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ABSTRACT 

Constraint programming is a step toward ideal programming: you merely define the problem domain and the constraints 
the solution must meet and let the computer do the rest. Many constraint programming languages have been developed; 
the majority of them employ iterative constraint propagation over the problem variables.  While such an approach solves 
many problems and can handle very rich data types, it is often too inefficient to be practical. 

To address this problem, we developed a constraint programming language called {sets} that uses reduced ordered 
binary decision diagrams (ROBDDs) as the solution engine.  Providing a minimal syntax, the language can be used to 
solve many finite problems that fit the constraint programming paradigm.  The minimal syntax and simple semantics of 
the language enable the user to create libraries customized for a specific problem domain.  {sets} is particularly useful in 
problems where an efficient search algorithm yet know to exist or can not be developed due to time constraints. As long 
as the solution domain is finite and discrete, {sets} should be able to describe the problem and search for a solution. 

We describe the {sets} language through a series of examples, show how it is compiled into C++ code that uses a 
public-domain ROBDD library, and compare the performance of this language with other constraint languages. 
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1. INTRODUCTION 

Constraint programming [2] is an approach to programming in which the programmer states a problem by 
specifying properties of a solution and lets the computer find them. Constraint programming is especially 
practical for problems where efficient algorithms are not known. 

Constraint programming addresses the solution of the constraint satisfaction problem (CSP).  A CSP 
consists of a set of variables, each of which take a value from a domain, and constraints that specify 
relationships among them. A solution is an assignment of values to variables that satisfies the constraints. 

Many interesting problems can be expressed as CSPs, such as a variant of the SUBSET-SUM problem. In 
this problem, we are given a set of integers S and a target number t. A solution to the problem is a subset of S 
that sums to exactly t.  This problem is NP-complete [12]; no efficient algorithm is known. 

In this paper, we describe the {sets} language: an efficient constraint programming language for finite-
domain constraint problems that uses reduced ordered binary decision diagrams [4][1] (ROBDDs) as a 
solution engine.  We explain the language with examples, show how we translate it into C++ that calls a 
ROBDD library, and describe some experiments that illustrate the efficiency of our approach. 
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2. {SETS} THROUGH EXAMPLES 

2.1 The SUBSET-SUM problem 

Consider solving an instance of the SUBSET-SUM problem using {sets}. Specifically, consider trying to 
pick a subset of numbers from the set {1, 3, 7, 15, 21, 22, 26, 27, 40, 41} that sums to 187.  Using {sets}, we 
first need to define all the potential solutions to the problem, which in this case is a 10-dimensional tuple 
whose entries are each either zero or the corresponding value from the set of integers.  The set of valid 
solutions are simply those tuples whose elements add up to 187.  In {sets}, this problem can be coded as 
follows. 
dim e0 = [ 0, 1  ]; dim e1 = [ 0, 3  ]; dim e2 = [ 0, 7  ]; dim e3 = [ 0, 15 ]; dim e4 = [ 0, 21 ]; 
dim e5 = [ 0, 22 ]; dim e6 = [ 0, 26 ]; dim e7 = [ 0, 27 ]; dim e8 = [ 0, 40 ]; dim e9 = [ 0, 41 ]; 
print( e0 + e1 + e2 + e3 + e4 + e5 + e6 + e7 + e8 + e9 == 187 ); 

Compiling and running this program prints <0:0, 1:3, 2:7, 3:0, 4:21, 5:22, 6:26, 7:27, 8:40, 9:41>. Each 
entry in this tuple is of the form index:value. A value of 0 means the corresponding element is not in the 
solution subset.  This result corresponds to the solution 3 + 7 + 21 + 22 + 26 + 27 + 40 + 41 = 187. 

