Final Proposal: Chip Routing Solver Proposal

James Mastran (jam2454)
November 13 2025

1 Introduction & Motivation

As circuitry advances and the number of transis-
tors that can be placed on a single chip increases,
more components must be considered within the cir-
cuitry. In particular, finding paths to connect pins
with wires in the circuit can pose challenges.

Figure 1: Manual or interactive routing, advantages
and inconveniences

Identifying how to or the best way to connect a
starting pin and a target pin with a tiny wire can
be difficult when there are many other connections
and components creating obstacles. While it ranges,
there can be billions of connections on a single chip.
Compounding the complexity, it is sometimes de-
sired to connect a single pair of pins through mul-
tiple non-intersecting paths. This concept is known
as “routing” and relates to integrated circuits (ICs)
and very large scale integration (VSLI).

This is described in more detail in “Node-
Disjoint Paths on the Mesh and a New Trade-Off
in VLSI Layout”:

“A number of basic models for VLSI
layout are based on the construction of
node-disjoint paths between terminals
on a multi-layer grid. In this setting,
one is interested in minimizing both the
number of layers required and the area
of the underlying grid.”

While routing, there are a few goals and strate-
gies to keep in mind:

Global Routing

® Objectives
« Minimize wire length
« Balance congestion
e Timing driven
« Noise driven
« Keep buses together
® Frameworks
« Steiner trees
« Channel-based routing
« Maze routing

ECE 2608 - CSE M1A ICE EECS 244 10 Androw B. Kahng, UCSD

Figure 2: Routing in Integrated Circuits

In practice, chips often have multiple layers to
help solve this difficult problem.

Figure 3: Electromagnetic and Circuit Co-
Simulation and the Future of IC' and Package De-
stgn

2 Objective

For the purposes of this project, we will focus on
reducing the number of layers by finding a specified

number, k, of disjointed paths between a selected
pair of pins (e.g. the start and the target node).
We will also focus on minimizing cost, or equiva-
lently, we will aim to minimize the length of wire for
all, k, disjointed paths between two specified pins.
There is some inherent monetary and performance
cost in using more wire than is necessary. To make
the problem more realistic and more complicated, we
will also account for obstacles, such as other compo-
nents or wires on the IC, while finding paths.

To tackle this real world problem, we will repre-
sent the problem as a graph and use the Maze Solv-
ing idea to find paths. In the graph, nodes represent
either pins or places where wires can be attached and
edges represent paths in which wires may be placed.
Removing an edge can represent a barrier or obstacle
in which a wire cannot be placed.

3 Proposed Solution

In order to find multiple disjointed paths in a graph,
we plan to use the Sequential Shortest Path (SSP)
algorithm on an undirected graph. The SSP algo-
rithm is useful because it will find the minimum cost
for a desired “flow” amount, k, on a provided graph.
Each edge has a specific capacity of flow it can with-
stand.

Relating it back to the routing problem, setting
a capacity of 1 for each edge should give us a solu-
tion to the problem of finding & disjointed paths in
a graph. We can think of flow as the number of dis-
joint paths and minimizing cost as minimizing the
length of wire:

algorithm successive shortest path;
begin
¥x:=0andw=:=0;
ell) : = b(i) for all j € N,
initialize the sets E: = {i: e(f) = 0} and D; = {i : &{i) < O};
while £ # @ do
begin
select a node k= Eand a node / € D;
determine shortest path distances df j) from node s to all
other nodes in G{x) with respect to the reduced costs &];
let P denote a shortest path from node & to node J:
update v : = w — o
B: = minfa(k), - &(f), min{r, - (i, j} € P}I;
augment & units of flow along the path P,
update x, G(x), E, D, and the reduced costs;
end;
end;

Figure 4: Network Flows

Where e(7) is the excess flow of a node. Only start-
ing and target nodes should have some excess or
deficit flow, respectively. All other nodes should
be considered balanced (e.g. b(i) = 0 V i &
{start_node, end_node}). Lastly, x and 7 is the
psuedoflow and potential, respectively.

The SSP algorithm specifies that we must de-
termine the shortest path distances from node s to
all other nodes. This part of the algorithm can be
solved using dijkstra or A*. However, for our par-
ticular use-case, we do not need the distance from
the start to all other nodes, but just from the start
to the target node. Using inspiration from a previ-
ous semester’s project, Parallel Functional Program-
ming Proposal: MazeSolver, we plan to use the A*
algorithm for this part of the SSP.

One final caveat is that the SSP algorithm finds
edge disjointed paths, but we are seeking node dis-
jointed paths. This can be simply solved by node
splitting, which is the process of duplicating each
node such that there is a in and a out node except
for the start/target node. Providing a single edge
with a capacity of 1 between these nodes will in ef-
fect yield a solution that is node disjointed (“Maxi-
mum flow problem”).

4 Simplifying assumptions

While the SSP algorithm can work on non-grid
graphs, for the purposes of this project, we will
assume operating over a 2D grid. Therefore, each
node/pin can be connected to at most 4 others. As
a result, this also limits k, the number of disjoint
paths, to a maximum of 4. This also means our
graph will be sparse.

