
Misere Nim 

Zachary Singerman, ZS2661 

 

 

Misere Nim, translating to “How pitiful!” in Latin, is a game where two players 

each take turns taking a number of sticks from the formation above to not be the 

last one to be forced to take a stick. The two players take turns removing one or 

more sticks from any one row of sticks. Each player can take as many consecutive 

sticks as they want from one row on their turn, however, they must start on the 

edge of the row. The player who takes the very last stick from any row loses. 

 

I wanted to do this game because there are so many options to take at each move 

and they would take a long time with a regular minimax alpha-beta pruning 

algorithm, learned in my artificial intelligence course. By parallelizing the 

process, the best move in any situation, or in games like this, the number of sticks 

to leave your opponent with, can be found much more easily and quickly. 

 

Project overview 

 

My project will parallelize the regular minimax alpha-beta pruning algorithm 

while also making sure to keep track of which numbers of sticks left on the board 

lead to a winning game as much as possible. 



 

The minimax algorithm will allow for two computer players to play against each 

other, each trying to win and each analyzing all of their possible moves. By using 

alpha beta pruning, we will be able to eliminate the obviously poor moves that 

lead to losses. 

 

Whenever there is a winning path found, the program will backtrack through the 

moves that were made and add the number of sticks left after each Max-Player’s 

move to a running list of tuples that count how many times each number has 

appeared in a win. This is similar to homework 3 that required the number of 

times a specific word in a file appeared. Anything pruned will consequently not 

be added to the count of winning numbers. 

 

Algorithm and Approach to Parallelism 

 

Each player always has “how ever many sticks are remaining” number of moves 

left. So, in a game as featured above, there are immediately 16 different possible 

paths, each with many paths of their own. By using the minimax algorithm with 

the alpha beta pruning of the trees, it will be possible to cut down on the number 

of total possible paths being computed. 

 

In terms of parallelism, I expect to use the Eval Monad and rpar and rseq. These 

strategies are more easily implemented into a minimax algorithm than the Par 

Monad functions are. I will also parallelize on the top two levels only as the 

benefits of alpha-beta pruning would be wasted by parallelizing that deep into the 

tree. 

 

To maintain my running list of tuples of (Sticks Left, Count), I would have each 

node return (Minimax Value, Stats), where Stats is a Map Int Int of the (Sticks 

Left, Count) of each node. This would allow all of the stats and values to funnel 

back to the top of the tree to understand the best possible moves and the best 

practices for winning a game of Misere Nim. 


