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Introduction 

This project refactors an existing Presburger Arithmetic solver library, Data.Integer.SAT, and 

provides a parallel alternative to the existing single-thread solution function. Testing on a 

17-variable-weighted-sum statement yields ~3x sequential speedup, and on top of which, ~4.5x 

parallel speedup given effective parallel configurations. 

Background & Context 

Presburger Arithmetic (PrA) is a weak, completely axiomatisable logic theory first introduced in 

1929. Despite including a weak axiom schema of induction, PrA is nevertheless a decidable 

theory (unlike more typical arithmetics like Peano Arithmetic or ZF(C), both of which are only 

semi-decidable). Specifically, one can design an algorithm such that, given any sentence, i.e. 

formula candidate, of finite length, the algorithm outputs correctly whether the sentence is 

provable from the axioms of PrA. 

​ Typically, theories with induction encounter decidability challenges when universal and 

existential quantifiers are involved: to prove false an unbounded universal (Π1) statement, a 

checking algorithm must enumerate all instances of the bounded variable (of which there are 

usually infinitely many) that follow from the ∀ sign, whereas, if the statement is true, the 

checking program ends up running forever. 

​ Roughly speaking, PrA does not suffer from such difficulties by way of quantifier 

reduction: any unbounded universal or existential statement in PrA can be first written into 

conjunctive normal form (CNF), then unravelled into a long unbounded-quantifier-free (Δ0) 

sentence, whose truth value is decidable via mechanical enumeration of all pertinent variables’ 



 

truth values. The reduction step is implemented via modulo arithmetic. The standard algorithm to 

decide the truth value of PrA statements is Cooper’s Algorithm, whose time complexity is O(n3). 

Project Overview 

The objective of this project is to tackle the problem of efficiently deciding PrA statements. The 

project builds upon an old Haskell library, Data.Integer.SAT, which provides an existing 

framework that implements the primitives, propositions, and symbolic syntax of PrA, as well as 

a checkSat function that implements Cooper’s Algorithm. Nevertheless, the library suffers from 

several detrimental challenges that make its deciding procedure impractical to use: 

1.​ The library itself was last maintained in 2019, and thus does not support any GHC 

versions compatible with ARM-architecture chips - the library must be built locally to 

run on a modern version of Haskell 

2.​ The algorithmic design of the original library prioritises the branching of coefficient 

exploration without effective pruning - a direct consequence of this design choice is that 

the program freezes whenever the proposition includes two-sided variable bound 

constraints, which quickly results in the program OOMing 

3.​ The library does not support explicit parallel computation, which distributes workload 

across multiple cores to reduce runtime 

This project addresses the aforementioned challenges in three steps: 

1.​ Refactoring the existing library systematically to provide a basic, functioning 

single-thread solver as a baseline 

2.​ Implementing an alternative deciding function that supports parallelisation 

3.​ Designing benchmarks and text cases to quantitatively test the improvement of the 

parallel program 

4.​ Exploring different parallelisation strategies and providing a set of outstanding 

configurations 
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Library Refactoring 

Two changes that addressed bound pruning OOM are detailed below. The tested cases solve time 

were reduced from ∞ (impossible to solve) to within one minute after these changes.​

 

1.​ Added a normalised bound procedure to mitigate coefficient blowup, which in the 

original library caused unnecessary branching and quick OOM: 

normalizeBound :: BoundType -> Bound -> Bound 

normalizeBound _ (Bound 1 t) = Bound 1 t 

normalizeBound bt (Bound c t) 

  | Just k <- isConst t = 

      case bt of 

        -- t < c*x  means  x > t/c  means  x >= ceil((t+1)/c) = floor(t/c) + 1 

        -- So floor(t/c) < x, i.e., Bound 1 (floor(t/c)) 

        Lower -> Bound 1 (tConst (div k c)) 

        -- c*x < t  means  x < t/c  means  x <= floor((t-1)/c) 

        -- So x < floor((t-1)/c) + 1, i.e., Bound 1 (floor((t-1)/c) + 1) 

        Upper -> Bound 1 (tConst (div (k - 1) c + 1)) 

  | otherwise = Bound c t 

 

2.​ Updated the gray case to avoid allocating performance-costly lists inside solveIsNeg’ 

- gray = [ ctEq (b |*| tVar x) (tConst i |+| beta) 

-                                      | i <- [ 1 .. b - 1 ] ] 

- solveIsNeg real 

- foldl orElse (solveIsNeg dark) (map solveIs0 gray)​

​

+ grayOrDark :: S () 

+ grayOrDark = 

+      solveIsNeg dark `orElse` grayRange 1 (b - 1) 

+      where 



None

 

+        grayAt :: Integer -> S () 

+        grayAt i = 

+          let eqi = ctEq (b |*| tVar x) (tConst i |+| beta) 