On a grid, diagonal movements will not be al-
lowed; only movements along the horizontal or ver-
tical path (e.g. the only valid movements can be
“right”, “left”, “up”, or “down”) are permitted.
This also gives us the opportunity to leverage the A*
algorithm with Manhattan distance as the heuristic.

(0, H—H, 95—, H—38, H—H, 515, H—16,. H—+7, H—8, H—+9, 9)

(0, B—H1, 8—2, 8—43, B3—+4, B)—5, 84—{6, 8—+{7, 88, 8—19, B)

(0, B, B2, 73, B4, B8, 46, 17, B8, 749, 7)

(0, 63—H., 6;—42, 6;—3, 6;—14, 6)—5, 6}—16, 6—47, 6)—{8, 6)—9, 6)

(EB—HEH—L B— B4 b5 B— 65— 5)—95)

(0, 85—, H—2, H—43, H—H4, H—5, H—6, H—7, 98, H—+9, 4)

(0, 33—, 32, 333, 3—*4, 35, 36, 347, 38, 39, 3)

(0, 23—, 5—2, 23, 34, 215, 216, 23—+, 28, 29, 2)

(0, H—H, B—2, H—, B—+4, B—5, B—46, B—7, H—8, H—+9, 1)

(0, —41, 0—42, 0—43, B—{4, B—5, 0—{6, 0—47, 1}—8, 03—4(9, 0)

Figure 5: Graph Theory - Infinite Graphs

5 Acquiring a Graph

We will use a graph generator and parser to procure
example graphs to solve. The generator will take in
N, the number of rows, M, the number of columns,
p, the probability that an edge exists between two
nodes, and k, the minimum number of disjoint paths
between the start and end node. If p = 0, then there
won’t be any additional edges added except for those
to satisfy k disjointed paths. Conversely, if p = 1,
then the graph will be grid-like connected. The start
and end node should be placed far apart such as at
(3,3) and (N — 3, M — 3). The generator will gen-
erate some file to be used by a graph parser.

A graph parser will then be implemented to con-
vert the graph representation into a representation
useable in Haskell, where node splitting will take
place.

6 Sequential Speedup Ideas

1. Although it can increase complexity, espe-
cially during the parallelization phase, a way
to speed up the A* algorithm would be
to perform a Dbidirectional search. This
would require maintaining two separate prior-
ity queues: one that maintains the path from
the start to the target and another that main-
tains the path from the target towards the
start. Additionally, two heuristics and a merg-
ing tactic would have to be adopted (“Bidirec-
tional A Search with Additive Approximation
Bounds”). This may be out of scope for this
project, but is something to look into.

2. Another way to speed up the sequential al-
gorithm is to accept some suboptimal answer
within a factor of w. If we allow some wiggle
room in minimizing cost, we can modify the
cost function to become f(n) = c(n)+w-h(n)
where traditionally w = 1 and c is the cost and
h is the heuristic of a node n. If we increase
w (to something like 1.01), we emphasize the
heuristic and can lead to a decrease of itera-
tions (Jordan T. Thayer, “Bounded Subopti-
mal Search: A Direct Approach Using Inad-
missible Estimates”).

7 Parallelization Strategy

There are a few potential opportunities for speeding
up the sequential implementation described before:

1. The A* algorithm’s runtime can be reduced
through parallelization:

(a) On each iteration of A*, a node is selected
and its neighbors are added to a priority
queue based on its cost. We can explore
the cheapest nodes in parallel on the next
steps.

i. Since there may be only a single
“cheapest” node, we can relax the
strictness for a optimal solution by
using a bounded suboptimal search.
We can explore all nodes in parallel
that are within some margin of error
of the “cheapest” node in the prior-
ity queue. These are nodes that are
within a factor of w of the cheap-
est node: {n} Vn e f(n <w-
f(cheapestyode). This will find a so-
lution with a suboptimal cost within
a factor of w (Jordan T. Thayer,
“Bounded Suboptimal Search: A Di-
rect Approach Using Inadmissible
Estimates”).

(b) Calculations could potentially be paral-
lelized, if there are any that are complex
enough. Although, the manhattan dis-
tance calculation is simple.

(c) If birdirectional search is implemented, it
could be parallelized as well.

2. The SSP most likely cannot be parallelized
much, but we could investigate parallelizing
some of the updates at the end of each itera-
tion

3. Graph parsing could be parallelized

(a) Node splitting, which is required for find-
ing node-disjoint paths, could be paral-
lelized

For most of these parallelization methods, we
will be utilizing mainly the Par monad. For smaller
mathematical computations, we may use the par
strategy. Also, we may need to use locks or mutexes
(MVar or TVar) to lock shared resources (e.g. the
priority queue), as raised in Samya Ahsan, Parallel
Functional Programming Proposal: MazeSolver.

8 Ewvaluation

We will be evaluating our algorithm’s implementa-
tion based on:

1. Correctness: The solution must provide the
correct number of paths, k, that also minimize
the amount of wire required. The paths must
begin/end at the project start/end nodes.

