
Team 

Richard Li - YL5573 

Background 

​ Presburger Arithmetic (PrA) is a weak, completely axiomatisable logic theory first 

introduced in 1929. Despite including a weak axiom schema of induction, PrA is nevertheless a 

decidable theory (unlike more typical arithmetics like Peano Arithmetic or ZF(C), both of which 

are only semi-decidable). Specifically, one can design an algorithm such that, given any 

sentence, i.e. formula candidate, of finite length, the algorithm outputs correctly whether the 

sentence is provable from the axioms of PrA. 

​ Typically, theories with induction encounter decidability challenges when universal and 

existential quantifiers are involved: to prove false an unbounded universal (Π1) statement, a 

checking algorithm must enumerate all instances of the bounded variable (of which there are 

usually infinitely many) that follow from the ∀ sign, whereas, if the statement is true, the 

checking program ends up running forever. 

​ Roughly speaking, PrA does not suffer from such difficulties by way of quantifier 

reduction: any unbounded universal or existential statement in PrA can be first written into 

conjunctive normal form (CNF), then unravelled into a long unbounded-quantifier-free (Δ0) 

sentence, whose truth value is decidable via mechanical enumeration of all pertinent variables’ 

truth values. The reduction step is implemented via modulo arithmetic. 

Project Overview 

​ Parallelise (and further optimise) the Haskell Data.Integer.Presburger library’s 

implementation of Check :: Formula -> Bool 

Initial Ideas 

1.​ The library uses Data.IntMap, which can likely be upgraded to Data.IntMap.Strict 

https://hackage.haskell.org/package/presburger-0.3/docs/Data-Integer-Presburger.html


2.​ Since PrA’s logical operators are identically recursively axiomatised as the standard, 

classical sentential logic, theorem-checking is similarly recursively defined - a good place 

to par away part of the logical connectives onto a separate spread 

3.​ Existential enumerations should also be parallelisable 

Forseeable Challenges 

1.​ CNF conversion seems really hard to parallelise, and might take up a sizeable chunk of 

overhead 

2.​ A really complex unravelled Δ0 sentence may lead to spark overflow - won’t know until 

early testing with Threadscope 

Input Data 

​ I will start by coming up with some arbitrary sentences that are long and complex 

Miscellaneous 

​ There is a separate repo that uses a Deterministic Finite Automata approach - worth 

exploring if time permits. 

References 

1.​ https://hackage.haskell.org/package/presburger-0.3/docs/Data-Integer-Presburger.html 

2.​ https://github.com/konn/presburger-dfa 

3.​ https://www.cs.cmu.edu/~emc/spring06/home1_files/Cooper.pdf 

4.​ https://link.springer.com/chapter/10.1007/11532231_20 

 

https://github.com/konn/presburger-dfa
https://hackage.haskell.org/package/presburger-0.3/docs/Data-Integer-Presburger.html
https://github.com/konn/presburger-dfa
https://www.cs.cmu.edu/~emc/spring06/home1_files/Cooper.pdf
https://link.springer.com/chapter/10.1007/11532231_20

	Team 
	Background 
	Project Overview 
	Initial Ideas 
	Forseeable Challenges 
	Input Data 
	Miscellaneous 

	References 

