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Abstract

A variety of new algorithms has begun to enable model
checking of industrial-sized netlists. This work attempts
to apply that technology to the verification of embedded
software: C programs that manipulate integers and con-
tain unstructured control flow, but are not recursive and
do not dynamically allocate memory.

We describe a synthesis procedure for translating a sub-
set of C into a netlist and present experiments that show
the models it builds seem to be harder to verify than typi-
cal hardware circuits, suggesting the problem has a differ-
ent character.

Although we only have preliminary experimental re-
sults, they help to identify the challenges inherent in veri-
fying this class of software and leave open the possibility
of more successful approaches.

1 Introduction

Finite-state model checking of hardware—logic netlists—
has grown powerful by employing a variety of algorithms
that include symbolic state-space traversal, bounded
model checking (e.g., satisfiability-based algorithms), and
the clever combination of these algorithms. Such a combi-
nation has allowed the Ketchum model checker [8, 14] to
prove properties of and generate test cases for industrial-
sized circuits that were previously beyond reach. This
work attempts to answer whether this technology can also
be applied to checking embedded software.

Embedded software is a vague term, but here we take it
to mean finite-state software containing a blend of arith-
metic and decision making. Most embedded software is
written in C, so we attempt to verify programs written
in a subset that includes integer arithmetic, unstructured
control-flow, and array accesses, but prohibits dynamic
memory allocation and recursion. Ultimately, we also in-
tend to address embedded software’s penchant for I/O, but
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for the moment we are focusing on the behavior during the
many cycles between I/O operations.

This paper makes two contributions: it describes a syn-
thesis procedure that builds a hardware model (a netlist)
for C programs written in a subset of the language, and
it presents experiments that suggest the netlists this pro-
cedure builds are harder to verify than the hardware cir-
cuits for which Ketchum was designed. From this, we
conclude that further progress will come only after chang-
ing the software we are attempting to verify, the synthesis
procedure, or the Ketchum model checker’s algorithms.

The Ketchum model checker [8, 14] takes a netlist and
attempts to generate tests for the reachable combinations
of user-supplied coverage signals and prove the others are
unreachable. It employs a variety of techniques includ-
ing random simulation, satisfiability (SAT), automatic test
pattern generation (ATPG), symbolic state space traver-
sal, and symbolic simulation. To verify software—a C
function—we build a netlist that models its behavior and
ask Ketchum to check signals corresponding toassert
statements. Ketchum may generate a test to show anas-
sert can run and fail, which helps the programmer diag-
nose the error; generate a test that makes theassertrun
and pass, which may be suitable for a regression suite; or
prove that theassertcan never run and fail, increasing a
programmer’s confidence in program correctness.

The synthesis procedure that builds the netlist from a
C function for Ketchum resembles behavioral synthesis
algorithms (see, e.g., De Micheli [7]), but its objectives
differ. Unlike synthesis for a hardware implementation,
which focuses on meeting worst-case cycle time, this pro-
cedure minimizes the number of intermediate states by
chaining as many operations in a clock cycle as possible.

Currently the synthesis procedure only handles a subset
of C, but more of the language could be accommodated.
Integer arithmetic, unstructured control-flow (i.e., all the
standard control-flow constructs such as if-then, for, and
while are supported as well as gotos), and arrays are cur-
rently supported: a large enough subset to be represen-
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tative of much embedded software. Each array is mod-
eled by a separate memory object (i.e., with read and write
ports, each with an address). Pointers could be supported
using the techniques of Séméria et al. [11], who perform
pointer analysis to determine to which memory areas each
pointer may refer to transform each pointer dereference
into an array access.

Since Ketchum only handles finite-state models, we
do not support recursion or dynamic memory allocation.
These are not significant restrictions as most embedded
software does not use recursive algorithms for fear of run-
ning out of stack space, nor does it do extensive memory
allocation for fear of running out of memory.

