

Designing an Efficient Parallel ​

Presburger Arithmetic Solver in Haskell

Richard Li (YL5573)

December 2025

Introduction

This project refactors an existing Presburger Arithmetic solver library, Data.Integer.SAT, and

provides a parallel alternative to the existing single-thread solution function. Testing on a

17-variable-weighted-sum statement yields ~3x sequential speedup, and on top of which, ~4.5x

parallel speedup given effective parallel configurations.

Background & Context

Presburger Arithmetic (PrA) is a weak, completely axiomatisable logic theory first introduced in

1929. Despite including a weak axiom schema of induction, PrA is nevertheless a decidable

theory (unlike more typical arithmetics like Peano Arithmetic or ZF(C), both of which are only

semi-decidable). Specifically, one can design an algorithm such that, given any sentence, i.e.

formula candidate, of finite length, the algorithm outputs correctly whether the sentence is

provable from the axioms of PrA.

​ Typically, theories with induction encounter decidability challenges when universal and

existential quantifiers are involved: to prove false an unbounded universal (Π1) statement, a

checking algorithm must enumerate all instances of the bounded variable (of which there are

usually infinitely many) that follow from the ∀ sign, whereas, if the statement is true, the

checking program ends up running forever.

​ Roughly speaking, PrA does not suffer from such difficulties by way of quantifier

reduction: any unbounded universal or existential statement in PrA can be first written into

conjunctive normal form (CNF), then unravelled into a long unbounded-quantifier-free (Δ0)

sentence, whose truth value is decidable via mechanical enumeration of all pertinent variables’

truth values. The reduction step is implemented via modulo arithmetic. The standard algorithm to

decide the truth value of PrA statements is Cooper’s Algorithm, whose time complexity is O(n3).

Project Overview

The objective of this project is to tackle the problem of efficiently deciding PrA statements. The

project builds upon an old Haskell library, Data.Integer.SAT, which provides an existing

framework that implements the primitives, propositions, and symbolic syntax of PrA, as well as

a checkSat function that implements Cooper’s Algorithm. Nevertheless, the library suffers from

several detrimental challenges that make its deciding procedure impractical to use:

1.​ The library itself was last maintained in 2019, and thus does not support any GHC

versions compatible with ARM-architecture chips - the library must be built locally to

run on a modern version of Haskell

2.​ The algorithmic design of the original library prioritises the branching of coefficient

exploration without effective pruning - a direct consequence of this design choice is that

the program freezes whenever the proposition includes two-sided variable bound

constraints, which quickly results in the program OOMing

3.​ The library does not support explicit parallel computation, which distributes workload

across multiple cores to reduce runtime

This project addresses the aforementioned challenges in three steps:

1.​ Refactoring the existing library systematically to provide a basic, functioning

single-thread solver as a baseline

2.​ Implementing an alternative deciding function that supports parallelisation

3.​ Designing benchmarks and text cases to quantitatively test the improvement of the

parallel program

4.​ Exploring different parallelisation strategies and providing a set of outstanding

configurations

None

None

Library Refactoring

Two changes that addressed bound pruning OOM are detailed below. The tested cases solve time

were reduced from ∞ (impossible to solve) to within one minute after these changes.​

1.​ Added a normalised bound procedure to mitigate coefficient blowup, which in the

original library caused unnecessary branching and quick OOM:

normalizeBound :: BoundType -> Bound -> Bound

normalizeBound _ (Bound 1 t) = Bound 1 t

normalizeBound bt (Bound c t)

 | Just k <- isConst t =

 case bt of

 -- t < c*x means x > t/c means x >= ceil((t+1)/c) = floor(t/c) + 1

 -- So floor(t/c) < x, i.e., Bound 1 (floor(t/c))

 Lower -> Bound 1 (tConst (div k c))

 -- c*x < t means x < t/c means x <= floor((t-1)/c)

 -- So x < floor((t-1)/c) + 1, i.e., Bound 1 (floor((t-1)/c) + 1)

 Upper -> Bound 1 (tConst (div (k - 1) c + 1))

 | otherwise = Bound c t

2.​ Updated the gray case to avoid allocating performance-costly lists inside solveIsNeg’

- gray = [ctEq (b |*| tVar x) (tConst i |+| beta)

- | i <- [1 .. b - 1]]

- solveIsNeg real

- foldl orElse (solveIsNeg dark) (map solveIs0 gray)​

​

+ grayOrDark :: S ()

+ grayOrDark =

+ solveIsNeg dark `orElse` grayRange 1 (b - 1)

+ where

None

+ grayAt :: Integer -> S ()

+ grayAt i =

+ let eqi = ctEq (b |*| tVar x) (tConst i |+| beta)

+ in solveIs0 eqi

+ grayRange :: Integer -> Integer -> S ()

+ grayRange lo hi

+ | lo > hi = mzero

+ | lo == hi = grayAt lo

+ | otherwise =

+ let mid = (lo + hi) `div` 2

+ in grayRange lo mid `orElse` grayRange (mid + 1) hi

+ solveIsNeg real

+ grayOrDark

Sequential Optimisations

Data.Map Map was replaced with IntMap + modulo arithmetic pairing in multiple places

resulting in ~30% time save. Furthermore, additional pruning was introduced and iApSubst

(handles solved variable substitution) is revamped from direct list iteration to IntMap lookup +

then substitution, which avoids iterating through unused variables.

