] R. Bernhard, G. Berry, F. Boussinot, G. Gonthier, A. Ressouche, J.-P.
Rigault, and J.-M. Tanzi. (1989, May) Programming a reflex game in
Esterel V3. [Online]. Available: http://www.esteret.org

[18] G. Berry. (1991) Programming a digital wristwatch in Esterel V3. Rap-
port de recherche 8, Centre de Mathematiques Appliquees, Ecole des
Mines de Paris. [Online]. Available: http://www.esterel.org

[19] F. Clouté, J.-N. Contensou, D. Esteve, P. Pampagnin, P. Pons, and Y.
Favard, “Hardware/software co-design of an avionics communication
protocol interface system: An industrial case study,” inProc. 7th Int.
Workshop Hardware/Software Codesign (CODES), Rome, Italy, May
1999, pp. 48–52.

[20] G. Berry, A. Bouali, X. Fornari, E. Ledinot, E. Nassor, and R. De Si-
mone, “Esterel: A formal method applied to avionic software develop-
ment,”Sci. Comput. Programming, vol. 36, pp. 5–25, Jan. 2000.

[21] M. Chiodo, D. Engels, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno,
K. Suzuki, and A. Sangiovanni-Vincentelli, “A case study in com-
puter-aided co-design of embedded controllers,”Design Automation
Embedded Syst., vol. 1, pp. 51–67, Jan. 1996.

[22] J. Yuan, K. Shultz, C. Pixley, H. Miller, and A. Aziz, “Modeling design
constraints and biasing in simulation using BDDs,” inProc. IEEE/ACM
Int. Conf. Computer-Aided Design (ICCAD), San Jose, CA, Nov. 1999,
pp. 584–590.

[23] J. Buck and R. Vaidyanathan, “Heterogeneous modeling and simulation
of embedded systems in El Greco,” inProc. 8th Int. Workshop Hard-
ware/Software Codesign (CODES), San Diego, CA, May 2000.

[24] L. Lavagno and E. Sentovich, “ECL: A specification environment for
system-level design,” inProc. 36th Design Automation Conf., New Or-
leans, LA, June 1999, pp. 511–516.

[25] F. Bourdoncle, “Efficient chaotic iteration strategies with widenings,”
in Formal Methods in Programming and Their Applications: Int. Conf.
Proc.. Novosibirsk, Russia: Springer-Verlag, June 1993, vol. 735, Lec-
ture Notes in Computer Science.

[26] G. Berry. The constructive semantics of pure Esterel. [Online]. Avail-
able: http://www.esterel.org, 1999

[27] S. A. Edwards, “The specification and execution of heterogeneous syn-
chronous reactive systems,” Ph.D. dissertation, Available as UCB/ERL
M97/31, Univ. California, Berkeley, 1997.

Stephen A. Edwards (M’97) received the B.S.
degree in electrical engineering from the California
Institute of Technology, in 1992, and the M.S. and
Ph.D. degrees, also in electrical engineering, from
the University of California, Berkeley, in 1994 and
1997, respectively.

He is currently an Assistant Professor in the Com-
puter Science Department of Columbia University in
New York, which he joined in 2001 after a three-year
stint with Synopsys, Inc., in Mountain View, CA. His
research interests include embedded system design,

domain-specific languages, and compilers. He is the author ofLanguages for
Digital Embedded Systems(Boston, MA: Kluwer, 2000).

