
4840 Systolic Array Based on FPGA

Speaker: Hang Ye(hy2891), Yu Jia(yj2839), Siyuan Li(sl5590), Sicheng Hua(sh4605)

Contents

1. Block Diagram 2. Data Flow 3. Synthesize 4. Simulation 5. On Board Test

Block Diagram

Control FSM & Data Flow



Figure 4 : FSM Diagram

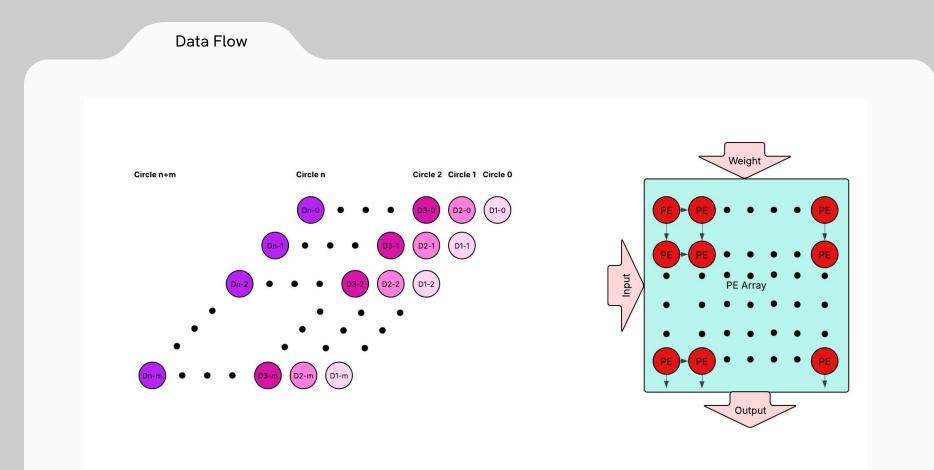



Figure 5 : Data Timing Diagram

Synthesize

portname	Avalon Bus interface
addr	address
data_in	writedata 0 : imgsize 1 : weight_data 2 : input_data
data_out	readdata 3 : done 4 : output_data
write	write
read	read
clk	clock
reset	reset
chipselect	chipselect

Pictures for hardware synthesize

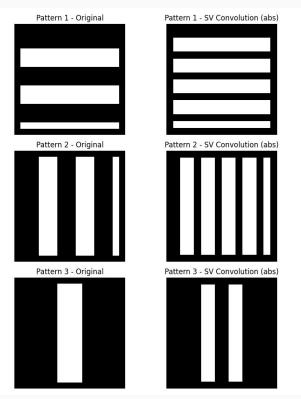
Final Connection

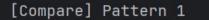
🚛 System Contents 🐹 | Address Map 🐹 | Interconnect Requirements 🐹 |

System: soc_system Path: top_0.avalon_slave_0

Use	Connections	Name	Description	Export	Clock	Base	End	IRQ	Tags	Opcode Name
Y	Clk_in clk_in_reset clk clk reset		Clock Source Clock Input Reset Input Clock Output Reset Output	clk reset Double-click to Double-click to	exported					
V		□	Arria V/Cyclone V Hard Proce Clock Output Conduit Conduit Reset Output	Double-click to hps_ddr3 hps Double-click to	hps_0_h2					
		h2f_axi_clock h2f_axi_master f2h_axi_clock	Clock Input AXI Master Clock Input	Double-click to Double-click to Double-click to	clk_0 [h2f_axi clk_0					
		f2h_axi_slave h2f_lw_axi_clock h2f_lw_axi_master E top 0	AXI Slave Clock Input AXI Master TOP	Double-click to Double-click to Double-click to	[f2h_axi clk_0 [h2f_lw_a					
	• • • • • • • • • • • • • • • • • • •	clock reset avalon slave 0	Clock Input Reset Input Avalon Memory Mapped Slave	Double-click to Double-click to	clk_0 [clock] [clock]	0x0000 0000	0x0000 000f			

Simulation Result




Figure 6: Pattern Comparison

Θ	0	0	127	127	127	0	0	Θ	127	127	127	Θ	0	0	127
0			127	127	127				127	127	127				127
0			127	127	127				127	127	127				127
0			127	127	127				127	127	127				127
0			127	127	127				127	127	127				127
0			127	127	127				127	127	127				127
0			127	127	127				127	127	127				127
0			127	127	127				127	127	127				127
0			127	127	127				127	127	127				127
0			127	127	127				127	127	127				127
0			127	127	127				127	127	127				127
0			127	127	127				127	127	127				127
0			127	127	127				127	127	127				127
0			127	127	127				127	127	127				127
0			127	127	127				127	127	127				127
0	0	Θ	127	127	127	Θ	Θ	0	127	127	127	0	0	0	127

Figure 7: Pattern 2 Input Data

_														
0	65028	65028	0	508	508	0	65028	65028	0	508	508	0	65028	
0	65028	65028	0	508	508	0	65028	65028	0	508	508	0	65028	
0	65028	65028	0	508	508	0	65028	65028	0	508	508	0	65028	
0	65028	65028	0	508	508	0	65028	65028	0	508	508	0	65028	
0	65028	65028	0	508	508	0	65028	65028	0	508	508	0	65028	
0	65028	65028	0	508	508	0	65028	65028	0	508	508	0	65028	
0	65028	65028	0	508	508	0	65028	65028	0	508	508	0	65028	
0	65028	65028	0	508	508	0	65028	65028	0	508	508	0	65028	
0	65028	65028	0	508	508	0	65028	65028	0	508	508	0	65028	
0	65028	65028	0	508	508	0	65028	65028	0	508	508	0	65028	
0	65028	65028	0	508	508	0	65028	65028	0	508	508	0	65028	
0	65028	65028	0	508	508	0	65028	65028	0	508	508	0	65028	
0	65028	65028	0	508	508	0	65028	65028	0	508	508	0	65028	
0	65028	65028	0	508	508	0	65028	65028	0	508	508	0	65028	

Figure 8: Pattern 2 SV Output Data

- Max Abs Error : 0
- Mean Abs Error : 0.00
- Match (zero diff) : 100.00%

[Compare] Pattern 2

- Max Abs Error : 0
- Mean Abs Error : 0.00
- Match (zero diff) : 100.00%

[Compare] Pattern 3

- Max Abs Error : 0
- Mean Abs Error : 0.00
- Match (zero diff) : 100.00%

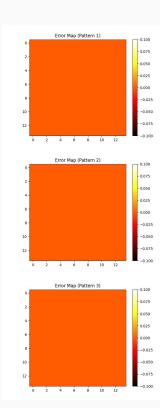


Figure 9: Verification Results

On board test

IO read is a big problem, since after we tested, the read signal will last for more than 1 cycle. So, we need to latch the counter even when the read is high.

```
printf("Reading output_data:\n");
for (i = 0; i < 14*14; i++) {
    output_data[i] = read_output_data();
    printf(" output_data[%d] = %d\n", i, output_data[i]);
```

// Verify output_data

For the golden model, since the quantize scaling happens all over the computation, we need to scale back to do the comparison.