1.1 Related Work

The synthesis procedure combines ideas from existing ap-
proaches. We synthesize the datapath and its multiplexers
using the well-known static single assignment form [6].
Controller synthesis uses a simplified form of Berry’s
technique for Esterel [4], which also handles preemption
and parallel synchronization. Sharp and Mycroft’s [12]
on-demand technique to insert clock cycles inspired ours,
and they use a similar technique to synthesize controllers.

The Bandera project from the University of Kansas [5]
takes a similar approach, also transforming an unmodi-
fied software program (in their case, a concurrent Java
program) into a form suitable for existing model check-
ers. Instead of the netlist form used here, they use a
guarded command language as an intermediate represen-
tation. They also perform automatic (e.g., slicing) and
manual abstraction based on the property being tested.

Many techniques have been developed specifically for
concurrent software. Holtzmann’s SPIN system [9] is one
of the more successful. Because it represents its reached
states explicitly, it is able to handle more dynamic be-
havior such as process creation. For speed, it compiles
code that evaluates the next state function. By contrast,
Ketchum represents its states implicitly and evaluates the
next state by simulating an in-memory netlist.

Ball and Rajamani [2, 3] take a hybrid approach where
they represent a program’s control-flow explicitly but the
states at each control point implicitly. They use an inter-
procedural dataflow analysis algorithm from the compiler
community to handle recursion.

2 The Synthesis Procedure

Figure 1 shows how the synthesis procedure builds a
hardware model for the greatest common divisor func-
tion in Figure 1a. The procedure builds a control-flow
graph (CFG), marks certain control arcs as clock cycle

boundaries, determines which variables to save and re-
store across clock cycles, and casts the program into static
single-assignment form. Finally, the controller is gener-
ated from theCFGand the structure of the datapath is read
from the static single-assignment form.

2.1 Generating the Control-Flow Graph

The first step transforms the function being mod-
eled into a CFG whose nodes contain sequences of
assembly-language-like three-address instructions (Fig-
ure 1b). These typically consist of an operator such as
addition, two source operands, and a destination, much
like a typical datapath element. This step is essentially a
standard compiler front end, which we implemented using
the SUIF 2 system developed by Lam and her students at
Stanford with the MachSUIF extensions [13].

The opcodes are mnemonics. In n2, “sne r0, a, b” (“set
not equal”) performs thea != b comparison from line 3,
setting r0 to 1 if a and b are different, and “bt n3, r0” means
to branch to n3 if r0 is non-zero. Similarly, sgt in n3 (set
greater than) computesa > b from line 4. The two arith-
metic instructions in node n4 and n5 perform arithmetic,
e.g., in n5, “sub b, b, a” computesb -= a in line 7.

The next two steps address the two problems that pre-
vent hardware from being generated from theCFG: loops
and multiple writes to the same register.

2.2 Identifying Clock Cycle Boundaries

An arithmetic circuit such as an adder cannot perform
more than one operation per clock cycle, yet an instruc-
tion within a software loop may execute arbitrarily many
times. To resolve this, the synthesis procedure makes each
iteration of a loop execute in a different clock cycle.

This step introduces arcs that represent control crossing
a clock cycle boundary, such as the dashed line from n8 to
n9 in Figure 1c. This means when control reaches n8 in a
cycle, control begins at n9 in the next.

We break loops in theCFGby inserting a clock arc along
any control path that flows upwards in the program text,
such as the implicit branch from the end of awhile loop
to the beginning. We number nodes according to their
position in the program text, so any arc from a higher-
numbered node to a lower-numbered one is marked. In
Figure 1b, only the arc from n6 to n2 flows upwards. This
may insert more arcs than necessary (solving the mini-
mum feedback arc set problem would give an optimal re-
sult), but works fine for human-written code.

