Team

Richard Li - YL5573

Background

Presburger Arithmetic (PrA) is a weak, completely axiomatisable logic theory first
introduced in 1929. Despite including a weak axiom schema of induction, PrA is nevertheless a
decidable theory (unlike more typical arithmetics like Peano Arithmetic or ZF(C), both of which
are only semi-decidable). Specifically, one can design an algorithm such that, given any
sentence, i.e. formula candidate, of finite length, the algorithm outputs correctly whether the
sentence is provable from the axioms of PrA.

Typically, theories with induction encounter decidability challenges when universal and
existential quantifiers are involved: to prove false an unbounded universal (IT,) statement, a
checking algorithm must enumerate all instances of the bounded variable (of which there are
usually infinitely many) that follow from the ¥ sign, whereas, if the statement is true, the
checking program ends up running forever.

Roughly speaking, PrA does not suffer from such difficulties by way of quantifier
reduction: any unbounded universal or existential statement in PrA can be first written into
conjunctive normal form (CNF), then unravelled into a long unbounded-quantifier-free (A,)

sentence, whose truth value is decidable via mechanical enumeration of all pertinent variables

truth values. The reduction step is implemented via modulo arithmetic.

Project Overview

Parallelise (and further optimise) the Haskell Data.Integer.Presburger library’s

implementation of Check :: Formula -> Bool

Initial Ideas

1. The library uses Data.IntMap, which can likely be upgraded to Data.IntMap.Strict


https://hackage.haskell.org/package/presburger-0.3/docs/Data-Integer-Presburger.html

2. Since PrA’s logical operators are identically recursively axiomatised as the standard,
classical sentential logic, theorem-checking is similarly recursively defined - a good place
to par away part of the logical connectives onto a separate spread

3. Existential enumerations should also be parallelisable

Forseeable Challenges

1. CNF conversion seems really hard to parallelise, and might take up a sizeable chunk of
overhead
2. A really complex unravelled A, sentence may lead to spark overflow - won’t know until

early testing with Threadscope

Input Data

I will start by coming up with some arbitrary sentences that are long and complex

Miscellaneous

There is a separate repo that uses a Deterministic Finite Automata approach - worth

exploring if time permits.

References
1. https://hackage.haskell.org/packa I rger- Data-Integer-Pr reer.html
2. https://github.com/konn/presburger-dfa
3. https://www.cs.cmu.edu/~emc/spring06/homel files/Cooper.pdf
4. https:/link.springer.com/chapter/10.1007/11532231 20


https://github.com/konn/presburger-dfa
https://hackage.haskell.org/package/presburger-0.3/docs/Data-Integer-Presburger.html
https://github.com/konn/presburger-dfa
https://www.cs.cmu.edu/~emc/spring06/home1_files/Cooper.pdf
https://link.springer.com/chapter/10.1007/11532231_20

	Team 
	Background 
	Project Overview 
	Initial Ideas 
	Forseeable Challenges 
	Input Data 
	Miscellaneous 

	References 

