Misere Nim
Zachary Singerman, ZS2661

| |
L A
| HT
LT

Misere Nim, translating to “How pitiful!” in Latin, is a game where two players
each take turns taking a number of sticks from the formation above to not be the
last one to be forced to take a stick. The two players take turns removing one or
more sticks from any one row of sticks. Each player can take as many consecutive
sticks as they want from one row on their turn, however, they must start on the
edge of the row. The player who takes the very last stick from any row loses.

I wanted to do this game because there are so many options to take at each move
and they would take a long time with a regular minimax alpha-beta pruning
algorithm, learned in my artificial intelligence course. By parallelizing the
process, the best move in any situation, or in games like this, the number of sticks
to leave your opponent with, can be found much more easily and quickly.

Project overview
My project will parallelize the regular minimax alpha-beta pruning algorithm

while also making sure to keep track of which numbers of sticks left on the board
lead to a winning game as much as possible.

The minimax algorithm will allow for two computer players to play against each
other, each trying to win and each analyzing all of their possible moves. By using
alpha beta pruning, we will be able to eliminate the obviously poor moves that
lead to losses.

Whenever there is a winning path found, the program will backtrack through the
moves that were made and add the number of sticks left after each Max-Player’s
move to a running list of tuples that count how many times each number has
appeared in a win. This is similar to homework 3 that required the number of
times a specific word in a file appeared. Anything pruned will consequently not
be added to the count of winning numbers.

Algorithm and Approach to Parallelism

Each player always has “how ever many sticks are remaining” number of moves
left. So, in a game as featured above, there are immediately 16 different possible
paths, each with many paths of their own. By using the minimax algorithm with
the alpha beta pruning of the trees, it will be possible to cut down on the number
of total possible paths being computed.

In terms of parallelism, I expect to use the Eval Monad and rpar and rseq. These
strategies are more easily implemented into a minimax algorithm than the Par
Monad functions are. I will also parallelize on the top two levels only as the
benefits of alpha-beta pruning would be wasted by parallelizing that deep into the
tree.

To maintain my running list of tuples of (Sticks Left, Count), I would have each
node return (Minimax Value, Stats), where Stats is a Map Int Int of the (Sticks
Left, Count) of each node. This would allow all of the stats and values to funnel
back to the top of the tree to understand the best possible moves and the best
practices for winning a game of Misere Nim.

