
CSEE W4840 Embedded Systems
AccelReg: An Accelerator for Linear Regression

Final Report

Doreen Sisanalli – ds4371
Pranav Asuri – pa2708
Varsha Keshava Prasad – vk2550
Venkat Suprabath Bitra – vsb2127

May 15, 2025

Introduction

Linear regression is a simple and widely used method for modeling the relationship between
two variables: one input (x) and one output (y). In this project, we focus on the 1D case,
where we fit a straight line to data points so that it best predicts y from x. The best line is
found by minimizing the squared differences between the actual y values and the predicted
values, a method known as least squares. We use the closed-form solution, which means
we directly calculate the optimal line using matrix operations, instead of using iterative
methods like gradient descent. This approach is efficient and gives an exact answer for the
model parameters.

In this implementation, the dataset containing the paired input and output values is first
stored on the SD card, which also holds the operating system for the FPGA. A key aspect of
this project is the design of the linear regression training process on the FPGA using a 4-bit
quantization-aware approach. This involves representing the numerical values with reduced
precision, which is crucial for efficient hardware implementation. The software module reads
the dataset from the SD card and sends it to the FPGA. The FPGA then processes this data
to compute the intermediate values needed for calculating the optimal slope and intercept
for the linear regression model through matrix operations, all while adhering to the 4-bit
quantization constraints. The effectiveness of this quantization strategy is enhanced by
utilizing a representative dataset during the quantization-aware training phase, which allows
the model to achieve performance closely comparable to its full-precision counterpart.

As the results demonstrate, this approach yields an R2 score of 0.9490 and a Mean
Squared Error (MSE) of 0.3402 for the 4-bit quantized model. This is visually represented

1

Figure 1: (a) Scatter plot of processed data with 4-bit quantized linear regression fit. (b)
Scatter plot of original data with full-precision linear regression fit.

in Figure 1(a), which shows the scatter plot of the processed data with the quantized linear
fit. These metrics are very close to the R2 score of 0.9515 and MSE of 0.3232 achieved by
the original, non-quantized model, depicted in Figure 1(b) (Scatter plot of original data).
Once trained, the quantized model can then be used by the FPGA to make predictions on
new input data, enabling efficient and automated linear regression directly in hardware with
minimal loss in accuracy.

These fit weights were generated using an implementation in C to highlight the efficacy
of the model before the implementation in FPGA. This approach allows for a highly efficient
implementation as all operations can be performed in integer format. The algorithm for this
implementation will be detailed in a subsequent section.

Algorithm

For 1D linear regression with n observations (xi, yi), the model is:

y = w0 + w1x

For a single observation, this can be written as:

yi =
[
1 xi

] [w0

w1

]

The weights w =

[
w0

w1

]
are typically found by solving the normal equation:

w = (XTX)−1XTy

2

where:

X =

1 x1

1 x2
...

...
1 xn

 , y =

y1
y2
...
yn

The key matrix computations involved are:

XTX =

[
n

∑
xi∑

xi

∑
x2
i

]
and

XTy =

[∑
yi∑
xiyi

]
The inverse of XTX is calculated as:

(XTX)−1 =
1

n
∑

x2
i − (

∑
xi)2

[∑
x2
i −

∑
xi

−
∑

xi n

]
For datasets where xi and yi are 4-bit unsigned integers (i.e., xi, yi ∈ {0, 1, . . . , 15}), the
computation can be optimized by first calculating five critical integer accumulations:

S1 = n (count of observations)

S2 =
n∑

i=1

xi (sum of xi)

S3 =
n∑

i=1

yi (sum of yi)

S4 =
n∑

i=1

x2
i (sum of x2

i)

S5 =
n∑

i=1

xiyi (sum of xiyi)

Considering the constraints that n is bounded by 512 and xi, yi are 4-bit unsigned integers,
the bit-width requirements for these sums are as follows:

• S1 = n: Requires 9 bits, as 28 < 512 ≤ 29.

