Jeremy Newman
UNI: jrn2144
Professor Levatich
Project Proposal

Parallelizing Connect 4 Al in Haskell

Overview

The purpose of this project is to implement an Al player for the Connect 4 game, and
then to parallelize the algorithm to improve the performance. The Al player will use the
Minimax algorithm with alpha-beta pruning as its strategy. | will use Haskell’s built in
parallelism libraries to create performance improvements. The goal is to see how much
of a speedup the decision-making algorithm can experience using search-tree
parallelism. | will use Threadscope and other measurement tools to quantify the
performance across varying numbers of CPU cores/threads.

Background

Connect 4 is a two-player turn based game that is played in a 6x7 grid. Each player is
assigned a color and takes turns placing discs into columns that drop all the way down.
The objective is to form a line of 4 of your color’s discs in a row, either vertically,
horizontally, or diagonally. The Minimax algorithm is a common algorithm used by Al in
turn-based games and searches the game tree to choose the optimal move. The
algorithm assumes that both players will always play optimally. Alpha-beta pruning is a
technique that builds upon the Minimax algorithm to eliminate branches of the search
tree that will never be chosen. This is an interesting choice of an algorithm as the
recursive subtree exploration lends itself well to Haskell’s ability to evaluate
independent subtrees in parallel.

Approach and Methodology

| will first implement the Minimax algorithm with alpha-beta pruning in Haskell as a
sequential algorithm first. | will then add code to the algorithm in order to parallelize the
evaluation of optimal move selection. In each game state, there are 7 possible moves
that a player can make, and they will all be evaluated in parallel. | will use constructs
from the Haskell parallel library such as par and pseq to perform these parallelism
improvements. The input will have automated input with predefined board states that
represent different positions in the game. | will include positions at early, middle, and
late game situations. The format will be a 2D list representing a list of rows of positions
with 0 meaning no disc, 1 meaning one player’s disc, and 2 meaning the other player’s
disc.



Performance Measurement

| will be using a combination of timing and Threadscope graphs to measure the
performance of the algorithm. | will report speedups across varying numbers of
cores/threads as well as across multiple stages of improvement, starting from a
sequential algorithm to varying levels of parallelism.