We also insert a clock boundary after each memory
write by splitting the node in which the write instruc-
tion resides and connecting the two halves with a clock
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1 int gcd(int a, int b)
2 {
3 while (a != b)
4 if (a > b)
5 a -= b;
6 else
7 b -= a;
8 return a;
9 }

sner0, a,b
bt n3, r0

sgtr1, a,b
bt n4, r1

suba,a,b

subb, b, a

reta

n1

n2

n3

n4

n5

n6
n7

(a) (b)

sner0, a,b
bt n3, r0

sgtr1, a,b
bt n4, r1

suba,a,b

subb, b, a

sav a,b

resa,b

reta

n1

n2

n3

n4

n5

n8

n9

n6
n7

phi a2, a,a4
phi b2, b, b4
sner0, a2, b2
bt n3, r0

sgtr1, a2, b2
bt n4, r1

suba5, a2, b2

subb5, b2, a2

sav a3, b3

resa4, b4

phi a3, a2, a5
phi b3, b5, b2

ret a2

n1

n2
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n5
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Figure 1: The synthesis procedure applied to the greatest common divisor algorithm. The function (a) is translated into a
control-flow graph (b), clock cycles are identified and save/restore instructions added (c), the program is transformed into
static single-assignment form to expose dataflow (d), and the controller and datapath are generated mechanically from the
resulting graph (e).
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arc. This accommodates memories that prohibit multiple
writes within a cycle.

Savand res instructions are inserted to record which
variables need to be saved across clock cycles. Not all
do. For example, the temporaries r0 and r1 are only used
within a clock cycle and are always recalculated. We de-
termine which to save using live variable analysis (a clas-
sical bit-vector dataflow algorithm [1]).

Since not all variables must be stored every cycle, reg-
ister assignment could reduce the number of needed reg-
isters by storing different variables in the same register.
Currently each variable is simply given a unique register.

2.3 Transforming to Static Single-Assignment Form

After adding clock arcs to theCFG, we transform the pro-
gram to static single-assignment (SSA) form [6] to deter-
mine the structure of the datapath. In hardware, a wire
takes on exactly one value each cycle, but the same vari-
able may be written multiple times in software.SSA form
makes each variable definition unique, adjusts each use of
a variable, and addsphi functions that selects the relevant
definition when control may come from two or more defi-
nitions of the same variable.

TheSSA transformation works in three steps. First,phi
functions are inserted where two or more definitions of a
variable meet for the first time, such as n2 in Figure 1c,
where the definition of b may come from the beginning
of the function or theres in n9. Next, each definition of
a variable, including the output of thephi functions, is
made unique by adding a subscript (e.g., the b assigned in
n5, Figure 1c, becomes b5 in Figure 1d). Finally, each raw
variable is replaced with the most-recently-defined sub-
scripted version. So the b seen by thesgt instruction in
n3 is b2, since b2 is defined in b2. The source operands of
the phi functions reflect the definition visible along each
incoming control arc. For example, the b seen in n6 can
be b5 defined in n5, or it could be b2 defined in n2.

2.4 Generating a Netlist

Once the clock cycles have been identified and the pro-
gram is in static single-assignment form, generating the
controller and datapath is straightforward.

The controller implements the control-flow graph and
the datapath implements the arithmetic instructions within
each node. Signals from the controller steer data in the
datapath using mux select inputs. Predicates tested within
the datapath affect how control flows in the controller.

The controller is the left half of the circuit in Figure 1e.
One-hot encoding is used throughout. The activation con-
dition for each node is encoded in a wire that takes value 1

when the node is active for the cycle and 0 otherwise.
When two or more control arcs enter a node, the activa-
tion condition is the logicalOR of the arcs from its prede-
cessors, such as n6. A two-way decision turns into a pair
of AND gates, such as n4 and n5, that are activated when
their node is active (e.g., n3) and depend on the value of
the predicate. The datapath is responsible for computing
the value of the predicate, such as r1.

Each clock arc becomes a latch in the controller: if con-
trol reaches the latch at the end of one cycle, control starts
from the latch at the beginning of the next.

