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Connect Four Solver Using Monte Carlo Tree Search 

 
Overview 
The purpose of this project is to implement an AI player for the Connect 4 game, and then to 

parallelize the algorithm to improve the performance. The AI player uses the Monte Carlo Tree 

Search (MCTS) algorithm as its strategy. I use Haskell’s built in parallelism libraries to create 

performance improvements. The goal is to see how much of a speedup the decision-making 

algorithm can experience using search-tree parallelism. I use Threadscope and other 

measurement tools to quantify the performance across varying numbers of CPU cores/threads. 

 

Background 
Connect 4 is a two-player turn based game that is played in a 6 row x 7 column grid. Each player 

is assigned a color (red or yellow) and takes turns placing discs into columns that drop all the 

way down. The objective is to form a line of 4 of your color’s discs in a row, either horizontally, 

vertically, or diagonally. The Monte Carlo Tree Search algorithm is a common algorithm used by 

AI in turn-based games and searches the game tree to choose the optimal move. This is an 

interesting choice of an algorithm as the recursive subtree exploration lends itself well to 

Haskell’s ability to evaluate independent subtrees in parallel. Monte Carlo Tree Search balances 

exploration (trying new moves) and exploitation (choosing moves that are known to be good) 

when selecting which nodes to explore. The algorithm uses 4 key steps: selection, expansion, 

simulation, and backpropagation. In the selection step, it traverses the tree using a scoring policy 

(often the UCT policy shown in Figure 1 below) and chooses which child node to explore based 

on this policy. This is the step that works to balance the exploration and exploitation features. In 

the expansion step, the algorithm adds child nodes from the selected node into the list of possible 

moves. The simulation step plays out the game from that node onward using randomly generated 



moves and determines which player eventually wins the simulation. Lastly, the backpropagation 

step propagates the result of the game up the tree. It backtracks the path that led to the current 

leaf node and updates each node’s value of number of visits and number of wins. Unlike other 

popular algorithms like Minimax, the Monte Carlo Tree Search algorithm is able to explore large 

search spaces efficiently without having to do full tree traversals. It also doesn’t need to use 

heuristic functions and can benefit more from hardware speedups.  

 

 

Figure 1 - Urticaria Control Test (UCT) Score Equation  

 

Hardware Specifications 
 

Brand Intel 

Model Core i5-8259U 

Cores 4 

Hardware Threads 8 

 

 

 



Methodology 
For this project, I completed four main steps to implement and measure the performance of the 

Connect Four solver using MCTS: 1. Implement sequential Connect Four solver, 2. Measure 

performance of sequential solver, 3. Implement parallel Connect Four solver, 4. Measure 

performance of parallel solver. To create the sequential Connect Four solver, I created 3 files: 

Board.hs, SequentialMCTS.hs, and Main.hs. Board.hs sets up the Connect Four board and 

exposes functions like createEmptyBoard, availableCols, placeTile, and checkWin. 

SequentialMCTS.hs is where the bulk of the solver logic lives and exposes functions like 

rootNode, mctsAlgo, and bestMove. Main.hs includes the code that calls the solver algorithm 

with iterations. The sequential solver defines a Node data type that keeps track of the nodeId, the 

board state, the color, the children nodes, the number of times the node has been visited, and the 

number of wins the node has yielded. Mirroring the 4 steps of the MCTS algorithm (selection, 

expansion, simulation, and backpropagation), there are the following functions: selectPath, 

expand, play, and backpropagate. There are multiple helper functions like score which handles 

the calculation of the UCT scoring equation and oneMcts which performs one iteration of the 

MCTS algorithm. The next step was to measure the performance of the solver. I used the 

command “stack exec connect4 5000 -- +RTS -N1 -l -s” where 5000 is the number of MCTS 

iterations to run, and -N1 is the number of threads to run it with. I ran this command 8 times 

