PFP Project Proposal: N-Gram Counter

Grayson Newell (gln2109)
November 2025

1 Introduction

In Natural Language Processing, an n-gram is a subset of n consecutive tokens (words)
taken from a longer sequence, padded with START and END tokens. For example, the
sequence [START, "The’, 'dog’, 'ran’, ., END | yields the following trigrams (n = 3):

[START, 'The’, ’dog’ |; ['The’, 'dog’, 'ran’ J; [’dog’, 'ran’,’.” |; [’ran’,’.’, END].

n-gram frequency maps (for unigrams, bigrams, and trigrams) form the basis of many
primitive NLP models. This project will generate these maps from large text corpora.

2 Sequential Overview

I will create a corpus in the form of a large .txt file, at least 20MB, by concatenating
books from Project Gutenberg| or Wikipedia articles. The program will:

—_

. Process the file line by line, treating each as a sequence of tokens.

2. Pad each sequence with START and END tokens.

3. Count unigrams, bigrams, and trigrams, storing them in separate frequency maps.
4. Output the top ten n-grams for each n.

I plan to optimize the sequential implementation to use efficient data structures before
parallelization, and experiment with datasets exhibiting differing levels of sequence-length
variance.

3 Parallel Approach

My plan for parallel counting of n-grams is to process the corpus in chunks. This will require
the following considerations:

e Finding an optimal chunk size to avoid load balancing and garbage collection issues.
e Observing how values of n affect performance.

e Efficiently combining counts from each chunk into frequency maps.

e Handling conflicts at chunk edges.

e Experimenting with dynamic chunk sizes to further improve performance.

Performance will be measured on 1-8 cores, using Amdahl’s law to analyze speedup.
This metric will then be compared for different implementation parameters (chunk size,
data structures, etc).

https://www.gutenberg.org/

	Introduction
	Sequential Overview
	Parallel Approach