• S2 =
∑

xi and S3 =
∑

yi: The maximum value for xi or yi is 15. In the worst case,
these sums can reach 512× 15 = 7680. This requires ⌈log2(7680 + 1)⌉ = 13 bits. This
can be conceptually understood as the sum of bits for the maximum input data (4
bits) and the maximum count (9 bits).

3

• S4 =
∑

x2
i and S5 =

∑
xiyi: The product x2

i or xiyi can be up to 15 × 15 = 225.
This intermediate product requires ⌈log2(225 + 1)⌉ = 8 bits (conceptually, the sum
of bits of the two 4-bit operands, 4 + 4 = 8). The accumulated sum can then reach
512× 225 = 115200. This requires ⌈log2(115200+1)⌉ = 17 bits (conceptually, the sum
of bits for the intermediate product (8 bits) and the maximum count (9 bits)).

These bit-width calculations are essential for designing the hardware accumulators with
sufficient capacity to prevent overflow. Hence, we will design each of the sum registers in 17
bits.

These sums can be computed efficiently, for instance, using dedicated parallel blocks or
pipelined reduction circuits, processing data as it streams (e.g., from an SD card). Since xi

and yi are small integers, these sums will also be integers. The only floating-point operations
required are the final divisions. The scaling factor, which is the reciprocal of the determinant
det(XTX) = S1S4 − S2

2 , is applied after all integer accumulations are complete.
We can implement a pipelined accumulation scheme where, for each incoming data pair

(xi, yi), four parallel compute units update the sums in real-time:

S2 ← S2 + xi

S3 ← S3 + yi

S4 ← S4 + x2
i

S5 ← S5 + xiyi

Simultaneously, S1 is incremented by a counter with each data pair processed.
After all data points have been processed and the accumulations are complete, the re-

gression coefficients w0 and w1 are calculated as:[
w0

w1

]
=

1

S1S4 − S2
2

[
S4S3 − S2S5

S1S5 − S2S3

]
Let D = S1S4 − S2

2 (the determinant), N0 = S4S3 − S2S5, and N1 = S1S5 − S2S3. All D,
N0, and N1 are integers. Then:

w0 =
N0

D

w1 =
N1

D

The individual sum accumulators (S1, S2, S3, S4, S5) stored in registers can be processed by
a combinational logic block to compute the three integer values (N0, N1, D). These three
values are then used to compute the final floating-point weights w0 and w1.

Avalon System Components

Fig. 2 shows the system configuration inside Intel’s Quartus Platform Designer (formerly
Qsys) for a project named soc system. This system integrates three key components: a

4

Figure 2: Avalon System Components

clock source (clk 0), a Hard Processor System (hps 0), and a custom hardware accelerator
for linear regression (lr acc 0). These components are connected using Avalon and AXI
interconnects to enable communication between the HPS and FPGA fabric, allowing software
running on the ARM processor to configure and interact with the hardware accelerator.

The clock source clk 0 provides the main clock and reset signals to all other components
in the design. These signals are exported to the top-level module so they can be driven
externally, for example, from a PLL or onboard oscillator. The hps 0 block represents the
Cyclone V HPS (Hard Processor System), which includes dual ARM Cortex-A9 processors
and a rich set of memory and IO interfaces. Through the lightweight AXI master interface
(h2f lw axi master), the processor can access memory-mapped peripherals in the FPGA
fabric.

The lr acc 0 module is a custom Avalon slave component that implements a linear
regression accelerator. It receives clock and reset from the clock source and is memory-
mapped into the system address space starting at base address 0x0000 0000 with a 4KB
range (ending at 0x0000 0FFF). The HPS accesses this accelerator using the lightweight AXI
master interface for tasks like sending training data, starting computations, and reading
regression outputs.

• clk 0 (Clock Source):

– Provides clock and reset signals to the system.

– Signals clk and reset are exported to the top-level design.

– Drives the clock inputs of both the lr acc 0 and the HPS.

5

• hps 0 (Hard Processor System):

– Represents the ARM Cortex-A9 subsystem embedded in Cyclone V SoCs.

– Interfaces include:

∗ h2f axi master: For general AXI-based communication from HPS to FPGA.