- iApSubst :: Inerts -> Term -> Term

- iApSubst i t = foldr apS t $ Map.toList $ solved i

- where apS (x,t1) t2 = tLet x t1 t2

+ iApSubst :: Inerts -> Term -> Term

+ iApSubst is (T n m) =

+ IntM.foldlWithKey' step (T n IntM.empty) m

+ where

+ defs = solved is

 + step :: Term -> Int -> Integer -> Term

 + step acc k c

 + | c == 0 = acc

 + | otherwise =

 + case IntM.lookup k defs of

 + Nothing -> addCoeffK k c acc

 + Just defT -> addScaledTerm c defT acc

Together, they contributed to a ~3x speedup in solving the benchmark. See chart below for

details: (Left to right: original -> IntMap -> Strict Fold -> iApSubst)

Parallel Optimisations

The structure of the checkSat function invites a parallel revision that can improve performance.

Specifically, it is a DFS search along the branched out search tree of potential variable

configurations, Choice (Answer a) (Answer a)

​ By sending one side of the choice to another core, we can achieve parallelism. However,

since checkSat traverses the tree of many branches, it is important to decide how many times a

spark should be created to do parallel work. Hence, the project implements checkSatPar (see

below), which pars the right side of Choice, and also controls spark generation via a depth cutoff.

Additionally, because of the way gray and grayRange is revamped, the Choice chain is more

balanced to reduce the possibility of a very expensive disjunction chain.

None

checkSatPar :: Int -> PropSet -> Maybe [(Int, Integer)]

checkSatPar cutoff (State m) =

 go cutoff m

 where

 go _ None = Nothing

 go _ (One rw) = Just [(x, v) | (UserName x, v) <- iModel (inerts rw)]

 go d (Choice m1 m2)

 | d == cutoff =

 goChoice d m1 m2

 | otherwise = goChoice d m1 m2

 goChoice d m1 m2

 | d <= 0 = go 0 m1 <|> go 0 m2

 | otherwise =

 let r = go (d - 1) m2

 l = go (d - 1) m1

 in r `par` (l <|> r)

With logging and Threadscope, depth choices of 4, 8, and 16 are compared to explore efficient

sparking configuration:

Left to right: Depth 4, 8, 16, respectively, on 10 cores.

Clearly, the low depth fails to spark sufficient work for all cores to execute simultaneously. On

an average of 5 runs, it also took ~14% more time to execute than the other two cases (2.94s vs

2.58s)

Nevertheless, when examining the spark information details, around half (32k/65k) of the

sparks were GC’ed in the depth-16 case. Furthermore, out of all remaining sparks, another 32k

were fizzled, and <1k remaining sparks were converted. Meanwhile, in the more efficient

depth-8 case, no sparks were GC’ed, ~30% were converted (79/255), and the remaining fizzled.

The project proceed to use 8 as depth to explore parallelisation behaviour on different

numbers of cores:

​

Setting p = 0.87 and evaluating Amdahl’s law equation:

​

 𝑆(𝑁) = 1
(1 − 𝑝) + 𝑝

𝑁

S(10) = 4.61, close to 4.46x observed speedup. suggesting that the library is around 87%

parallelisable. Setting N = ∞ gives an optimal speedup under Amdahl’s law at ~7.7x

Conclusion

This project explored Cooper’s algorithm to decide the truth value of Presburger Arithmetic

statements, and evaluated the performance of both sequential and parallel optimisation efforts.

​ Overall, the sequential approaches of implementing better data structures and more

effective pruning brought the original library into a usable state. Nevertheless, parallelisation

also substantially improved code efficiency. Furthermore, the optimisation strategies

implemented by this project can serve as a reference for improvement efforts on similar projects

that involve binary tree traversal.

References

1.​ 2025. Haskellorg. [accessed 2025 Dec 19].

https://hackage.haskell.org/package/presburger.

2.​ Cooper D.C. Theorem Proving in Arithmetic without Multiplication.

https://www.cs.cmu.edu/~emc/spring06/home1_files/Cooper.pdf.

	Designing an Efficient Parallel ​Presburger Arithmetic Solver in Haskell
	Introduction
	Background & Context
	Project Overview
	
	Library Refactoring
	Sequential Optimisations
	Parallel Optimisations
	Conclusion
	References