Here is another, more efficient way to write this, which uses a binary encoding for set membership. 
dim e0 = [ 0, 1 ]; dim e1 = e0; dim e2 = e0; dim e3 = e0; dim e4 = e0; 
dim e5 = e0;       dim e6 = e0; dim e7 = e0; dim e8 = e0; dim e9 = e0; 
print( e0*1 + e1*3 + e2*7 + e3*15 + e4*21 + e5*22 + e6*26 + e7*27 + e8*40 + e9*41 ); 

This is more efficient because ROBDDs are more compact when representing smaller number ranges. 
Internally, ROBDDs manipulate Boolean variables; integers are represented as groups of such variables. 
Thus, the second example only required ten Boolean variables; far fewer than the first. 

We built the semantics of our language around mathematical sets. A program begins by defining of the 
set of potential solutions then states constraints the solution must satisfy. Running the program amounts to 
applying these constraints to the universal set and reporting the members of the result. An over-constrained 
problem produces the empty set. In {sets}, the universal set is an n-dimensional vector. 

2.2 SEND+MORE=MONEY 

Although constraint programming languages are 
fundamentally declarative, we added a few classical 
imperative constructs to {sets} to make it easier to code 
certain problems. The following example illustrates how 
loops and functions make it easier to code the classic 
alphametic “SEND+MORE=MONEY” puzzle [5][7]. In 
this puzzle, each of the characters S, E, N, D, M, O, R, Y 
need to be assigned to a digit from 0 and 9 such that the 
equation “SEND+MORE=MONEY” is satisfied if each 
digit string is treated as a decimal number. Each digit may 
be assigned to at most one letter and each number may not 
start with a 0. 

This prints <0:9, 1:5, 2:6, 3:7, 4:1, 5:0, 6:8, 7:2>, 
corresponding to 9567 + 1085 = 10652. This shows how 
user-defined functions and foreach can provide the 
all_different constraint and range function. 

2.3 The Eight Queens Puzzle 

The objective in the eight queens puzzle [6][7] is to place eight queens on a chess board such that none of 
them is able to capture any other, i.e., each column, row, and diagonal may have at most one queen.  This 
well-studied problem, proposed by Max Bezzel in 1848, is easily posed and solved by {sets}. In the 
following program, we have encoded each solution as a 8-tuple, where each location in the vector represents 

function set all_different( dim[] vars ) { 
    set rslt = all; int ind = 0; 
    foreach v0 vars[0 .. |vars|-2] { 
        foreach v1 vars[ ind+1 .. |vars|-1 ] { 
          rslt = rslt & v0 != v1; 
        }  
        ind = ind + 1; 
    }  
    return rslt; 
}  
function int[] range( int from, int to ) { 
  return from >= to ? [from] : 
                 [from] + range( from+1, to ); 
} 
int[] digits = range(0,9); 
dim S = digits; dim E = digits; dim N = digits; 
dim D = digits; dim M = digits; dim O = digits; 
dim R = digits; dim Y = digits; 
set equation = 
          S*1000 + E*100 + N*10 + D + 
          M*1000 + O*100 + R*10 + E  ==   
M*10000 + O*1000 + N*100 + E*10 + Y; 
set no_leading_zeros = S != 0 & M != 0; 
print( no_leading_zeros & 
  all_different([S,E,N,D,M,O,R,Y]) & equation );



the row for the queen in that column. Such an encoding guarantees each column has exactly one queen. We 
first define the solution space: eight variables that may each take on values from 0 to 7. Here, we use the 
range function from SEND+MORE=MONEY and create two sets: different_row contains all solutions in 
which each queen is in a different row (we use the all_different function we defined earlier), and not_in_diag 
are those solutions with pairs of queens on different rows. We use two foreach loops to consider each pair. 