∗ h2f lw axi master: Lightweight interface for mem-mapped peripheral access.

∗ f2h axi slave: For FPGA-to-HPS communication.

∗ Clock inputs/outputs for synchronization with the fabric.

– Also interfaces with external memory (e.g., DDR) and IO via exported conduits.

• lr acc 0 (Linear Regression Accelerator):

– Custom Avalon memory-mapped slave IP core.

– Receives clock and reset from clk 0.

– Connected to the HPS via h2f lw axi master.

– Mapped to address space 0x0000 0000 to 0x0000 0FFF (4KB).

– Implements logic to perform linear regression computations.

Software-Hardware Avalon Interface

Fig. 5 shows the Signals & Interfaces tab for the avalon slave 0 interface in Intel
Quartus Platform Designer (Qsys) defines the boundary between software and hardware.
This interface is responsible for connecting the ARM processor subsystem (HPS) to a
custom hardware peripheral, which in this case is likely the Linear Regression Accelerator.

The avalon slave 0 is configured as an Avalon Memory-Mapped Slave Interface,
which allows the processor to communicate with FPGA logic using standard memory
read and write instructions. Through this interface, software running on the proces-
sor can send commands, write input data, and read computation results directly from
the hardware peripheral via mapped memory addresses. The interface includes all the
standard signals required for such communication, including read, write, chipselect,
address, writedata, and readdata. Each of these signals plays a critical role in en-
abling synchronous, low-latency, memory-mapped access between the processor and the
accelerator logic within the FPGA. In the center block diagram of avalon slave 0, the
following signals are defined. These represent the interface between the processor (HPS)
and a custom hardware peripheral, such as a Linear Regression Accelerator.

Signal Descriptions

– writedata[31:0]: 32-bit data written by the processor to the hardware module.

6

Figure 3: Software-Hardware Avalon Interface

– write: Single-bit control signal that indicates a write transaction is requested.

– chipselect: Asserted when the memory-mapped region assigned to this slave is
being accessed by the processor.

– address[9:0]: A 10-bit address line allowing access to 1024 unique words within
the module.

– read: Single-bit control signal indicating a read transaction is requested.

– readdata[31:0]: 32-bit data read from the hardware module by the processor.

These signals together allow the CPU (typically an ARM Cortex-A9 core in the HPS) to
communicate with the custom logic through memory-mapped I/O. Standard processor
instructions such as ldr, str, or Linux-based MMIO access can be used to interact with
the peripheral.

i. Software-Hardware Interface Configuration (Right Panel)

The configuration settings in the Parameters panel define how the Avalon Memory-
Mapped Slave interface behaves:

– Associated Clock: clock — All signal activities on this interface are synchronized
to this signal.

7

– Associated Reset: reset — Used to reset the hardware registers inside the pe-
ripheral.

– Address Units: Set to WORDS, meaning each address increment maps to a 32-bit
word rather than a byte.

– Bits per Symbol: 8 — Byte-level granularity, although accesses are word-based.

– Explicit Address Span: Left empty in this instance; can be filled to override
auto-assigned address range.

ii. Timing Characteristics

The following parameters specify the cycle-level behavior of transactions over this inter-
face:

– Setup: 0 cycles — No setup delay is required.

– Read Wait: 1 cycle — The readdata will be valid one cycle after asserting read.

– Write Wait: 0 cycles — Write transactions complete in the same cycle they are
issued.

– Hold: 0 cycles — No additional hold time required after a transaction.

– Timing Units: All timing values are expressed in clock cycles.

Block Diagrams

Linear Regression Main Pipeline

From Fig. 4, the linear regression accelerator uses a set of output stages to convey
partial and final computation results through a memory-mapped interface. Each of these
outputs is accessible via specific addresses decoded using bits a9 to a0. These output
registers—such as N0, N1, D, and S1--S5—hold values calculated across the regression
pipeline, which ultimately computes the coefficients w0 and w1. This address mapping
is crucial for software to retrieve intermediate results or verify convergence across the
stages.