This procedure generates controllers with some redun-
dancy. In the example, n6 could be removed and its output
connected to n3 since the two signals are identical. Syn-
thesizing controllers from a control dependence graph [6]
would eliminate such redundancy. Also, choosing a differ-
ent state encoding (i.e., not one-hot) might generate more
efficient controllers.

Building the datapath (e.g., the right side of Figure 1e)
is straightforward. Each arithmetic instruction becomes
an arithmetic subcircuit connected to its operands. For
example, the instruction “sg r1, a2, b2” becomes a com-
parator whose output r1 is true when its input a2 is greater
than its input b2. The branch instruction “bt n3, r0” in n2
connects the output of r0 to the inputs of the n7 and n3 AND

gates in the controller.
The phi functions become multiplexers that steer data

through the datapath, in effect selecting which expressions
are evaluated (actually, selecting which expressions’ re-
sults are used). “Phi a3, a2, a5” in n6 becomes the mux la-
beled a3 in Figure 1e, which selects a5 when control comes
from n4 and a2 when control comes from n5.

Although simple in this example, the logic feeding the
registers in the datapath can become fairly complicated.
In general, which values get latched into each register is
a function of whichsav instructions are active at the end
of a cycle. The logic before each register is a mux that
selects values based on a set of control signals, each cor-
responding to a differentsavnode.

2.5 Synthesizing Assert Statements

For eachassertstatement, the synthesis procedure builds
a pair of primary outputs: one that is true when theassert
statement runs and passes, the other true when it runs and
fails. The generated circuitry is like that for anif state-
ment: the predicate expression is calculated and fed into a
pair of AND gates whose outputs are the signals of inter-
est. For example, ifassert(a>b) were inserted after
line 3 in Figure 1a, the synthesis procedure would copy
the r0 comparator and the n3 and n7 AND gates.
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for (i=0 ; i<LENGTH ; ++i)
a[i] = LENGTH - i + s;

for (j=1 ; j<LENGTH ; ++j) {
key = a[j]; i = j;
while (i>0 && a[i-1]>key) {

--i; a[i+1] = a[i];
}

a[i] = key;
}
for (j=1 ; j<LENGTH ; ++j)

assert(a[j-1] <= a[j]);

Figure 2: Insertion sort.

for (j=x[1], i=2 ; i<=LENGTH ; ++i)
if (x[i]<j) return; else j=x[i];

for (k=y[1], i=2 ; i<=LENGTH ; ++i)
if (y[i]<k) return; else k=y[i];

i = j = k = 1;
M2: if (x[i]<=y[j]) goto M3; else goto M5;
M3: z[k++] = x[i++];

if (i<=LENGTH) goto M2;
while (k<=2*LENGTH) z[k++]=y[j++];
assert(1); return;

M5: z[k++]=y[j++];
if (j<=LENGTH) goto M2;
while (k<=2*LENGTH) z[k++]=x[i++];
assert(1); return;

Figure 3: Merge of two sorted lists.

3 Experiments

We tested our approach by using Ketchum to prove some
properties and generate test cases for a pair of small
functions representative of embedded software. Verifying
large systems demands verifying such small pieces.

We expect to find code like insertion sort in embed-
ded software, since it involves a loop, decisions, an array,
and simple integer arithmetic. We tried first to prove that
the algorithm is correct for a four-element array running
with a manually-abstracted three-bit datapath, which took
Ketchum over ninety minutes to prove. Of the four states
of the last line’sassertstatement, Ketchum spent a few
seconds doing random simulation to determine two were
reachable, took an hour to prove a third is unreachable
using symbolic state-space traversal, and determined the
fourth state was unreachable using an abstraction refine-
ment procedure [14] after another half hour.

Next, we tried restricting the input space of insertion
sort by adding the first two lines in Figure 2, which force
the routine’s input to be a decreasing sequence. As ex-
pected, this greatly decreased Ketchum’s run time because
there were fewer cases to consider. We varied the length
of the array for the experiments on the left of Table 1, and
varied the width of the numbers for those on the right.