+          in solveIs0 eqi 

+        grayRange :: Integer -> Integer -> S () 

+        grayRange lo hi 

+          | lo > hi = mzero 

+          | lo == hi = grayAt lo 

+          | otherwise = 

+              let mid = (lo + hi) `div` 2 

+              in grayRange lo mid `orElse` grayRange (mid + 1) hi 

+ solveIsNeg real 

+ grayOrDark 

Sequential Optimisations 

Data.Map Map was replaced with IntMap + modulo arithmetic pairing in multiple places 

resulting in ~30% time save. Furthermore, additional pruning was introduced and iApSubst 

(handles solved variable substitution) is revamped from direct list iteration to IntMap lookup + 

then substitution, which avoids iterating through unused variables. 

- iApSubst :: Inerts -> Term -> Term 

- iApSubst i t = foldr apS t $ Map.toList $ solved i 

-   where apS (x,t1) t2 = tLet x t1 t2 

 

+ iApSubst :: Inerts -> Term -> Term 

+ iApSubst is (T n m) = 

+   IntM.foldlWithKey' step (T n IntM.empty) m 

+   where 

+     defs = solved is 

 

 +    step :: Term -> Int -> Integer -> Term 



 

 +    step acc k c 

 +      | c == 0 = acc 

 +      | otherwise = 

 +          case IntM.lookup k defs of 

 +            Nothing   -> addCoeffK k c acc 

 +            Just defT -> addScaledTerm c defT acc 

 

Together, they contributed to a ~3x speedup in solving the benchmark. See chart below for 

details: (Left to right: original -> IntMap -> Strict Fold -> iApSubst) 

 

Parallel Optimisations 

The structure of the checkSat function invites a parallel revision that can improve performance. 

Specifically, it is a DFS search along the branched out search tree of potential variable 

configurations, Choice (Answer a) (Answer a) 

​ By sending one side of the choice to another core, we can achieve parallelism. However, 

since checkSat traverses the tree of many branches, it is important to decide how many times a 

spark should be created to do parallel work. Hence, the project implements checkSatPar (see 

below), which pars the right side of Choice, and also controls spark generation via a depth cutoff. 

Additionally, because of the way gray and grayRange is revamped, the Choice chain is more 

balanced to reduce the possibility of a very expensive disjunction chain. 



None

 

checkSatPar :: Int -> PropSet -> Maybe [(Int, Integer)] 

checkSatPar cutoff (State m) = 

  go cutoff m 

  where 

    go _ None = Nothing 

    go _ (One rw) = Just [(x, v) | (UserName x, v) <- iModel (inerts rw)] 

    go d (Choice m1 m2) 

      | d == cutoff = 

          goChoice d m1 m2 

      | otherwise = goChoice d m1 m2 

 

    goChoice d m1 m2 

      | d <= 0 = go 0 m1 <|> go 0 m2 

      | otherwise = 

          let r = go (d - 1) m2 

              l = go (d - 1) m1 

           in r `par` (l <|> r) 

 

With logging and Threadscope, depth choices of 4, 8, and 16 are compared to explore efficient 

sparking configuration: 

 

Left to right: Depth 4, 8, 16, respectively, on 10 cores. 

Clearly, the low depth fails to spark sufficient work for all cores to execute simultaneously. On 

an average of 5 runs, it also took ~14% more time to execute than the other two cases (2.94s vs 

2.58s) 



 

Nevertheless, when examining the spark information details, around half (32k/65k) of the 

sparks were GC’ed in the depth-16 case. Furthermore, out of all remaining sparks, another 32k 

were fizzled, and <1k remaining sparks were converted. Meanwhile, in the more efficient  

depth-8 case, no sparks were GC’ed, ~30% were converted (79/255), and the remaining fizzled. 

The project proceed to use 8 as depth to explore parallelisation behaviour on different 

numbers of cores: 

​

 

Setting p = 0.87 and evaluating Amdahl’s law equation: 

​

 𝑆(𝑁) = 1
(1 − 𝑝) + 𝑝

𝑁

 

S(10) = 4.61, close to 4.46x observed speedup. suggesting that the library is around 87% 

parallelisable. Setting N = ∞ gives an optimal speedup under Amdahl’s law at ~7.7x 

Conclusion 

This project explored Cooper’s algorithm to decide the truth value of Presburger Arithmetic 

statements, and evaluated the performance of both sequential and parallel optimisation efforts. 



 

​ Overall, the sequential approaches of implementing better data structures and more 

effective pruning brought the original library into a usable state. Nevertheless, parallelisation 

also substantially improved code efficiency. Furthermore, the optimisation strategies 

implemented by this project can serve as a reference for improvement efforts on similar projects 

that involve binary tree traversal. 
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