
COMS4995 Parallel Functional Programming
Parallel 0/1 Knapsack Solver Using Branch-and-Bound

Jessica Xu
UNI: lx2297

1 Overview

The goal of this project is to implement a solver for the classical 0/1 Knapsack Problem using
Haskell, first in a sequential version and then in a parallel version using Control.Parallel

and Control.Parallel.Strategies. The 0/1 knapsack is NP-hard, and branch-and-bound
methods naturally expose parallel structure. Our objective is to evaluate how parallel explo-
ration of the branch-and-bound search tree improves performance compared to a sequential
baseline.

2 Background

Definitions

We are given a set of n items, where each item i has a positive weight wi and positive value
vi, and a knapsack with capacity W . The 0/1 Knapsack Problem asks us to select a subset
of items such that:

• the total weight does not exceed W , and

• the total value is maximized.

This is an NP-hard combinatorial optimization problem (Karp, 1972). A typical exact
solver uses a branch-and-bound recursion over decisions to include or exclude each item,
computing an upper bound at each node and pruning subtrees whose bound cannot exceed
the best known solution.

Problem

A näıve solver enumerates all 2n subsets. Branch-and-bound significantly reduces the search
space by computing upper bounds for each partial assignment. A standard choice is to sort
items by value-to-weight ratio and use a fractional knapsack relaxation to compute a fast
bound. Because including vs. excluding an item leads to independent subtrees, the method
parallelizes well.

1



3 Algorithm

Our sequential solver will follow the standard branch-and-bound design:

• Sort items by value-to-weight ratio.

• The recursive search function keeps track of: current index, current weight, current
value, and remaining bound.

• Compute an upper bound on the best possible value reachable from this node. If this
bound is no better than the global best, prune.

• Otherwise branch: include the next item (if capacity allows) or exclude it.

• Update the global best when reaching a leaf node.

The parallel version will extend the recursion using Haskell’s par combinator or parList
rdeepseq. In particular:

• Expand the first few levels of the recursion to generate a frontier of independent sub-
problems.

• Evaluate these subtrees in parallel.

• Use a shared mutable reference (e.g. IORef or MVar) for the global best value, updated
with compare-and-swap semantics.

This is similar in spirit to the parallel branch-and-bound work found in general combi-
natorial search literature and prior Haskell work.

4 Objectives and Workflow

Experiment preparation

We will write a generator for knapsack instances, including:

• uniformly random weights and values,

• strongly correlated instances (vi ≈ wi),

• weakly correlated or uncorrelated instances,

• adversarial instances where many items have identical ratios (which reduces pruning
effectiveness).

For small instances, we will verify correctness using a standard dynamic programming
solver implemented in Python.

2



Experiment design

We will measure the performance of:

• the sequential branch-and-bound solver, and

• the parallel solver with various numbers of threads (-N1, -N2, -N4, -N8).

We will compare:

• elapsed runtime,

• degree of pruning,

• number of nodes explored,

• speedup and parallel efficiency,

• effects of different initial frontier depths.

We will use GHC’s runtime profiling tools (+RTS -s, spark profiles, event logs) to examine
parallel behavior.

5 References
• GeeksforGeeks, “0/1 Knapsack using Branch and Bound”. https://www.geeksforgeeks.
org/0-1-knapsack-using-branch-and-bound/

• GeeksforGeeks, “0/1 Knapsack using Least Cost Branch and Bound”. https://www.
geeksforgeeks.org/dsa/0-1-knapsack-using-least-count-branch-and-bound/

• J.C. Zúñiga-Dı́az, M.A. Camacho-Cárdenas, J. Lattimore-Cruz, “A Multi-Branch-and-
Bound Parallel Algorithm to Solve the Knapsack Problem 0–1 on a Multicore Cluster”,
Applied Sciences, 2019. https://www.mdpi.com/2076-3417/9/24/5368

• S. Sahni, “Anomalies in Parallel Branch-and-Bound Algorithms: the 0/1 Knapsack
Problem.” https://www.cise.ufl.edu/~sahni/papers/anomaly.pdf

• S. Hildebrandt, C. Hanson, “0-1 Knapsack Optimization with Branch-and-Bound”,
MICS Symposium 2016. https://www.micsymposium.org/mics2016/Papers/MICS_

2016_paper_42.pdf

• P. Trinder, K. Hammond, H. Loidl, G. Jones, “Algorithm + Strategy = Parallelism”,
a well-known introduction to parallel functional programming.

• B. Archibald, P. Maier, C. McCreesh, R. Stewart, P. Trinder, “Replicable Parallel
Branch and Bound Search”, 2017. https://arxiv.org/abs/1703.05647

• Wikipedia, “Knapsack Problem”. https://en.wikipedia.org/wiki/Knapsack_problem

3

https://www.geeksforgeeks.org/0-1-knapsack-using-branch-and-bound/
https://www.geeksforgeeks.org/0-1-knapsack-using-branch-and-bound/
https://www.geeksforgeeks.org/dsa/0-1-knapsack-using-least-count-branch-and-bound/
https://www.geeksforgeeks.org/dsa/0-1-knapsack-using-least-count-branch-and-bound/
https://www.mdpi.com/2076-3417/9/24/5368
https://www.cise.ufl.edu/~sahni/papers/anomaly.pdf
https://www.micsymposium.org/mics2016/Papers/MICS_2016_paper_42.pdf
https://www.micsymposium.org/mics2016/Papers/MICS_2016_paper_42.pdf
https://arxiv.org/abs/1703.05647
https://en.wikipedia.org/wiki/Knapsack_problem

	Overview
	Background
	Algorithm
	Objectives and Workflow
	References