Table 1: Time taken to prove the output of the insertion
sort algorithm is nondecreasing. E: Length of array to sort,
W: Bit width of array elements, L: Number of latches in
model *Arbitrary input case; all others run on decreasing
input sequences.

E W L Time
4 3 72 97 m*

3 4 40 20 s
4 4 44 41 s
5 4 48 1.4 m
6 4 52 1.5 m
7 4 56 3.3 m
8 4 60 4.0 m

10 4 68 21 m
12 4 76 38 m
15 4 88 159 m

E W L Time

5 5 55 73 s
5 6 62 73 s
5 7 69 73 s
5 8 76 73 s
5 10 90 74 s
5 12 104 71 s
5 16 132 74 s
5 24 188 75 s

Table 2: Time and memory required to generate a test case
for the merge example.

Entries Width Latches Time Memory
6 8 255 11 m 520M
6 10 307 9.6 m 510M
6 14 411 37 m 510M
6 16 463 29 m 520M

The time to verify the restricted insertion sort grows
more than quadratically with the number of entries. We
expect at least quadratic, since insertion sort itself is
quadratic and all of Ketchum’s algorithms are roughly lin-
ear in the number of cycles required to reach a goal. The
additional cost may be due to additional state.

Next, we tried generating test cases for the merge of
two sorted lists algorithm taken from Knuth [10, p. 158]
shown in Figure 3. The variant we used verifies the two
lists are sorted before attempting to merge them. We asked
Ketchum to “thread the needle”—to find a test case with
two sorted lists where the highest element appears in the
second to exercise the secondassert(1)statement.

Table 2 shows the time it took to find test cases for dat-
apaths of different widths. For all of these cases, theATPG

engine found the input sequence in a time that seems to be
growing superlinearly with the size of the design.

These results are worse than expected. Ho et al. [8]
were able to classify 65,536 states of a 155-latch design
in 75 minutes. But it took nearly twice as long to classify
four states in the 72-latch insertion sort example. Clearly,
the number of latches is not the sole complexity metric.
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4 Conclusions

We sought to determine whether the sophisticated machin-
ery developed for verifying hardware circuits could be ap-
plied to software. Our approach as it stands does not seem
viable for large programs, but changing the type of pro-
gram being verified, the synthesis procedure, or the veri-
fication approach (i.e., the Ketchum model checker) may
improve the situation.

How these programs observe their inputs may be one
source of Ketchum’s difficulties. A typical hardware cir-
cuit samples its inputs once a cycle, whereas the models
we are building only check their inputs once in the first
cycle. Ketchum tries to steer the model through the state
space to goal states by judiciously selecting inputs; this
mechanism fails on the software models since everything
is determined after the first cycle. Most embedded soft-
ware does perform I/O, but our procedure is not able to
satisfactorily abstract away the intervening behavior.

Increased sequential depth is another challenge of the
models we build. In hardware circuits without wide coun-
ters, an arbitrary state may be reached within a few cycles,
but for something like insertion sort, a reasonable program
may take hundreds or thousands of cycles to reach a par-
ticular state. Ketchum’s engines—especially the bounded
ones—work better on shallow properties.

There is room to improve the synthesis procedure,
which builds a control-flow graph, identifies clock cy-
cles, transforms the program into static single-assignment
form, and mechanically builds a controller and datapath
from this representation. Optimizing models by reducing
the number of latches or clock cycles may improve things,
but probably not by the orders of magnitude we desire.

Adding the automated abstraction of the Bandera tool
is an obvious possibility. This would automate the manual
datapath abstraction (i.e., reducing the number of bits) we
did for the examples and slice away irrelevant parts of the
program depending on the property being tested.

Ketchum was not designed to handle the type of models
we build for it, and as such finds small examples such as
insertion sort far more challenging than bigger hardware
examples. One possibility is to attempt to re-engineer
some of the verification engines with the different char-
acter of these models in mind.
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