
Compiling Esterel into Sequential Code
Stephen A. Edwards

Synopsys, Inc.
700 East Middlefield Road

Mountain View, California 94043–4033
sedwards@synopsys.com

Abstract
This paper presents a novel compiler for Esterel, a concurrent syn-
chronous imperative language. It generates fast, small object code
by compiling away concurrency, producing a single C function re-
quiring no operating system support for threads.

It translates an Esterel program into an acyclic concurrent control-
flow graph from which code is synthesized that runs instructions
in an order respecting inter-thread communication. Exceptions and
preemption constructs become conditional branches. Variables save
control state; conditional branches restore it.

Although designed for Esterel, this approach could be applied to
compiling other synchronous concurrent languages.

1 INTRODUCTION
I propose a new way to compile Berry’s imperative synchronous
language Esterel [4], intended for specifying reactive real-time sys-
tems. Esterel has the control constructs of an imperative language
like C, but includes concurrency, preemption, and a synchronous
model of time like that used in synchronous digital circuits. In each
clock cycle, the program is restarted, reads its inputs, and computes
its reaction in bounded time.

Unlike other languages, Esterel allows bidirectional communica-
tion between concurrent threads within the same cycle; how my
compiler handles the interleaving is a key contribution. Using oper-
ating system-supported threads would be prohibitively expensive (a
small program might have a hundred threads), and other compilers
have traded off size for speed solving this problem.

Automata-based compilers (Berry’s V3 [4], the Polis group’s [6])
weave together concurrently-running threads to produce fast code
with zero overhead. The generated code comes from exhaustively
simulating the program, and it can grow exponentially. The Polis
compiler attempts to reduce code size by sharing code between
states. It uses a binary-decision diagram to merge common sub-
trees, but the worst case remains exponential.

Berry’s V5 compiler [2, 3] goes to the other extreme. In effect, it
transforms every statement into its own thread; the generated code
is a series of unnested “if statement is running then statement” in-
structions. This can be slow because in each cycle, some code for
every source instruction must be executed, even those not running.

Copyright (c) 1999 by the Association for Comptuing Machinery, Inc. Per-
mission to make digital or hard copies of part or all of this work for personal
or classroom use is grated without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this no-
tice and the full citation on the first page. Copyrights for components of this
work owned by others than ACM must be honored. Abstracting with credit
is permitted. To copy otherwise, to republish, to post on servers, or to re-
distribute to lists, requires prior specific permission and/or a fee. Request
permissions from Publications Dept, ACM Inc., fax +1 (212) 869–0481, or
permissions@acm.org.

Proceedings of the 7th International Workshop on Hardware/Software
Codesign (CODES ’99), Rome, Italy, May 3–5, 1999.

My compiler adopts both techniques’ strengths. It generates a fixed
amount of code per source instruction (plus some overhead) and
tries to generate straight-line code where possible. When a context
switch is necessary, the generated code saves the first thread’s con-
trol state in a variable and resumes the second with a multi-way
branch. The result is nearly as fast as the automata-based compil-
ers’ (only about 50% slower; V5 can be ten times slower) and nearly
as small as the V5 compiler’s (perhaps 50% larger; automata-based
code can be a hundred times larger).

Currently, this compiler can only handle “statically causal” pro-
grams, that is, there must be an order to all instructions that respects
data dependencies. Many programs satisfy this, but a valid program
may have a data- or state-dependent order. Automata-based com-
pilers handle this by generating code ordered for each state. The V5
compiler uses exhaustive symbolic simulation followed by boolean
resynthesis [8] to remove static dependency cycles. I have not yet
tried to apply this technique to my compiler.

The flow of my compiler (a concurrent representation is generated,
scheduled, and from it sequential code is produced) follows both
Berry’s V5 compiler and Lin’s [7]. Instead of Esterel, Lin compiles
a concurrent imperative language with rendezvous-style commu-
nication. Lin uses Petri nets as an intermediate representation, but
they are awkward for modeling Esterel’s synchronous communica-
tion, so I use a different formalism. Lin uses an automaton approach
for generating sequential code, so it generates fast code, but a bad
schedule can turn linearly-sized code into exponentially-sized code.
This is hard to avoid since scheduling isNP-complete, so I have de-
vised another code generator.

Bertin et al.’s recent Esterel compiler [5] resembles a compiled
event-driven simulator. For each segment of code between pauses,
it generates a small C function dispatched in response to incoming
signals. Their code size/speed results are encouraging, but the com-
piler currently does not handle programs with interleaved threads.