Linear Regression Accelerator 8b Block

Fig. 5 illustrates a pipelined binary adder tree designed to compute the sum of 16
unsigned 18-bit inputs, labeled op0 through opF. The architecture employs a hierarchi-
cal reduction approach, where pairs of inputs are incrementally summed using multiple

8

Figure 4: Linear Regression Main Pipeline

Figure 5: Linear Regression Accelerator 8b Block

9

layers of adders. Registers are inserted between each stage to form a fully pipelined struc-
ture, significantly enhancing throughput and enabling higher clock frequencies. This is
especially beneficial for FPGA implementations, where timing closure and parallelism
are critical.

Each stage reduces the number of operands by half. Initially, eight pairwise adders reduce
the 16 inputs into 8 intermediate values. These values are then fed into four second-level
adders, reducing them to 4 values, and so on, until the final result is produced. The
output, labeled result, is a single 18-bit value representing the total sum.

Hierarchy and Pipelining Structure

Inputs:

– 16 inputs: op0 to opF

– Each input is 18 bits wide

Stage 1 — Pairwise Addition:

– 8 adders compute:

(op0 + op1), (op2 + op3), . . . , (opE + opF)

– Each output is stored in a pipeline register

Stage 2 — Second-Level Addition:

– 4 adders compute:

Sum1 = (op0+ op1) + (op2+ op3)

Sum2 = (op4+ op5) + (op6+ op7)

Sum3 = (op8+ op9) + (opA+ opB)

Sum4 = (opC+ opD) + (opE+ opF)

– Outputs are again registered

Stage 3 — Third-Level Addition:

– 2 adders compute:

SumA = Sum1 + Sum2

SumB = Sum3 + Sum4

– Outputs are pipelined to the final stage

10

Figure 6: Linear Regression Accelerator 8b Block 512

LR Accumulator 8b 512

Fig. 6 illustrates a detailed architecture of a Linear Regression Accelerator designed
for hardware implementation, typically on an FPGA. The accelerator performs feature
accumulation, intermediate statistical computation (S1–S5), and final coefficient evalua-
tion using a pipelined datapath composed of accumulators, adders, multipliers, and
subtractors. The module is memory-mapped, allowing interaction with a processor
through a standard Avalon or AXI-like interface using control and status registers.

The module operates under the control of a clock signal (clk) and is reset by a syn-
chronous reset signal (reset). Memory-mapped I/O signals, such as address, writedata,
read, write, and chipselect, facilitate communication between the processor and the
accelerator. At the core of the design are a Register Map and a Write Block, which
receive data from the processor and route it to 16 parallel Accumulator Pipelines, la-
beled from PC0 to PC15. These pipelines accumulate partial sums from incoming training
data across multiple cycles.

The accumulated outputs from all pipelines feed into an 18-bit Adder Tree, which
computes global statistics such as:

S1 =
∑

x, S2 =
∑

y, S3 =
∑

x2, S4 =
∑

xy, S5 =
∑

y2

These intermediate statistical values are then passed through a series of multipliers and
subtractors to calculate the higher-level regression terms:

N0, N1, and D

where N0 and N1 are the numerators used in the computation of the slope and intercept
of the regression line, and D is the common denominator.

Finally, all computed values, along with a status signal MD (Master Done), are routed to a
Multiplexer (MUX). This MUX connects to the readdata bus, enabling the processor
to selectively access internal results based on the supplied address.

11

Final Stage — Root Addition:

• Final adder computes:
result = SumA+ SumB

• The result is stored in a final register before output

Key Design Features

• Fully Pipelined: Every adder is followed by a register, enabling high-throughput
processing.

• Balanced Tree Structure: Reduces fanout and critical path delay, ideal for timing-
optimized implementations.

• Uniform Bit Width: All operations are performed with 18-bit unsigned values, main-
taining consistency.

• FPGA-Friendly Design: Optimized for synthesis and implementation in modern
FPGAs using DSP slices and logic blocks.

