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1 Overview

The goal of this project is to implement a solver for the classical 0/1 Knapsack Problem using
Haskell, first in a sequential version and then in a parallel version using Control.Parallel

and Control.Parallel.Strategies. The 0/1 knapsack is NP-hard, and branch-and-bound
methods naturally expose parallel structure. Our objective is to evaluate how parallel explo-
ration of the branch-and-bound search tree improves performance compared to a sequential
baseline.

2 Background

Definitions

We are given a set of n items, where each item i has a positive weight wi and positive value
vi, and a knapsack with capacity W . The 0/1 Knapsack Problem asks us to select a subset
of items such that:

• the total weight does not exceed W , and

• the total value is maximized.

This is an NP-hard combinatorial optimization problem (Karp, 1972). A typical exact
solver uses a branch-and-bound recursion over decisions to include or exclude each item,
computing an upper bound at each node and pruning subtrees whose bound cannot exceed
the best known solution.

Problem

A näıve solver enumerates all 2n subsets. Branch-and-bound significantly reduces the search
space by computing upper bounds for each partial assignment. A standard choice is to sort
items by value-to-weight ratio and use a fractional knapsack relaxation to compute a fast
bound. Because including vs. excluding an item leads to independent subtrees, the method
parallelizes well.
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3 Algorithm

Our sequential solver will follow the standard branch-and-bound design:

• Sort items by value-to-weight ratio.

• The recursive search function keeps track of: current index, current weight, current
value, and remaining bound.

• Compute an upper bound on the best possible value reachable from this node. If this
bound is no better than the global best, prune.

• Otherwise branch: include the next item (if capacity allows) or exclude it.

• Update the global best when reaching a leaf node.

The parallel version will extend the recursion using Haskell’s par combinator or parList
rdeepseq. In particular:

• Expand the first few levels of the recursion to generate a frontier of independent sub-
problems.

• Evaluate these subtrees in parallel.

• Use a shared mutable reference (e.g. IORef or MVar) for the global best value, updated
with compare-and-swap semantics.

This is similar in spirit to the parallel branch-and-bound work found in general combi-
natorial search literature and prior Haskell work.

4 Objectives and Workflow

Experiment preparation

We will write a generator for knapsack instances, including:

• uniformly random weights and values,

• strongly correlated instances (vi ≈ wi),

• weakly correlated or uncorrelated instances,

• adversarial instances where many items have identical ratios (which reduces pruning
effectiveness).

For small instances, we will verify correctness using a standard dynamic programming
solver implemented in Python.
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Experiment design

We will measure the performance of:

• the sequential branch-and-bound solver, and

• the parallel solver with various numbers of threads (-N1, -N2, -N4, -N8).

We will compare:

• elapsed runtime,

• degree of pruning,

• number of nodes explored,

• speedup and parallel efficiency,

• effects of different initial frontier depths.

We will use GHC’s runtime profiling tools (+RTS -s, spark profiles, event logs) to examine
parallel behavior.
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