Esterel§2
↓
IC §3
↓ §4

Cyclic CCFG
↓ §4.3

Acyclic CCFG
↓ §5

CFG
↓ §6

C source

This
work

This paper follows the compilation pro-
cess after describing the Esterel language
and the intermediate format generated by
Berry’s compilers. The compiler trans-
lates the intermediate format into a cyclic
concurrent control-flow graph (CCFG),
unrolls it to produce an acyclicCCFG,
schedules this, and uses it to produce a se-
quential control-flow graph that is trans-
lated into C. The last section presents
some preliminary results.

2 BERRY’S ESTEREL LANGUAGE
For brevity, I only describe a subset of the Esterel language. The
compiler supports the full language through more node types and
data dependencies; the additions are straightforward.

Esterel [4] is a textual concurrent imperative language that treats
time as does a synchronous digital circuit. The clock awakens mul-

1

loop
trap EX in

do

[
loop

await B;

emit C;

pause;
emit E;

end
||

suspend

do
emit F;

pause;
emit K;

pause;
watching G;
present H then

exit EX
end

when D
]

watching A;
emit I

handle EX do
emit J

end
end

W

X

Y

Z

C

E

F

K

A

B

D

G

H

I

J

2

0

02

Reconstruction
Nodes

root
parallel
watchdog
stay
halt

Sequential
Nodes

start
fork
conditional
emit
exit

Figure 1: A small Esterel program (text down middle) with itsIC
representation. The darker lines and nodes make up the reconstruc-
tion tree. TheIC node types are shown at right.

tiple threads of control and they run until they hit halt points (e.g.,
thepausestatement) and sleep until the next cycle.

Composite statements can be built sequentiallyP ; Q, or concur-
rently [P || Q]. In [P || Q] ; R, R runs only afterP and Q have
terminated. An infinite loop is writtenloop P end.

For communication, Esterel uses signals that behave like wires in a
combinational circuit. By default, each signal is absent each cycle,
but the environment or anemitstatement can make it present. Any
statement (present S then P else Q end) that tests a signal waits for
it to “stabilize” before proceeding.

Signals are global (part of a module’s interface) or local to a block.
Thesignal S in Pstatement introduces the signalS to the scope of
statementP. When control reaches asignal statement, it creates a
new, absent copy of signalS.

An Esterel program can wait for the next cycle (pause) or for a
single signal (await S), but one of Esterel’s strengths is its abil-
ity to nest preemption, suspension, exception, and concurrency. For
example, the multi-cycle statementP in do P watching Sruns and
terminates normally except whenSis present. In that cycle,P is ter-
minated and does not run. Thesuspend P when Sconstruct runsP
except in cycles whereS is present.

Esterel’s exception facility complements the strong preemption of
do-watchingandsuspend. WhenP in trap T in P handle T do Q end
executesexit T, P runs until it pauses, then the exception handlerQ
runs. ThusP can terminate itself.

3 BERRY AND GONTHIER’S IC
This section describes the compiler’s starting point, the intermedi-
ate code (IC) produced by the front end of Berry’s compilers. The
IC format represents an Esterel program as a directed graph of se-
quential statements (e.g., emits and conditionals) hanging from a
“reconstruction tree.” Figure 1 shows a small Esterel program and
its IC translation. The dark nodes and arcs form the reconstruction
tree; sequential statements and arcs are lighter.

The reconstruction tree coordinates exceptions, preemption, and
concurrency by dictating how the program restarts at the beginning
of a cycle. In the second and later cycles, control starts at the root of
the tree and heads toward the halts reached in the last cycle. Along
the way, watchdog nodes check preemption conditions, stay nodes
entered via a sequential arc prevent control from reaching pauses
beneath, and parallel nodes both split the flow of control and handle
exceptions through their outgoing sequential arcs. Parallel nodes
are always paired with a fork node that starts their threads.

Esterel’s exception mechanism is unique because it interacts with
concurrency. Throwing an exception terminates both the local flow
of control and all concurrently-running threads. In a cycle, each
concurrently-running thread of control runs until it stops in one of
three ways, distinguished by an integer termination level: 0 for nor-
mal termination, 1 for pause, and 2, 3, or higher for an exception.
The termination code for a group of threads is the maximum of the
threads’ codes, and each parallel has outgoing sequential arcs for
levels 0, 2, 3, etc. as necessary.

