COMS4995 Parallel Functional Programming
Parallel 0/1 Knapsack Solver Using Branch-and-Bound

Jessica Xu
UNI: 1x2297

1 Overview

The goal of this project is to implement a solver for the classical 0/1 Knapsack Problem using
Haskell, first in a sequential version and then in a parallel version using Control.Parallel
and Control.Parallel.Strategies. The 0/1 knapsack is NP-hard, and branch-and-bound
methods naturally expose parallel structure. Our objective is to evaluate how parallel explo-
ration of the branch-and-bound search tree improves performance compared to a sequential
baseline.

2 Background

Definitions

We are given a set of n items, where each item i has a positive weight w; and positive value
v;, and a knapsack with capacity W. The 0/1 Knapsack Problem asks us to select a subset
of items such that:

e the total weight does not exceed W, and

e the total value is maximized.

This is an NP-hard combinatorial optimization problem (Karp, 1972). A typical exact
solver uses a branch-and-bound recursion over decisions to include or exclude each item,
computing an upper bound at each node and pruning subtrees whose bound cannot exceed
the best known solution.

Problem

A naive solver enumerates all 2" subsets. Branch-and-bound significantly reduces the search
space by computing upper bounds for each partial assignment. A standard choice is to sort
items by value-to-weight ratio and use a fractional knapsack relaxation to compute a fast
bound. Because including vs. excluding an item leads to independent subtrees, the method
parallelizes well.



3 Algorithm

Our sequential solver will follow the standard branch-and-bound design:

e Sort items by value-to-weight ratio.

e The recursive search function keeps track of: current index, current weight, current
value, and remaining bound.

Compute an upper bound on the best possible value reachable from this node. If this
bound is no better than the global best, prune.

Otherwise branch: include the next item (if capacity allows) or exclude it.

Update the global best when reaching a leaf node.

The parallel version will extend the recursion using Haskell’s par combinator or parList
rdeepseq. In particular:

e Expand the first few levels of the recursion to generate a frontier of independent sub-
problems.

e Evaluate these subtrees in parallel.

e Use a shared mutable reference (e.g. I0Ref or MVar) for the global best value, updated
with compare-and-swap semantics.

This is similar in spirit to the parallel branch-and-bound work found in general combi-
natorial search literature and prior Haskell work.

4 Objectives and Workflow

Experiment preparation

We will write a generator for knapsack instances, including:
e uniformly random weights and values,
e strongly correlated instances (v; =~ w;),
e weakly correlated or uncorrelated instances,

e adversarial instances where many items have identical ratios (which reduces pruning
effectiveness).

For small instances, we will verify correctness using a standard dynamic programming
solver implemented in Python.



Experiment design
We will measure the performance of:
e the sequential branch-and-bound solver, and
e the parallel solver with various numbers of threads (-N1, -N2, -N4, -N8).
We will compare:
e clapsed runtime,
e degree of pruning,
e number of nodes explored,
e speedup and parallel efficiency,
o effects of different initial frontier depths.

We will use GHC’s runtime profiling tools (+RTS -s, spark profiles, event logs) to examine
parallel behavior.

5 References

o GeeksforGeeks, “0/1 Knapsack using Branch and Bound”. https://www.geeksforgeeks.
org/0-1-knapsack-using-branch-and-bound/

o GeeksforGeeks, “0/1 Knapsack using Least Cost Branch and Bound”. https://www.
geeksforgeeks.org/dsa/0-1-knapsack-using-least-count-branch-and-bound/

e J.C. Zuniga-Diaz, M.A. Camacho-Cardenas, J. Lattimore-Cruz, “A Multi-Branch-and-
Bound Parallel Algorithm to Solve the Knapsack Problem 0-1 on a Multicore Cluster”,
Applied Sciences, 2019. https://www.mdpi.com/2076-3417/9/24/5368

e S. Sahni, “Anomalies in Parallel Branch-and-Bound Algorithms: the 0/1 Knapsack
Problem.” https://www.cise.ufl.edu/~sahni/papers/anomaly.pdf

e S. Hildebrandt, C. Hanson, “0-1 Knapsack Optimization with Branch-and-Bound”,
MICS Symposium 2016. https://www.micsymposium.org/mics2016/Papers/MICS_
2016_paper_42.pdf

e P. Trinder, K. Hammond, H. Loidl, G. Jones, “Algorithm + Strategy = Parallelism”,
a well-known introduction to parallel functional programming.

e B. Archibald, P. Maier, C. McCreesh, R. Stewart, P. Trinder, “Replicable Parallel
Branch and Bound Search”, 2017. https://arxiv.org/abs/1703.05647

e Wikipedia, “Knapsack Problem”. https://en.wikipedia.org/wiki/Knapsack_problem


https://www.geeksforgeeks.org/0-1-knapsack-using-branch-and-bound/
https://www.geeksforgeeks.org/0-1-knapsack-using-branch-and-bound/
https://www.geeksforgeeks.org/dsa/0-1-knapsack-using-least-count-branch-and-bound/
https://www.geeksforgeeks.org/dsa/0-1-knapsack-using-least-count-branch-and-bound/
https://www.mdpi.com/2076-3417/9/24/5368
https://www.cise.ufl.edu/~sahni/papers/anomaly.pdf
https://www.micsymposium.org/mics2016/Papers/MICS_2016_paper_42.pdf
https://www.micsymposium.org/mics2016/Papers/MICS_2016_paper_42.pdf
https://arxiv.org/abs/1703.05647
https://en.wikipedia.org/wiki/Knapsack_problem

	Overview
	Background
	Algorithm
	Objectives and Workflow
	References