(from 1 to 8 threads) and recorded the time it took to run. I wasn’t expecting too much of a 

speedup since it is a sequential algorithm, not parallel yet. I also ran the command “threadscope 

connect4.eventlog” to analyze the threadscope graphs in order to see how the threads are 

splitting up the work. Next, I created ParallelMCTS.hs, a parallelized version of the Connect 

Four solver. This introduced new functions such as parallelPlay and parallelOneMcts in order to 

accomplish this. The parallelization strategy I employed was intra-iteration parallelism. Since the 

selection and backpropagation steps need to be done sequentially, and the expansion step is 

almost trivial, I decided to focus on the simulation step. Instead of performing one random 

simulation per iteration, the algorithm performs multiple simulations in parallel from the same 

selected leaf node. I chose this because simulations are independent and CPU intensive. I then 

measured the performance of this solver in the same way as the sequential solver and recorded 

the performance results. The results for both solvers are discussed in the next section. 

 



Results 
After measuring the times the sequential solver took using a varying number of threads, I created 

a graph showing speedup vs. threads (as shown in Figure 2 below). The results show a very 

slight speedup trend as more threads are increased but range from 1.280 (1 thread)  seconds to 

1.136 seconds (8 threads). I also looked at the threadscope graph across the 8 threaded version 

(shown in Figure 3 below). The results show one thread doing the vast majority of the work and 

extremely little overlap in the thread usage across the 8 threads. This minimal speedup and 

unequal thread usage was expected as a sequential algorithm shouldn’t benefit very much from 

adding threads. After measuring the times the parallel solver took using a varying number of 

threads, I created a graph showing speedup vs. threads (as shown in Figure 4 below). The results 

show a considerable speedup trend as more threads are increased. They range from 4.365 

seconds (1 thread) to 2.175 seconds (8 threads). I also looked at the threadscope graph across the 

8 threaded version (shown in Figure 5 below). The results show a really equal distribution of 

work across the threads for around 75% of the time, and then falls back to sequential behavior. 

These results are expected for the parallel solver as the simulations are able to happen much 

faster in parallel. Since I only added parallelization to that portion of the algorithm, it did not 

speed up the whole process. One interesting thing that sticks out is that the parallelized version 

takes much longer than the sequential version. At first, I thought this was due to the added 

overhead of parallelizing the threads, but I realized that each iteration is performing 8 

simulations rather than just 1 random one. So even though the overall time taken to complete 

5000 iterations is 2 to 4 times longer than the sequential version, the time per simulation is 

actually much faster. Another thing to note is that the parallelized threadscope graph has two 

clear sections of time. The first is extremely parallelized, and the second is entirely sequential. I 

had trouble identifying what this sequential part of the code was, but I believe it was related to 

IO. 

 



 
Figure 2 - Speedup vs. Threads Graph for Sequential MCTS Solver 

 

 
Figure 3 - Threadscope Graph for 8 Threaded Version of Sequential MCTS Solver 



 
Figure 4 - Speedup vs. Threads Graph for Parallel MCTS Solver 

 

 
Figure 5 - Threadscope Graph for 8 Threaded Version of Parallel MCTS Solver 
 



Future Work 
Unfortunately, I ran out of time before completing all that I would have liked to on this project. 

There are a few key ideas that I wish I had time to explore, and I would consider as steps for 

future work. First of all, I would like to investigate the performance of the parallelized solver a 

bit more on a per-simulation basis. I would normalize the performance metrics by simulation 

count rather than iteration count. It is problematic to have two different loads of work being done 

by the different algorithms when comparing the two. I would also like to test the performance of 

the parallel version to see if it performs “better” in the game to see if it benefits from having 

more simulations done per iteration. Another piece of future work would be to try another 

parallelization strategy. I would like to try doing root parallelization which would allow the 

algorithm to run independent MCTS iterations. Each of the iterations would have its own tree 

from the root. They would run in parallel and merge the statistics to choose the best move. 

Lastly, if this helped speed up the algorithm, I would want to measure the performance 

differences of having 1. No parallelization, 2. Intra-iteration parallelization only, 3. Root 

parallelization only, 4. Combining both strategies of parallelization. 