Consider the program in Figure 1. In the first cycle, control begins
at the start node (the unfilled circle), splits at the fork and flows to
both W and throughemit F to Y.

In the second and later cycles, control starts at the reconstruction
tree’s root and heads toward the “active” halts—those reached in
the previous cycle. Control first goes to watchdog A and to the con-
ditional that tests A. If A is present, control flows toemit I and back
around to the fork, restarting the loop. Otherwise if A is absent,
control continues down the reconstruction tree to the parallel.

Control splits two ways at the parallel: toward W or X and toward Y
or Z. If W is active, control goes to watchdog B, which, if B is
present, sends control toemit C and on to X. Otherwise, if B is
absent, control returns to the reconstruction tree and flows to W.

If X is active, control flows to the watchdog just above it, which
immediately sends control toemit Eand back around the loop to W.

If Y or Z is active, control flows from the parallel down to watch-
dog D. If D is present, control flows to the stay and stops—Y or Z
stays active for the next cycle. Otherwise, if D is absent, control
flows to watchdog G. If G is present, control flows to H. If H is
present, control flows to the exit at level 2 (raising the exception),
otherwise the thread exits at level 0.

Finally, if Y or Z is active and both G and D are absent, control
flows down one of the branches from watchdog G. If Y is active,
control flows toward it and through the watchdog that sends control
to emit K and on to Z. If Z is active, the watchdog just above it
sends control directly to H.

4 TRANSLATING IC TO A CCFG
This section begins the description of the compiler, showing how it
translates Esterel programs in the complexIC format into seman-
tically simpler concurrent control-flow graphs (CCFGs). All syn-
chrony, preemption, suspension, and exception constructs are con-
verted to conditionals, producing a control-flow graph whose con-
currency will be removed by the procedure in Section 5.

A CCFGis a hierarchical directed graph containing entry nodes with
no predecessors, an exit node with no successors, statement nodes
with one successor, conditional nodes with multiple successors, and

2

E

B

C
w

x

w

x 0 D

1
G

H
K

z
2 0

F

y

y

z

0

A

I
0

J
2

1

Figure 2: The small IC program translated into a Concurrent
Control-Flow Graph (CCFG).

hierarchical nodes containing one or moreCCFGs. A CCFGbehaves
like a normal control flow graph—control follows a path from entry
to exit—but when control reaches a hierarchical node, it starts each
contained graph, called a thread, at one of its entry nodes depend-
ing on how control reached the hierarchical node. Control leaves a
hierarchical node when all its threads have exited.

Figure 2 shows the example in Figure 1 translated into aCCFG.

The following subsections describe the translation: break theIC
program into threads, assign states within the threads, translate re-
construction tree nodes into conditionals to produce a cyclic graph
with two-entry threads, and unroll this to produce an acyclic graph
with single-entry threads. ThisCCFGwill be run once per cycle.

4.1 Threads

WX

Y Z

The first translation step divides the Esterel pro-
gram into threads (sequential groups of statements)
to identify concurrently-running pieces of code and
where control may resume between cycles. Each
thread corresponds to a subtree in the reconstruc-
tion tree rooted at a parallel or the return with halts
and parallels for leaves. (Figure 1’s threads are on
the right.) At the end of each cycle, each thread is
either at one of its leaves or is terminated.

Control generally forks at a parallel, but there may be more branches
at a parallel node than threads beneath. For example, the parallel in
Figure 1 has three children but only two threads beneath it.

At the beginning of each cycle, the generated code walks down the
reconstruction tree through each running thread. Within a thread,
it walks toward the active leaf. The path is dictated by the thread’s
state variable, which is encoded by concatenating the branch num-
bers starting from the root of the thread’s subtree. Less-significant
bits are assigned to branches nearer the root, so each branch only
checks a few bits in the state. State 0 means “not running.”

Z01
010 110

0011
0111

1011

01
10

11

0 1 00

01

10

Here is an example. Say this thread stopped
at halt Z last cycle. This would set its state
to 1011 because Z is along the 11 and 10
branches from the root. Control would start
at the root, test the lower two bits of the state
(11), branch to the stay, branch to the watch-
dog beneath it, test the third and fourth bits
of the state (10), and branch to the halt.

