
​Project Proposal​
​Prime Factorization​
​Hazel Flaming​
​haf2136​

​PFP Fall 2025​
​Stephen Edwards, Maxwell Levatich​



​Summary​
​Prime factorization is a core concept in the foundations of mathematics, cryptography, hashing,​
​randomness, and other fields, involving the deconstruction of large numbers into two or more​
​prime factors (self-explanatory). In this project, I seek to explore the sequential and parallel​
​optimization of several algorithms dedicated to solving this problem.​

​Motivation​
​This problem (from afar) presents several advantages with respect to this specific project. Firstly,​
​solving this problem is not IO bound, as it simply requires a single input and otherwise requires​
​no input from the filesystem and all logic can be handled internally. Secondly, this problem has​
​several “knobs” that can be adjusted with respect to testing code, the most obvious being the size​
​of the number, along with additional examples being the number of total factors, the proximity of​
​those factors, and so on, such that if the algorithm takes too long or too short to present​
​interesting comparisons, no complicated overhaul or project changes are required and those​
​“knobs” can be adjusted easily by selecting different test cases. The final advantage is the​
​existence of multiple algorithms, some very simple like trial division, and some very​
​complicated like General Number Field Sieve (GNFS), which allows the project to proceed​
​iteratively by first improving each algorithm serially and then parallelizing it, and then​
​proceeding onto more complex algorithms. Additionally, the existence of multiple algorithms​
​allows intelligent selection of algorithms on the basis of theoretical parallelizability.​

​Input Data​
​Input data is easy– we can simply generate random numbers of increasing size and factorization​
​complexity (i.e. by multiplying together n random prime numbers), or sourced from​
​https://en.wikipedia.org/wiki/RSA_Factoring_Challenge​​if any of the algorithms get efficient​
​enough to solve challenges this hard.​

​High-Level Algorithm Descriptions​
​(1)​ ​Trial division works by testing (naively) all numbers up to the​ ​to see if they are a​​𝑝​

​factor of p. If a number​ ​is a factor of​ ​, then it is run recursively on​ ​until​ ​itself is​​𝑎​ ​𝑝​ ​𝑝​
​𝑎​

​𝑝​
​𝑎​

​prime.​

​(2)​ ​Fermat’s Factorization Method works by expressing​ ​as​ ​, where the factors of​​𝑝​ ​𝑥​​2​ − ​𝑦​​2​ ​𝑝​
​then would be​ ​and​ ​. This works starting with​ ​, and iteratively​​𝑥​ − ​𝑦​ ​𝑥​ + ​𝑦​ ​𝑥​ = ​𝑝​

​checking if​ ​is a perfect square.​​𝑥​​2​ − ​𝑝​
​(3)​ ​Quadratic Sieve works by first finding​​smooth numbers​​close to​ ​via the formula​​𝑝​

​, which are numbers which factor into small primes set by some​​𝑄​(​𝑥​) = (​𝑥​ + ​𝑝​)​2​ − ​𝑝​
​small prime bound​ ​. Then, it combines sufficiently smooth numbers into a single perfect​​𝐵​

https://en.wikipedia.org/wiki/RSA_Factoring_Challenge


​square by using smooth numbers which can be written purely as products of small primes​

​(below​ ​) with​​even exponents​​(i.e.​ ​), guaranteeing a perfect square. Then, using​​𝐵​ ​2​​4​ + ​5​​6​

​the formula​ ​, where​ ​and​ ​, where x corresponds​​𝑔𝑐𝑑​(​𝑋​ − ​𝑌​, ​𝑝​) ​𝑋​ = ​𝑥​ + ​𝑝​ ​𝑌​ = ​𝑄​(​𝑥​)
​to the specific smooth number, a non-trivial factor is found.​

​(4)​ ​Additional algorithms can be added if the previous scope is too small.​

​(The start of a) Parallel Implementation Plan​
​Starting at trial division, which checks the remainder when dividing the trial number​ ​by​​𝑝​
​increasing integers or primes, can be split up among the primes such that each thread handles a​
​subset of possible divisors. This can be done naively (splitting into evenly sized groups) or​
​intelligently by using some heuristic to estimate the probability of finding a factor within a chunk​
​and splitting into equal probability chunks. Fermat’s factorization method (see source 1) can be​

​trivially parallelized by assigning threads to check whether​ ​is a perfect square for​​𝑥​​2​ − ​𝑁​
​, where c is the number of threads and​ ​is the current thread number.​​𝑥​ = ​𝑁​ + ​𝑐​​'​ + ​𝑐𝑘​, ​𝑘​ ∈ ​𝑁​ ​𝑐​​'​

​Moving onto more complex algorithms, for the quadratic sieve algorithm (see source 1) which​
​expands upon Fermat’s method has similar condition checking which can be done independently​
​between threads (finding smooth numbers), and then some linear algebra work which will be less​
​parallelizable, however, because the sieving likely dominates the linear algebra, parallelizing it​
​should prove beneficial. Because of the simplicity of much of the parallelism discussed here,​
​techniques which favor many small computations, like accelerate, strategies, and REPA would​
​work better over the par monad which comes with more overhead and favors fewer longer​
​computations.​

​References​
​https://medium.com/nerd-for-tech/heres-how-quadratic-sieve-factorization-works-1c878bc94f81​

https://medium.com/nerd-for-tech/heres-how-quadratic-sieve-factorization-works-1c878bc94f81