(a) Insome cases, we may sacrifice optimality
for speed by using some approximation
methods. If this is pursued, we should re-
quire the solution to be bounded by some
w factor.

2. Performance: The parallel solution will be

compared to the sequential solution’s runtime.

In some cases, we may sacrifice correctness with
approximation in favor of enhancing performance.

9 Concerns

The following are potential concerns with this
project:

1. The SSP algorithm is more complicated than

the A* algorithm alone. To mitigate risk, we
can begin with the A* algorithm to find a
single shortest path between any pins. Once
that is completed, we can move to implement-
ing the SSP algorithm. Solving with just A*
would be disappointing, but still relates to the
problem. Worst case, we can use A* on a loop,
which is greedy and not optimal.

. Choosing a sufficiently difficult graph to solve
and consistently using the same graph to com-
pare benchmarks.

. A* can be difficult to parallelize due to the
heuristic and priority queue. Dijkstra, while
less applicable, could be used and potentially
lend itself better for parallelization. How-
ever, we would still prefer to pursue A*.

Also, as raised in Parallel Functional Program-
ming Proposal: MazeSolver, we may have to pay
attention to the following while parallelizing the so-
lution:

1. An efficient way to store nodes and the graph

representation. In our problem, edges will ad-
ditionally store capacity and flow.

. Reduce conflicts of accessing the priority
queue (PQ) that will be used in the A* algo-
rithm. We can explore utilizing either a global
PQ or giving each thread a local PQ that will
need to somehow be merged after the thread’s
work is complete.

10 Summary

To summarize the salient points in this proposal:

1. We are aiming to solve for some of the com-

plexities of routing on ICs and other circuitry

. To do so, we are using the idea of Maze Rout-

ing to find a path that avoids obstacles be-
tween two nodes

. Maze Routing can be solved using the A* al-

gorithm with a Manhattan distance heuristic

. To find k node-disjointed paths with minimum

cost, we will be using the Sequential Shortest
Path algorithm in-conjunction with A*

. We will assume that the IC board or the graph

is a 2D grid plane. There aren’t any diagonal
movements between nodes. Where obstacles
allow, there is movement only allowed along
the horizontal or vertical direction. A genera-
tor and parser will help create example grids.

. We have multiple parts of the algorithm that

can potentially be parallelized: A*, SSP, graph
parsing, or node splitting. The Par monad and
MVars or TVars will be leveraged.

. Suboptimal solutions, within a bound/factor

of w, exist that can enhance performance in
the sequential and parallel versions.

(a) One suboptimal solution places greater
emphasis on the heuristic than cost to
reach a node, speeding up the sequential
version by reducing the number of expan-
sions.

(b) The other solution allows us to explore
paths in parallel whose costs are within
a w factor of the cheapest path cur-
rently known, rather than just exploring
a few/single best path(s).

8. The A* algorithm could be used in a bidirec-

tional search, which can be investigated and
could be parallelized.

11 References

A. Kahng K. Keutzer, A. R. Newton. Routing in Integrated Circuits. URL: https://people.eecs.berkeley.
edu/~keutzer/classes/244fa2004/pdf/4-routing.pdf.

Alok Aggarwal Jon Kleinbergt, David P. Williamson. “Node-Disjoint Paths on the Mesh and a New Trade-Off
in VLSI Layout”. In: (1996), pp. 585-594. URL: https://dl.acm.org/doi/pdf/10.1145/237814.238007.

Cendes, Zoltan. Electromagnetic and Circuit Co-Simulation and the Future of IC and Package Design. URL:
https://ewh.ieee.org/soc/cpmt/tc12/£dip06/Cendes_Part_I.pdf.

Jordan T. Thayer, Wheeler Ruml. “Bounded Suboptimal Search: A Direct Approach Using Inadmissible Esti-
mates”. In: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence ().
URL: https://www.ijcai.org/Proceedings/11/Papers/119.pdf.

Manual or interactive routing, advantages and inconveniences. URL: https://www.proto-electronics.com/
blog/manual-or-interactive-routing.

Michael N. Riceand, Vassilis J. Tsotras. “Bidirectional A Search with Additive Approximation Bounds”. In:
Proceedings of the Fifth Annual Symposium on Combinatorial Search (). URL: https://ojs.aaai.org/
index.php/S0CS/article/view/18235/18026.

Point, Tutorials. Graph Theory - Infinite Graphs. URL: https://www.tutorialspoint . com/graph_theory/
graph_theory_infinite_graphs.htm.

Ravindra K. Ahuja Thomas L. Maganti, James B. Orlin. Network Flows. 1993, pp. 320-324.

Samya Ahsan Nicole Lin, Alice Wang. Parallel Functional Programming Proposal: MazeSolver. 2023. URL: https:
//www.cs.columbia.edu/~sedwards/classes/2023/4995-fall/proposals/MazeSolver.pdf.

Wikipedia. “Maximum flow problem”. In: (). URL: https://en.wikipedia.org/wiki/Maximum_flow_problem#
Maximum_flow_with_vertex_capacities.