4.2 Building the CCFG
This section describes how each node in anIC graph becomes one
or more nodes in theCCFG. The nesting of Esterel threads becomes
the nesting of hierarchical nodes. Translating reconstruction tree
nodes, especially fork/parallel pairs, is the main challenge.

a bcd a

bcd

The “start” IC node and the root of
the reconstruction tree become the
“start” (open circle) and “restart”
(filled circle) entry points of the out-
ermost CCFG. A conditional under
“restart” tests the outermost thread’s
control state and either branches down the reconstruction tree or
to the outermost exit node. Execution in the first cycle begins at
“start,” and “restart” in later cycles.

Each fork/parallel pair becomes a hierarchical node containing one
or more threads. Like the outer level, each thread has a “start” and
a “restart” entry point (corresponding to the fork and parallel) and
a single exit. The restart entry goes to a conditional that tests its
thread’s state and either branches down the reconstruction tree or
jumps directly to the thread’s exit node. A conditional node follow-
ing the hierarchical node checks the threads’ exit level and jumps
to one of the exception handlers (the sequential arcs leaving the
parallel) or to the outer exit when the thread is terminated.

ab cd fe

g
h

0

2

a
c d

b
e f

g
h

0

21

The incoming reconstruction arc on a watch-
dog is shunted to its outgoing sequential arc.
Incoming sequential arcs are routed to a con-
ditional that tests its thread’s control state and branches to one of
the outgoing reconstruction arcs.

1

The incoming reconstruction arc on a stay goes di-
rectly to a conditional that tests its thread’s con-
trol state and branches to one of the outgoing
reconstruction arcs. Incoming sequential arcs are
shunted to an exit at level 1 (pause) leading to the thread’s exit.

2 2 X X

On exit and halt nodes, incoming
arcs are unchanged, but an outgo-
ing arc leading to the thread exit is
added. An exit node sets the exit
level of its hierarchical node; higher levels take precedence. A halt
node both sets the state of its thread and sets the exit level to 1.

Conditional and emit nodes becomeCCFGnodes directly.

4.3 Removing False Cycles
Valid code often has unreachable control cycles that would con-
fuse the code synthesis procedure. The compiler removes them with
Berry’s procedure for “curing schizophrenia” [3].

All false control cycles pass through a hierarchical node’s start en-
try. Figure 2 has such a cycle passing through F, y, and J, but halt y
exits at level 1 so the conditional will not run J. Only the code
reachable from the start entry must be duplicated, and only once
per nesting level. This may produce a quadratically-larger graph,
but this rarely occurs in practice.

3

i l + 1

i i

i or l

The unrolling procedure makes one copy per
incarnation of eachCCFG node. Each copy of
a node is given an integer incarnation label
from zero to the hierarchical nesting levell ; the
outermost level is 0. The successors of a non-
hierarchical node labeledi are copied and la-
beled i. When a hierarchical node is labeledi
through the “start” entry, the nodes within and
its successor are also labeledi, and the condi-
tional’s unreachable branches are removed, breaking any cycles.
Through “restart” the hierarchical node and the nodes within are
labeledl + 1 (the nesting level in the hierarchical node) and the
successor is labeledl .

Here is the result of unrolling the
CCFG in Figure 2. The upper hier-
archical node and the nodes within
were labeled 1; all other nodes were
labeled 0. Halt w and the two thread
exits were labeled both 0 and 1, so
they were duplicated.

E

B

C

w x

w

x 0 D

1

G

H

K

z

2 0

y z

0

A

I
0

J
2

1

w
F

y

5 SYNTHESIZING A CFG
The next step synthesizes a sequential control-flow graph that runs
the nodes in theCCFGin an order that respects communication. This
order is determined by topologically sorting a graph of control and
data dependencies, and it determines where to add “context switch-
ing” code that saves and restores the control state of concurrently-
running threads. The result is a sequential control-flow graph from
which it is easy to generate C.

5.1 Dependencies and Scheduling
A schedule imposes a global order on all nodes in aCCFG that
respects all control and data dependencies. It is used to identify
context switches—where control state must be saved and restored.
Minimizing these is desirable because they usually require addi-
tional code, but the problem appears to beNP-complete. Fortu-
nately, inserting code for context switches can only grow the code
quadratically so using a sub-optimal schedule is not catastrophic.

A

C
B

C

D

B

C

Phantom control dependence arcs are added for
scheduling. These () lead to and from each
thread’s entry and exit node.

