Project Proposal
Prime Factorization

Hazel Flaming
haf2136

PFP Fall 2025
Stephen Edwards, Maxwell Levatich



Summary

Prime factorization is a core concept in the foundations of mathematics, cryptography, hashing,
randomness, and other fields, involving the deconstruction of large numbers into two or more
prime factors (self-explanatory). In this project, I seek to explore the sequential and parallel
optimization of several algorithms dedicated to solving this problem.

Motivation

This problem (from afar) presents several advantages with respect to this specific project. Firstly,
solving this problem is not IO bound, as it simply requires a single input and otherwise requires
no input from the filesystem and all logic can be handled internally. Secondly, this problem has
several “knobs” that can be adjusted with respect to testing code, the most obvious being the size
of the number, along with additional examples being the number of total factors, the proximity of
those factors, and so on, such that if the algorithm takes too long or too short to present
interesting comparisons, no complicated overhaul or project changes are required and those
“knobs” can be adjusted easily by selecting different test cases. The final advantage is the
existence of multiple algorithms, some very simple like trial division, and some very
complicated like General Number Field Sieve (GNFS), which allows the project to proceed
iteratively by first improving each algorithm serially and then parallelizing it, and then
proceeding onto more complex algorithms. Additionally, the existence of multiple algorithms
allows intelligent selection of algorithms on the basis of theoretical parallelizability.

Input Data

Input data is easy— we can simply generate random numbers of increasing size and factorization
complexity (i.e. by multiplying together n random prime numbers), or sourced from
https://en.wikipedia.org/wiki/RSA Factoring Challenge if any of the algorithms get efficient
enough to solve challenges this hard.

High-Level Algorithm Descriptions

(1) Trial division works by testing (naively) all numbers up to the \/;) to see if they are a
factor of p. If a number a is a factor of p, then it is run recursively on % until % itself is
prime.

(2) Fermat’s Factorization Method works by expressing p as X - yz, where the factors of p
then would be x — y and x + y. This works starting with x = \/E, and iteratively
checking if X - p is a perfect square.

(3) Quadratic Sieve works by first finding smooth numbers close to \/}; via the formula

Qx) = (x + \/5)2 — p, which are numbers which factor into small primes set by some
small prime bound B. Then, it combines sufficiently smooth numbers into a single perfect


https://en.wikipedia.org/wiki/RSA_Factoring_Challenge

square by using smooth numbers which can be written purely as products of small primes
(below B) with even exponents (i.e. 2! + 56), guaranteeing a perfect square. Then, using

the formula gcd(X — Y,p), where X = x + /jpand Y =+/Q(x), where x corresponds
to the specific smooth number, a non-trivial factor is found.
(4) Additional algorithms can be added if the previous scope is too small.

(The start of a) Parallel Implementation Plan

Starting at trial division, which checks the remainder when dividing the trial number p by
increasing integers or primes, can be split up among the primes such that each thread handles a
subset of possible divisors. This can be done naively (splitting into evenly sized groups) or
intelligently by using some heuristic to estimate the probability of finding a factor within a chunk
and splitting into equal probability chunks. Fermat’s factorization method (see source 1) can be

trivially parallelized by assigning threads to check whether X = Nisa perfect square for

x =N + ¢ + ck, k € N, where c is the number of threads and c' is the current thread number.
Moving onto more complex algorithms, for the quadratic sieve algorithm (see source 1) which
expands upon Fermat’s method has similar condition checking which can be done independently
between threads (finding smooth numbers), and then some linear algebra work which will be less
parallelizable, however, because the sieving likely dominates the linear algebra, parallelizing it
should prove beneficial. Because of the simplicity of much of the parallelism discussed here,
techniques which favor many small computations, like accelerate, strategies, and REPA would
work better over the par monad which comes with more overhead and favors fewer longer
computations.

References
https://medium.com/nerd-for-tech/heres-how-quadratic-sieve-factorization-works-1c878bc94{81



https://medium.com/nerd-for-tech/heres-how-quadratic-sieve-factorization-works-1c878bc94f81