Combinational 18-bit Adder

Fig. 7 shows a pipelined binary adder tree designed to compute the sum of 16 parallel
18-bit unsigned input values, labeled from op0 to opF. Each input is first registered to align
timing and introduce pipelining. The architecture groups these inputs into adjacent pairs
and sums them using multiple stages of binary adders. The tree structure ensures that
additions are performed with logarithmic depth, reducing the 16 inputs down to a single final
output in four addition stages.

Each addition operation is followed by a pipeline register, allowing every stage to operate
in a fully pipelined manner. This design ensures a high-throughput datapath in which one
sum result can be computed on every clock cycle once the pipeline is filled. The final 18-bit
result is produced at the result output port, making the design suitable for applications in
real-time signal processing or statistical summation workloads.

The adder tree employs a balanced binary reduction strategy with:

• Stage 1: 8 parallel adders for 8 pairwise additions.

• Stage 2: 4 adders for the second-level reduction.

• Stage 3: 2 adders to compute two intermediate sums.

• Stage 4: Final adder to compute the total sum.

By fully pipelining each stage, the design achieves:

12

Figure 7: Combinational 18-bit Adder

• Minimal critical path delay between stages.

• High clock frequency compatibility for FPGA implementations.

• Improved timing closure with reduced combinational fanout.

• Scalability to wider bit-widths or more input operands with minor structural changes.

This module is used within the Linear Regression Accelerator as a core summation unit to
compute statistical accumulations such as

∑
x,

∑
y,

∑
x2, and

∑
xy, leveraging its efficient

structure for fast, large-scale accumulation operations in hardware.

Register Map Tables

It defines how software (e.g., a CPU or host controller) can interact with hardware using
memory-mapped registers. It acts as a bridge between the software control layer and the
hardware datapath by exposing internal hardware states, controls, and outputs at specific
memory addresses. This abstraction enables software to configure, monitor, and trigger
hardware operations without direct intervention in signal-level control. It also facilitates
easy integration into driver frameworks and high-level control applications.

13

Figure 8: Read Address Mapping

Read Address Mapping

Fig 8 shows the 10-bit address encoding used to access the results. Each address corresponds
to a specific pipeline output or flag:

• Address 0x000 selects the MASTER DONE flag, used to indicate completion of the regres-
sion computation.

• Address 0x001 maps to N0, the partial sum relevant for w0’s calculation.

• Address 0x002 selects N1, used for computing w1.

• Address 0x003 accesses D, a value reused by both coefficient computations.

• Addresses 0x004 through 0x008 represent stages S1 through S5, and are mainly pro-
vided for debug or verbose mode where all pipeline outputs are required.

Each of these registers is mapped via a read multiplexer, controlled by address bits a3 to
a0, and the result is driven onto the READDATA bus. The output is valid only when the CPU
initiates a read operation (i.e., when WRITE = 0) to one of these addresses with CHIPSELECT

asserted. Since the accelerator module is memory-mapped, the CPU communicates via
standard read/write protocols, ensuring synchronization without interrupt handling.

To support the complete address decoding logic, the accelerator treats all addresses with
a9 = 0 and WRITE = 0 as read operations.

Read Register Map

fig. 9 provides a memory map of readable output registers of the accelerator, showing how
each pipeline stage’s result or status signal is placed in memory. These offsets represent
addresses accessible via the Avalon interface by the processor.
The table clearly distinguishes between control/status bits (like Master Done) and result
values (like N0, N1, D, and S1–S5). The Master Done flag is encoded at offset 0, bit 0, with

14

Figure 9: Read Register Map

the remaining bits unused. The rest of the offsets (1 through 8) contain signed or unsigned
32-bit results from various computation stages of the accelerator.

• Offset 0:

– Bit 0: Master Done (set to 1 if the accelerator has completed computation).

– Bits 31–1: Unused.

• Offsets 1–3 (Signed Values):

– Offset 1: Signed result of N0 (used in computing w0).

– Offset 2: Signed result of N1 (used in computing w1).

– Offset 3: Signed result D (common to both weights).

• Offsets 4–8 (Unsigned Values):

– Represent unsigned outputs S1 through S5.