Data dependence arcs () are added from
every emission of a signal to every reachable
node that tests the signal. Two nodes are mutu-
ally reachable if both are able to execute in the
same cycle, or equivalently, if it is not neces-
sary to take different branches leading from a
conditional to run both. This can be tested with
a depth-first search on a “linearized”CCFG

formed by pasting together the entry and exit nodes in concurrently-
running threads in an arbitrary order. Any valid set of executable
instructions (but not their order) corresponds to a path through this
graph. The compiler tests reachability with a quadratic algorithm.

Any topological order of the dependence graph is a valid schedule.
The compiler currently uses a depth-first search.

The minimum-code-size scheduling problem appears to beNP-com-
plete because it contains theNP-complete minimum feedback ver-
tex set problem. A proof sketch: given a directed graph, create a pro-
gram with one thread per node, each thread having a single condi-
tional invoking two threads beneath it. The first of these threads de-
pends on signals corresponding to incoming arcs in the given graph,
the second emits signals corresponding to outgoing arcs. A cyclic
graph would force some thread pairs to be split, so their condition-
als would be duplicated. Splitting a node corresponds to removing
a vertex, and each split vertex increases code size by a constant.
So asking whether there is a schedule that produces code of a cer-
tain size is equivalent to asking whether fewer than some number
of vertices must be removed to make the graph acyclic.

A valid program may have (unsensitizable) cycles in its control/data
dependence graph, which this compiler cannot currently handle. It
may be possible to apply the solution used in Berry’s V5 compiler,
which performs state-machine-like analysis of the program but uses
efficient symbolic techniques [8] to synthesize loop-free net lists
from the offending section.

5.2 Synthesizing Context Switches
A

B

1
0

B

C

s

C

D
C

if (A) {
B=1; s=1;

} else{
s=0;

}
if (B) C=1;
if (s) {
if (C) D=1;

} else{
C=1;

}

The next step synthesizes aCFG that ex-
ecutes the nodes in scheduled order. The
algorithm steps through the schedule
and attaches each node to theCFG be-
ing constructed, synthesizing code that
saves and restores the control state of
concurrently-running threads as needed.
This is analogous to simulating all con-
trol paths through theCCFG and using
the results to build aCFG. Running this
procedure on last section’s example pro-
duces the result at right.

During synthesis, theCFG contains statement nodes with one suc-
cessor, conditional nodes with two or more successors, and stub
nodes with no successors. When a scheduled node is added, it re-
places a stub, stubs are added for its successors, and its outgoing
arcs are connected from the node to the new stubs.

Two adjacent nodes in the schedule residing in different threads
forces a context switch, which is complicated in a hierarchical set-
ting. More precisely, when two adjacent nodes or their parents re-
side in different threads of the same hierarchical node, the thread
containing the first node and all its children must be suspended and
the thread containing the second node resumed.

The synthesis process suspends and resumes a thread of control by
creating code that saves and restores its control state—the program
counter. This is done by saving and regenerating stubs, which cor-
respond to all active control states.

s=0 s=1 s=2 s=3

the thread’s stubs

stub of the thread’s parent

When a thread is suspended,
each of its stubs is replaced with
a node that assigns a unique
value to a variable that saves
the thread’s control state. These
nodes branch to a new stub that
represents the thread’s parent—
the hierarchical node in which the thread resides. When a thread
has only one stub, replacing it with an assignment is unnecessary.

4

s=?

0 1 2 3

parent’s
stub

becomes
a conditional

the thread’s new stubs

Resuming a thread reverses the
suspension process. The stub for
the thread’s parent is replaced
with a conditional branch that
checks the saved control state and
jumps to newly-added stubs that
correspond to each saved control
state. If the thread was suspended at only one stub, the conditional
branch is unnecessary—the stub of the parent simply becomes the
thread’s single stub.

no stub

has stubsuspended

added

reveal

addresume

suspend

During the synthesis process,
each non-hierarchical node may
be in one of four states. It has no
stub initially, but gains one when
one of its predecessors is added.
If the thread in which the node re-
sides is suspended, the stub disap-
pears and is recreated when the thread is resumed. Eventually, the
node is added to theCFG and nothing more happens to it.

no stub

has stubsuspended

terminated

run 1

run n

resume

suspend
 suspend
 resume

The “state” of a hi-
erarchical node also
evolves through the
synthesis process. A
hierarchical node has
no stub initially and
gains one when one
of its predecessors is added. Suspending this node’s thread removes
the stub, but this may only happen after all threads within the node
are suspended. Since only one of the threads within the node may be
running (i.e., have stubs) at any time, one is suspended and another
resumed to switch between them.

