
​Diego Fernandez (df2855)​

​Normal Magic Squares​

​Introduction​
​A Magic Square of order​​n​​is defined as an​​n​​by​​n​​grid of positive integers such that the sum of​
​each column, row, and diagonal all add up to the same number. A Normal Magic Square is​

​defined as a Magic Square that uses each integer from 1 to​ ​to fill the square.​​𝑛​​2​

​Image 1​​: A 3 by 3 normal magic square.​

​The sum of all columns, rows, and diagonals is known as the magic constant. For example, in the​
​case of the image above, the magic constant is 15.​

​Project Overview​
​For this project, I will use a brute force method, alongside various constraints, to find the total​
​number of Normal Magic Squares of order​​n​​. I will then compare the speed at which this number​
​is calculated with and without parallelization. The total number of Magic Squares is known for​
​orders up to 6. These values are shown below.​

​Order​ ​Total (including rotations and​
​reflections)​

​Unique (excluding rotations​
​and reflections)​

​1​ ​0​ ​0​

​2​ ​0​ ​0​

​3​ ​8​ ​1​

​4​ ​7040​ ​880​

​5​ ​2,202,441,792​ ​275,305,224​

​6​ ​17,753,889,197,660,635,632​



​Needless to say, the total number increases extremely rapidly (the permutations of possible​
​squares would be the factorial of​​n​​squared ). As​​such, for this project, I will only focus on​
​squares of orders​​3​​and​​4​​.​

​In addition, I will only be focusing on the total number of squares, counting ones that are​
​rotations and reflections of one another.​

​Algorithm​
​I will be using a brute force algorithm. For each index, we will assign it one value from the​
​remaining numbers. If it breaks any magic square rule, discard it. Otherwise, recursively check​
​the next index.​

​The various algorithms and settings we use will be compared against each other based on the​
​time it takes for the program to finish running.​

​Efficiency Improvements​
​We can add several constraints to the problem, which will greatly increase efficiency. The first​
​and most major is that the magic constant is known for all normal magic squares, as it follows a​
​simple formula. The formula is shown below.​

​𝑀​ = ​𝑛​ · ​𝑛​​2​+​1​
​2​

​For a square of order 3, this number is 15. For a square of order 4, this number is 34. Thus, for​
​each row/column/diagonal, we only need to check​ ​squares since we will know the last​​𝑛​ − ​1​
​square’s value has to be M minus the sum of the rest.​

​I will also experiment with different structures to represent the problem and see which is most​
​efficient.​

​Parallelization​
​I will explore various parallelization techniques to see how we can improve efficiency. The main​
​method I will try is having a maximum recursion depth. I will see which depth is the most​
​efficient. I anticipate that simple parallelization with `par` will be enough, but I will experiment​
​with various other parallelization techniques to see which works best.​

​Input Data​
​The only input that will be needed will be the order​​n​​of the square. This can be provided as an​
​argument and will not be a bottleneck for the algorithm.​


