Diego Fernandez (df2855)

Normal Magic Squares

Introduction

A Magic Square of order n is defined as an n by n grid of positive integers such that the sum of
each column, row, and diagonal all add up to the same number. A Normal Magic Square is

defined as a Magic Square that uses each integer from 1 to n’ to fill the square.

Image 1: A 3 by 3 normal magic square.

The sum of all columns, rows, and diagonals is known as the magic constant. For example, in the
case of the image above, the magic constant is 15.

Project Overview

For this project, | will use a brute force method, alongside various constraints, to find the total
number of Normal Magic Squares of order n. | will then compare the speed at which this number
is calculated with and without parallelization. The total number of Magic Squares is known for
orders up to 6. These values are shown below.

Order Total (including rotations and | Unique (excluding rotations
reflections) and reflections)

1 0 0

2 0 0

3 8 1

4 7040 880

5 2,202,441,792 275,305,224

6 17,753,889,197,660,635,632

Needless to say, the total number increases extremely rapidly (the permutations of possible
squares would be the factorial of n squared). As such, for this project, | will only focus on
squares of orders 3 and 4.

In addition, | will only be focusing on the total number of squares, counting ones that are
rotations and reflections of one another.

Algorithm

I will be using a brute force algorithm. For each index, we will assign it one value from the
remaining numbers. If it breaks any magic square rule, discard it. Otherwise, recursively check
the next index.

The various algorithms and settings we use will be compared against each other based on the
time it takes for the program to finish running.

Efficiency Improvements

We can add several constraints to the problem, which will greatly increase efficiency. The first
and most maijor is that the magic constant is known for all normal magic squares, as it follows a
simple formula. The formula is shown below.
2
n +1

M=n- >

For a square of order 3, this number is 15. For a square of order 4, this number is 34. Thus, for
each row/column/diagonal, we only need to check n — 1 squares since we will know the last
square’s value has to be M minus the sum of the rest.

I will also experiment with different structures to represent the problem and see which is most
efficient.

Parallelization

| will explore various parallelization techniques to see how we can improve efficiency. The main
method | will try is having a maximum recursion depth. | will see which depth is the most
efficient. | anticipate that simple parallelization with “par” will be enough, but | will experiment
with various other parallelization techniques to see which works best.

Input Data

The only input that will be needed will be the order n of the square. This can be provided as an
argument and will not be a bottleneck for the algorithm.