– Provided primarily for full-output tracing or debugging purposes.

15

Figure 10: Write Address Encoding

Write Address Encoding

Fig. 10 illustrates the address decoding scheme for write operations in the Linear Re-
gression Accelerator. The 10-bit address field (a9 to a0) determines whether a memory
address is being written to, or a control operation (reset or go) is being issued. When
the most significant bit a9 = 0, the operation targets the training memory and stores
input data (typically X and Y pairs). The address lines a8 : 0 define the specific mem-
ory location, allowing for up to 512 entries. When a9 = 1, the address is interpreted as
a control command—either to reset the accelerator or to trigger the computation (go),
where the lower 8 bits specify the number of input samples (count).

• Data Write Operations:

– a9 = 0 → Memory write mode.

– a8 : 0 defines the memory address (range: 0 to 511).

– Used to write training data into internal memory.

• Control Operations:

– a9 = 1 and all lower bits = 0 → Write Reset.

– a9 = 1 and remaining bits = count value y[7 : 0] → Write Go (start operation
with input count y).

Write Register Map

Fig. 11 defines the memory layout for training data in the Linear Regression Accelerator.
The range from offset 0x000 to 0x1FF is used to store input pairs (x, y) for regression
computation. Each 32-bit word is partially used: only the lower 8 bits are valid, where

16

Figure 11: Write Register Map

bits [3:0] encode x and bits [7:4] encode y. The upper bits [31:8] are unused
and may be written as zeros. The subsequent address space from 0x200 to 0x2FF is
completely unused and is likely reserved for padding, alignment, or future extension.

This compact representation is optimized for 4-bit quantized input values, minimiz-
ing memory usage while maintaining high data throughput. The structure also allows
software to stream input pairs into the accelerator sequentially, simplifying buffer man-
agement and reducing logic complexity. Such a layout is particularly well-suited for
FPGA-based accelerators, where memory efficiency and deterministic access patterns
are critical.

– Offset Range 0x000 { 0x1FF:

∗ Total of 512 entries.

∗ Bits [3:0]: Encodes input x.

∗ Bits [7:4]: Encodes input y.

∗ Bits [31:8]: Unused.

– Offset Range 0x200 { 0x2FF:

∗ All bits [31:0] are unused.

∗ Reserved for future use or address padding.

Timing Diagrams

8-bit Block Simulation Analysis

The lr acc 8b module implements a pipelined datapath designed to accumulate es-
sential statistical values for linear regression, using 8-bit input streams. The included

17

simulation results validate the correctness and efficiency of the internal datapath.

Figure 12: Fitter Analysis
Figure 13: Fmax Analysis

Figure 14: Timing Diagram

The lr acc 8b module implements a pipelined datapath designed to accumulate es-
sential statistical values for linear regression, using 8-bit input streams. The included
waveform captures a representative simulation cycle-by-cycle, validating correct tempo-
ral behavior and functional correctness.

– Inputs (x, y): Sequential data pairs applied after a reset. Timing is aligned with
the testbench vectors to ensure synchronization with pipeline stages.

– sum x / sum y: These signals accumulate the total of all observed x and y values,
respectively, and are used to calculate the mean and other statistical moments.

– sum x squared: Validates the squaring and accumulation of each x sample, repre-
senting

∑
x2, needed in slope denominator computation.

– sum XY: Captures the accumulated sum of products x · y, forming the numerator
for the slope (m =

∑
(xy)−nx̄ȳ∑
(x2)−nx̄2).

This block is essential for real-time regression analysis, offering throughput-optimized,
low-bitwidth accumulation suitable for embedded and resource-constrained environ-
ments. The successful simulation confirms the block’s readiness for integration into
the full datapath of the regression accelerator.

18

Pipelined Multiplier Simulation Analysis

Figure 15: Fitter Analysis
Figure 16: Fmax Analysis

Figure 17: Timing Diagram

This simulation verifies the behavior of a pipelined multiplier module (tb multiplier)
receiving sequential inputs X and Y. Key signals demonstrate staged pipeline computa-
tion and throughput efficiency.