To produce the answer, we intersect the two sets and print the result: all 
ninety-two solutions, including <0:3, 1:7, 2:0, 3:2, 4:5, 5:1, 6:6, 7:4> . 

dim q0 = range(0,7); dim q1 = q0; dim q2 = q0; dim q3 = q0; 
dim q4 = q0;         dim q5 = q0; dim q6 = q0; dim q7 = q0; 
dim[] queens = [q0, q1, q2, q3, q4, q5, q6, q7]; 
set different_row = all_different( queens ); 
set not_in_diag = all; 
foreach i range(0,|queens|-2) { 
  foreach j range(i+1, |queens|-1) { 
    not_in_diag = not_in_diag & 
      j-i != (queens[j] - queens[i]) & j-i != (queens[i] - queens[j]); 
    } 
} 
print( different_row & not_in_diag ); 

3. IMPLEMENTING {SETS} 

Our {sets} compiler generates C++ code that calls the open source BuDDy ROBDD library[10]. Running the 
generated program, which we also link with a {sets} runtime library, constructs ROBDDs that represent the 
sets defined in the {sets} program and usually pretty-prints their contents to produce the result. 

ROBDD packages manipulate finite Boolean functions, a very flexible representation. A characteristic 
function can represent the members of a set: for each possible member, the characteristic function indicates 
whether the set includes it. Set intersection and union on a characteristic function are  Boolean AND and OR. 

Boolean functions may also be used to represent arithmetic. The functions resemble those used in 
computer hardware, e.g., addition is performed with an adder function that treats bit vectors as binary. 

An ROBDD is a directed acyclic graph that canonically represents a Boolean function of a certain number 
of variables. Since it is canonical, checking whether an ROBDD represents a constant 0 or constant 1 
function (equivalent to the empty or universal set) is a constant-time operation. Furthermore, logical 
operations such as the logical AND of two functions, can be done in polynomial time. But there is no free 
lunch: checking for 0 is cheap but building an ROBDD from a sum-of-products can be exponentially costly. 

Multiplication is a costly function for ROBDDs. In particular, building a Boolean function that indicates 
whether the product of two numbers is a third is always exponentially costly. {sets} permits such product 
functions to be built, but doing do so for large numbers will certainly exhaust memory. However, 
multiplication by a constant, such as we did in the SEND+MORE=MONEY problem, is polynomial-cost. 

The cost of ROBDD operations depends on the number of variables and the complexity of the function. 
This is why the second implementation of SUBSET-SUM is more efficient: it uses fewer Boolean variables. 

To illustrate ROBDDs, consider solving X + Y = 6 over the domain [0,7]. This is easily expressed: 
dim X = [0,1,2,3,4,5,6,7]; dim Y = X; print( X + Y == 6 ); 

As expected, this gives all seven solutions to this equation in the domain: 
<0:0, 1:6> <0:4, 1:2> <0:2, 1:4><0:6, 1:0> <0:1, 1:5> <0:5, 1:1> <0:3, 1:3> 

The variables X and Y are encoded by the Boolean variables X3,..., X0, Y3,...,Y0 
(two sign bits are unnecessary). A simple heuristic orders these variables as 
X3,Y3, X2, Y2, X1, Y1, X0, Y0. In the figure on the right, every path from the 
root to the square “1” represents a solution to this equation.  One such path 
follows dotted arcs (representing zeros) except at the leftmost X2 and X1 nodes. 
This corresponds to the assignment X3 = 0, Y3 = 0, X2 = 1, Y2 = 0, X1 = 1, Y1 = 
0, X0 = 0, Y0 = 0,  a binary representation of the solution X=6, Y=0. 

The {sets} compiler generates C++ code that calls the BuDDy ROBDD 
library. We use a syntax-directed translation that also calls our runtime library.         ROBDD of X+Y=6 



For example, the all_different function becomes. 
bdd all_different( std::vector< Dim > vars ) { 
    bdd rslt = RtEnv::instance().all(); 
    int ind = 0; 
    { vector<Dim> __iterated_6808485(range(vars, 0, operator_size(vars) - 2)); 
        for( unsigned __i_6808485 = 0 ;  __i_6808485 < __iterated_6808485.size() ; ++__i_6808485 ) { 
           Dim v0 = __iterated_6808485[__i_6808485]; 
           { vector<Dim> __iterated_9596560(range(vars, ind + 1, (operator_size(vars) - 1 ))); 
               for(unsigned __i_9596560 = 0 ; __i_9596560 < __iterated_9596560.size() ; ++__i_9596560) { 
                   Dim v1 = __iterated_9596560[__i_9596560]; 
                   rslt = rslt & ( v0 != v1 ); 
           }   } 
        ind = ind + 1; 
    }   } 
    return rslt; 
} 

