
Parallel Functional Programming Final Project

Proposal

Jonathan Chen (jyc2183), Kevin Wang (kjw2169)

Fall 2025

1 Introduction

Pac-Man is a classic arcade game that consists of a single player looking to
navigate a board and consume all of the ”pellets” present, while avoiding up
to four ghosts that chase the player around the grid. Once a board is cleared
of all ”pellets”, then the current level is considered ”cleared” and the ghosts
progressively become faster and faster. There are also power ups that allow the
player to eat the ghosts, and special fruit on the board that are worth additional
points for the player’s score.

2 Problem

Objective: Full clear the board in the shortest number of moves/get highest
possible score.

Room for increasing scope - moving up levels and resetting the board?
Lives: Pac-Man has one life - game ends when he runs into a ghost.
Ghosts (TBD): - All have same pathfinding - Some ghosts have different

pathfinding - Deterministic (shortest path to pacman) - Nondeterministic (some
aspect of randomness)

For simplification, no powerups and no fruits with bonus points (unless we
need to increase scope).

Our input data will consist of a text file containing grid (maze) information,
Pac-Man’s starting location, the ghosts’ starting locations, and their movement
probabilities (if we choose to do a stochastic model).

Ex.
1 = wall

0 = empty cell

G = ghost

P = pacman

1



1 1 1 1 1 1 1 1 1 1
1 0 0 G 0 0 0 0 0 1
1 1 1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 G 0 1
1 0 0 1 1 1 0 0 0 1
1 0 G 0 0 0 1 1 G 1
1 0 0 P 0 0 0 0 0 1
1 1 1 1 1 1 1 1 1 1

3 Approach

3.1 Sequential

If we move forward with a deterministic Pac-Man game, we will use the Mini-
max algorithm with alpha-beta pruning. We will alternate between maximizing
Pac-man’s score over his possible moves and minimizing the score between the
combined possible moves of the four ghosts. We will use alpha-beta pruning to
prune irrelevant branches.

If we instead decide to incorporate aspects of non-determinism, we will use
Monte Carlo Tree Search (MCTS). We will optimize Pac-Man’s four moves based
on the expected value of each option. Essentially, this means we consider all
possible randomized states when making each move, and calculate our potential
score based on those states.

3.2 Parallelization

Deterministic Pac-Man game: parallelize the evaluation of Pac-Man’s four moves:
up, down, left, right. While this may affect our ability to properly prune
branches, the overall time should still be dramatically reduced. Each move
will be evaluated in its own spark, using Haskell’s Strategies and rpar/rseq to
evaluate each branch in our decision tree.

Stochastic Pac-Man game: The greatest computational demand is the sim-
ulation step where we calculate the probabilities of the ghost’s movements and
simulate the outcome of the game. We will parallelize this using Haskell’s Strate-
gies library, using rpar/rseq to evaluate simulations across available cores. Un-
fortunately, the backpropagation step needs to remain sequential, which will
limit our overall speedup.

References

[1] Wikipedia - Monte Carlo tree search [online] Available at https://en.

wikipedia.org/wiki/Monte_Carlo_tree_search [Accessed 15 Nov. 2025]

[2] Wikipedia - Pac-Man [online] Available at https://en.wikipedia.org/

wiki/Pac-Man [Accessed 15 Nov. 2025]

2