In the worst case, the nesting depth of the nodes is proportional to
the number of nodes, so the synthesized code may be quadratic in
the size of theCCFG.

6 SYNTHESIZING C
The compiler currently produces C code with unnested if-then-else,
switch-case, and goto statements after topologically ordering the
CFG nodes to force all branches to be forward. Such code is cor-
rect but hard to read. Structuring the generated code, perhaps using
Baker’s work [1], remains to be done.

7 RESULTS
Table 1 shows preliminary code size/speed results.

I ran these experiments by generating code for each example, link-
ing it with an automatically-generated testbench that quickly gen-
erates random inputs (times include the time to do this), and timing
100 000 cycles. The distribution of the inputs is suspect, but I do
not believe it biases the results toward a particular compiler.

I did not run V5’s logic synthesis post-optimization step. This might
have halved running times and executable sizes.

The new compiler produces code whose size is comparable to the
V5 compiler, but whose speed is closer to the V3-style automaton
compilation technique. Its advantage may be less for larger exam-
ples, however; I suspect this is due to increasing context switching
overhead (it grows faster than linearly), but more experiments are
necessary.

8 CONCLUSIONS
This paper has presented a new way to compile the synchronous
reactive language Esterel that tries to retain much of the program’s
original control structure for a code size and speed advantage. It
translates Esterel’s preemption and exception constructs into con-

V3 V5 new
nodes states size time size time size time

runner 50 7 4.9K 0.11 5.6K 0.25 4.7K 0.11
abcd 154 33 27K 0.16 8.6K 0.43 11K 0.27
tcint 412 287 4.1M 0.55 26K 2.4 28K 0.66
ww 483 42 120K 0.36 28K 2.1 36K 0.67
atds 892 152 58K 0.29 59K 6.2 52K 0.39
gg 1318>700 73K 8.0 110K 3.9

nodes Number ofIC nodes
states Number of control states between cycles
V3 Berry’s V5 compiler, automaton mode (-A -Lc:-inline)
V5 Berry’s V5 compiler, sorted circuit mode
new Compiler presented in this paper
size of .o file produced by Sun’s cc -O
time in seconds to run 100 000 random inputs

(336MHz Ultra SPARC II)

runner Berry’s example ww wristwatch
abcd lock controller atds video pulse generator
tcint bus controller gg user-interface

Table 1: Comparison of this compiler with Berry’s automaton and
boolean equation-based compilers.

ditional branches and compiles away its concurrency by statically
scheduling the instructions and inserting code that saves control
state in variables and restores it with conditional branches. It pro-
duces a sequential control-flow graph that is translated directly to C.

In the future, I intend to devise scheduling heuristics, add some
optimizations, improve the readability of the generated code, and
explore the possibility of resynthesizing tightly-coupled portions of
the program using automata techniques.

REFERENCES
[1] B. S. Baker. An algorithm for structuring flowgraphs.Journal

of the ACM, 24(1):98–120, Jan. 1977.

[2] G. Berry. Esterel on hardware.Philosophical Transactions of
the Royal Society of London. Series A, 339:87–104, 1992.

[3] G. Berry. The constructive semantics of pure Esterel. Book in
preparation, 1996.

[4] G. Berry and G. Gonthier. The Esterel synchronous
programming language: Design, semantics, implementation.
Science of Computer Programming, 19(2):87–152, Nov. 1992.

[5] V. Bertin, M. Poize, and J. Pulou. Une nouvelle methode de
compilation pour le language ESTEREL [A new method for
compiling the Esterel language]. InProceedings of
GRAISyHM-AAA, Lille, France, Mar. 1999. In French.

[6] M. Chiodo, P. Giusto, A. Jurecska, L. Lavagno, H. Hsieh,
K. Suzuki, A. Sangiovanni-Vincentelli, and E. Sentovich.
Synthesis of software programs for embedded control
applications. InProceedings of the 32nd Design Automation
Conference, pages 587–592, San Francisco, CA, June 1995.

[7] B. Lin. Efficient compilation of process-based concurrent
programs without run-time scheduling. InProceedings of
Design, Automation and Test in Europe, pages 211–217, Paris,
France, Feb. 1998.

[8] T. R. Shiple, G. Berry, and H. Touati. Constructive analysis of
cyclic circuits. InProceedings of the European Design and
Test Conference, Mar. 1996.

Berry et al.’s Esterel work can be found at
http://www.inria.fr/meije/esterel/.

5