Our compiler translates print(no_leading_zeros & all_different([S,E,N,D,M,O,R,Y]) & equation); into this 
code:  print(((no_leading_zeros & all_different((vector<Dim>(), S, E, N, D, M, O, R, Y ))) & equation )); 

Our runtime library simplified code generation, e.g., we overloaded the C++ comma operator for tuples: 
template<typename T> vector<T> operator, (vector<T> vec, T elem) { vec.push_back( elem ); return vec; } 

4. EXPERIMENTS 

We ran three problems—SEND+MORE=MONEY, SUBSET-
SUM and N-Queens—under {sets} and under the Oz [11] 
constraint language. For N-Queens, we ran the programs with N 
ranging from 8 to 15 and measured the increase on run time as a 
function of N. In the SUBSET-SUM problem, we used the same 
target value with different set sizes. For each problem except 
SEND+MORE=MONEY, we calculated the number of solutions 
rather than enumerate them to eliminate printing overhead. For 
SEND+MORE=MONEY and N-Queens, Oz performed better, 
but {sets} performed better on large instances of SUBSET-SUM. 
We  ran these experiments  on an Apple MacBook‡ with a 2 GHz 
Intel Core Duo with 1 Gb of memory.  

5. RELATED WORK 

Hawkins, Lagoon and Stuckey [9] also use ROBDDs to solve 
constraint problems, but did not propose a language. We believe, {sets} is the first constraint language to rely 
on ROBDDs. Other non-constraint languages have been 
built atop ROBDDs, such as Behrmann's IBEN [3]. 
Developed as an educational tool to teach ROBDDs, it is 
an interpreter that wraps the BuDDy library. However, 
instead of our constraint semantics, it provides ways to 
manipulate BDDs. 

The Oz constraint programming language [11] 
attempts to solve problems much like {sets}, but we 
believe the {sets} syntax is superior: {sets} consists of a 
small set of features that can be combined. To the right is  
SEND+MORE=MONE written in Oz. Compare this with 
the {sets} version of the puzzle presented earlier. 
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Runtimes on Various Examples 

Example {sets} Oz 
SEND+MORE+MONEY 32s 0.2s 
SUBSET-SUM 10 1s <1s 
SUBSET-SUM 15 1.1s <1s 
SUBSET-SUM 20 1.3s <1s 
SUBSET-SUM 25 2.4s <1s 
SUBSET-SUM 30 6.5s >600s 
SUBSET-SUM 35 7.1s >600s 
8 Queens 1.2s 0.2s 
9 Queens 14.6s 0.4s 
10 Queens >640s 1.2s 
11 Queens - 1.6s 
12 Queens - 3.7s 
13 Queens - 15s 
14 Queens - 74s 
15 Queens - >718s 
 

declare Money 
proc {Money Root} 
    S E N D M O R Y 
in    
    Root = sol(s:S e:E n:N d:D m:M o:O r:R y:Y) 
    Root ::: 0#9 
    {FD.distinct Root} 
    S \=: 0                                     
    M \=: 0  
          1000*S + 100*E + 10*N + D + 
          1000*M + 100*O + 10*R + E  =: 
10000*M + 1000*O + 100*N + 10*E + Y    
    {FD.distribute ff Root}  
end 
{Browse {SearchAll Money}} 



6. CONCLUSIONS 

Our {sets} language provides a simple syntax for constraints programming, which can be extended by the 
user to create a powerful constraint programming library. Using ROBDDs to implement a constraint 
programming language, we demonstrated that this approach is feasible and can be easily adopted into other 
constraint programming implementations. No one size fits all;  while ROBDDs gave superior performance 
for large instances of the SUBSET-SUM problem, they were inferior for other problems. The programming 
language we have developed is the first constraint programming language to use ROBDDs.  
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