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1 Project Overview

1.1 Background and Motivation

Convolutional engines such as systolic arrays form the computational backbone of many high-
performance signal-processing and neural-network workloads by efficiently executing multi-
ply–accumulate (MAC) operations. A 9×1 linear systolic array provides a compact architecture
for 1D convolutions and dot-product kernels, demonstrating high throughput with minimal con-
trol complexity. In this project, we concentrate on the RTL design and hardware verification of
a 9×1 PE array on an FPGA platform, establishing a core accelerator building block without
pursuing a full application-level integration.

1.2 Objectives and Scope

The primary objective is to design, implement, and verify a parameterizable 9×1 systolic array
of processing elements (PEs) on an FPGA, and to demonstrate cycle-accurate correctness via
golden-model comparison. Specifically, we will:

• Design the PE array: chain 9 identical 8-bit MAC units in a linear systolic topology
with local data forwarding.

• Implement Avalon-HPS interface: stream input vectors from the HPS into the array
and retrieve results over the Avalon bus.

• Verify functionality: compare each output with a C reference golden model to assert
bit-exact agreement.

• Analyze performance: report clock frequency, throughput (MACs/s), and resource
utilization (LUTs, DSPs, BRAM) on the target FPGA.

1.3 Key Contributions

• 9×1 Systolic Array RTL: a pipelined PE array supporting 8-bit inputs and 16-bit
accumulation, optimized for local inter-PE timing.

• Avalon-HPS Data Path: lightweight bus-master logic to handle read/write transactions
over the HPS–FPGA bridge.

• Golden-Model Verification: an automated testbench that injects randomized test vec-
tors, captures outputs, and checks cycle-level conformance against a C reference.

• Resource and Timing Report: synthesis and place-and-route summaries showing
>100 MHz operation with under 10% DSP and BRAM utilization.

2 Detailed Project Design

2.1 System Architecture

The system consists of a hardware accelerator interfaced with a Hard Processor System (HPS)
via an Avalon bus. The HPS is responsible only for data and weight transfer, as well as reading
back results. The control logic resides entirely within FPGA Control Unit. The architecture
includes the following components:
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Figure 1: Block Diagram of System

2.1.1 HPS (Hard Processor System)

The HPS handles all data movement between the processor and the accelerator. Its responsi-
bilities include:

• Transferring input feature data to the accelerator.

• Transferring neural network weights to the accelerator.

• Reading the final output results from the accelerator.

The HPS does not manage control flow or provide execution parameters.

2.1.2 Avalon Bus

The Avalon bus provides a standardized communication interface between the HPS and the
accelerator. It facilitates the transfer of input data, weights, and output results.

2.1.3 FPGA

• Control Unit: The control module is the internal command unit of the accelerator. It
issues all control signals for the computation process, including:

– Managing the timing of weight and input loading.
– Triggering the start of computation in the PE array.
– Coordinating result write-back to the output buffer.

• Weight Buffer: This module stores weight data received from the HPS. The control
module manages when and how these weights are sent to the PE array for computation.

• Input Buffer: The input buffer temporarily holds input features from the HPS. It feeds
data into the PE array under the direction of the control module.
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ˆ PE Array (Processing Element Array): The PE array is the computational core of
the accelerator. It performs parallel multiply-accumulate (MAC) operations and handles
the main convolution workload.

Figure 2: PE Array

ˆ Output Bu�er: This module holds the results produced by the PE array. The control
module manages the output process, and results are later fetched by the HPS via the
Avalon bus.

Figure 3: Input Banks Re-order

2.2 Data Flow and Control

Data �ow, as shown in 2, just required on three aspects: Input, weight and output. The store
on weight and output is quite easy, just enabling the store signal, and make the address plus
one. However, the PE array require the input data to re-order, since the convolution has a data
reuse on the input. The store logic is shown in the Fig.3, the number in the circle represent

5



the coordinate of the data in a 16*16 Grey-scale image, with the data size of 8 bits. Since a
multiply is happen with 9 di�erent operands, we made the banks to store the operands in the
same frame on the corresponding position in sequences. When the computation starts, we can
pick out data from di�erent banks using a global address.

When doing a convolution multiply, the operand will capture a data from the global address
in each banks, and make the global address plus one. So the input bu�er provides a 72 bits
out from 9 di�erent banks, with a shared global address index. The advantages for this is that
we can easly index the data we want to use in one cycle. However, it require with a size of
72*(14*14+9)*8 bits to store our input, nearly increase the input size 9 times.

Figure 4: Hardware Implementation

2.3 Hardware Implementation

Our implementation on DE1SoC is as shown in Fig.4 .Thanks to the Avalon Bus, we can reach
our hardware using the simple system call -ioread and iowrite . The section of on-board testing
will go into the details about the communications. After the synthesize, we can see the results
from tools.

Table 1: FPGA Resource Utilization
Resource Used Percentage

LUTs(in ALMs) 10,708 33%
DSP48 9 10%
BRAM(bits) 1,640 < 1 %
PINS 362 79%

Analyze : We checked the report generated by the tools, observed as Table.1:

ˆ Fmax is 135Mhz, which makes the design possible to synthesize under clock_50. As default
de�ned in the tcl �les provided in lab3, the clock_50 cycles is 20ns, with the frequency of
50 MHz. Our design exceed the standard frequency, make it possible to implement.

ˆ Ram usage is lower than 1%. After the checking on the rpt �les, the RAM rpt shows
that only the output bu�er and weight bu�er are recognized as the RAM, while the input
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bu�er did not. The reason for this may because I have the banks of bu�er in the same
module. If I can create a new submodule for the banks, and instance them in the bu�er,
the tool may be able to implement them as RAMs.

ˆ LUT usage is close to 33%. The report shows the main part(60%) of LUTs are be used
as the registers. That may be the implementation on these input bu�ers.

ˆ DSP usage is 10%. It is very easy to understand. 9*1 PE has 9 multiply units.

2.4 Veri�cation and Simulation

2.4.1 Simulation of Top

Figure 5 shows the ModelSim timing diagram of state transition from IDLE to LOAD_WEIGHT
for the ctrl FSM. At time 0 ns, The FSM enters the IDLE state, with all control outputs
(weight_start , input_start , output_start ) held low. At time 8195 ns the design comes out
of reset (rst_n deasserts).

Figure 5: IDLE_TO_LOADWEIGHT Transition

IDLE � LOAD_WEIGHT The host �rst writes all nine weight values into the weight_buffer
module. Inside weight_buffer , a local counter increments on each write, and when it reaches
nine (i.e. all weights have been written), weight_buffer assertsweight_data_ready to the
ctrl FSM. Upon detecting this pulse in the IDLE state, the FSM transitions to LOAD_WEIGHT
on the next rising clock edge, at which pointweight_start , pe_en, and pe_w_enare asserted
to begin loading the weights into the PE array.

LOAD_WEIGHT Each incomingweight_data_ready handshake latches one new byte into
weight_reg and incrementsweight_counter . When weight_counter reaches 9 (the parameter
MAX_WEIGHTS), the internal �ag weight_loaded is set. Note that after loading the ninth weight,
weight_start deasserts butpe_en remains high to keep the PE array primed.

Figure 6: LOAD_WEIGHT TO PIPELINE_PROCESSING Transition
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