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1 Introduction

This project aims to implement a simplified version of the popular cooperative puzzle-platformer
game Fireboy and Watergirl (We call it ForestFireIce) on the Terasic DE1-SoC FPGA platform.
The game features two characters—Fire Boy and Water Girl-—who must navigate through a series
of levels filled with obstacles, traps, and interactive elements.

The system leverages both the FPGA fabric and the Hard Processor System (HPS) of the
Cyclone V SoC. The FPGA is responsible for generating 640%480 @ 60Hz VGA video output,
performing real-time tile-and-sprite composition and audio control part. Meanwhile, the dual-core
ARM processor executes high-level game logic, player control, and system coordination.

The game is controlled via a USB Joy Pad input, with the video output rendered to a VGA
monitor. The game is designed to run at a steady 60 frames per second to ensure smooth and
responsive interaction.
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Figure 1: Game of “Forest Fire and Ice”

2 System Block Diagram
This system clearly partitioned into two domains:

e Hardware Domain (FPGA / SystemVerilog) — handles all pixel-rate activities (VGA
timing, tile4-sprite mixing, audio play).

e Software Domain (ARM Core / C): Focuses on high-level game logic such as collision
detection, rule enforcement, and player state transitions.

Communication between the software and hardware domains is conducted via the Avalon Bus,
a memory-mapped interface that allows the ARM processor to write/read registers/BRAM in the
FPGA.

2.1 Data Communication Design

To maximize performance and maintain modularity, all rendering is handled by the FPGA hard-
ware. The software domain is responsible only for transmitting high-level game state data to the
hardware. Each sprite (e.g., Fire Boy, Water Girl, game objects) is described by a fixed-size sprite
attribute entry in the memory-mapped SPRITE_ATTR_TABLE, updated once per frame.

Each sprite attribute entry (Inside SPRITE_ATTR_TABLE) includes the following fields:

Enable: A flag indicating sprite visibility (1 = visible, 0 = hidden).

Flip: A horizontal flip control for mirroring the sprite.

X, Y Coordinates: The sprite’s position on screen in pixel units (sprite_x: 0-639, sprite_y:
0-479).

e Frame ID: An 8-bit index used to select a specific frame from the sprite pattern ROM.

These sprite attributes are written by the software to the MMIO SPRITE_ATTR_TABLE, which is
stored in FPGA on-chip RAM and used directly by the sprite-and-tile displaying.
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Figure 2: Block Diagram of “Forest Fire and Ice”

2.2 Hardware Responsibilities
e Generates synchronized VGA signals (HSYNC, VSYNC, RGB) for real-time video output.
* Stores tile maps, tile/sprite patterns, and audio samples in on-chip BRAM.

e Provides MMIO-based register interfaces (CONTROL_REG, STATUS_REG) accessible from
HPS.

Selects and renders tilemap tiles using a Tile Engine based on CONTROL_REG(1:0] selection.

e Manages sprite rendering and composition over tiles via the Sprite Engine.

Outputs audio data stored in BRAM to WMS8731 codec.

2.3 Software Responsibilities

The software periodically polls input devices and executes all high-level game logic. Its responsi-
bilities include:

e Parsing user input (e.g., from USB Joy Pad) to update player movement and game state.
* Handling interactions with environment elements such as doors, lever, and switches.
e Detecting collisions in software.

e Polling the STATUS_REG to read VGA scanline (vcount) and safely write updates during the
VBlank window (i.e., when vcount  480).



e Updating the CONTROL_REG to select the current tilemap and trigger audio playback.

By separating game logic from display logic, and synchronizing all MMIO writes during the
vertical blanking interval, the software ensures smooth, tear-free frame rendering at 60Hz.

3 Hardware

3.1 VGA Display Overview
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Figure 3: VGA Display Overview

vga_top is the single entry point of the graphics system. It accepts a 50 MHz core clock, reset,
and a Avalon-slave interface, and it emits all VGA signals for a 640 480@Q60 Hz display (25 MHz
pixel clock, 8-bit R/G/B, HS, VS, BLANK_n, SYNC_n).

Internally, two generators feed a dual-bank line buffer: (i) tile_engine streams 40 background
tiles per line, (ii) sprite_engine overwrites individual pixels wherever an non-transparent pixel
is present. Both write 16-bit RGB555" words in which MSB (i.e. bit 15) is a transparency bit;
writes are simply suppressed when that bit is ‘1’, so layering is decided entirely by write-enable
logic and the later sprite pass. A single flip-flop swaps the draw / display line buffers at the end of
each line (during HBlank), allowing one line buffer to be scanned out while the next is rendered.

During scan-out the 5-bit color fields are left-shifted by three to produce 8-bit VGA levels,
duplicating each logical pixel horizontally so that the 25 MHz clock meets the VGA 640%480
timing. All finer details of timing, buffering and engine protocols are deferred to the following
sections.
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