– Inputs: X and Y increment per clock cycle, latched on rising edges.

– Pipelining: Internal signals (dut1, dut2, data reg) confirm multi-stage buffering.

– Output: mult out delivers X · Y with ∼3-cycle latency. Examples:

∗ X = 4, Y = 7⇒ mult out = 28

∗ X = 25, Y = 42⇒ mult out = 1050

∗ X = 38, Y = 34.6⇒ mult out = 1316

– Conclusion: Accurate pipelined multiplication with consistent throughput and re-
sult stability.

19

Signed Adder/Subtractor Simulation Analysis

The simulation waveform in Figure . illustrates the behavior of the tb signed adder

subtractor module, which performs signed arithmetic based on a control signal. The
inputs dataa and datab are 16-bit signed values, and the add sub signal determines
whether an addition (add sub = 0) or subtraction (add sub = 1) is performed. The
result output reflects the correct operation for each input pair and control signal
setting.

For example, when dataa = 62756, datab = 40577, and add sub = 1, the module cor-
rectly computes the result 22179 (dataa - datab). The internal DUT signals (dut/dataa,
dut/datab, and dut/result) match the top-level signals, verifying proper signal propa-
gation. Additionally, the expected output matches result across all cycles, confirming
functional correctness.

All signal transitions are aligned with the rising clock edge, demonstrating proper syn-
chronous design behavior. The pipeline exhibits no glitches or misalignments, validating
the timing integrity of the module. This confirms that the signed adder/subtractor op-
erates reliably under pipelined conditions with accurate arithmetic and control logic.

Figure 18: Fitter Analysis
figure 19: Fmax Analysis

Figure 20: Timing Diagram

Single-Port RAM Timing Analysis

The timing diagram in Fig. shows the behavior of the tb single port ram module
during sequential read operations. The address line increments with each rising clock

20

edge, and the corresponding data appears at the output q after a one-cycle delay, con-
firming typical synchronous single-port RAM behavior. The output values align with
the initialized memory contents, validating functional correctness.

– 1-cycle latency: Output data appears exactly one clock after the address input.

– Synchronous operation: All transitions are clock-aligned.

– Full address sweep: Addresses range from 0 to 511, covering the entire memory
space.

– Correct outputs: Data values match memory initialization, proving proper read
access.

– Clean waveform: No glitches or misaligned transitions are observed.

Figure 21: Fitter Analysis
Figure 22: Fmax Analysis

Figure 23: Timing Diagram of Sequential Read Access

Unsigned Adder Timing Analysis

The waveform in Fig. validates the behavior of the tb unsigned adder module under
continuous stimulus. The input operands dataa and datab increment on each rising

21

clock edge, and the output result reflects their unsigned sum. The output is synchro-
nized to the clock and verified against expected values, ensuring correctness. With the
carry-in cin signal held at zero throughout, this test validates simple unsigned addition.

– Operand Sweep: Inputs range from 0–155, covering a wide span of test cases.

– Correct Output: result matches the expected sum at every clock cycle.

– Clock Sync: All transitions are aligned with rising edges of clk.

– No Carry-In Effect: With cin = 0, the test checks pure two-input addition.

– DUT Integrity: dut/result and top-level result signals match exactly.

Figure 24: Fitter Analysis
Figure 25: Fmax Analysis

Figure 26: Waveform of unsigned adder showing sum result and DUT
agreement

22

18-bit Combinational Adder Timing Analysis

The comb adder 18b module implements a fully combinational 18-bit adder tree,
accepting sixteen unsigned operands (op0 to opF) as inputs. These are grouped
pairwise and summed hierarchically in multiple levels—first forming intermediate sums
such as op01, op23, and so on—until a total result is produced. The final output signal
matches both expected sum and captured result, confirming functional correctness.

Since the output is computed within the same cycle as the adder start signal, the
design demonstrates true combinational behavior with zero latency. This structure is
particularly beneficial in datapaths where low-latency parallel accumulation is
required.

Since the output is computed within the same cycle as the adder start signal, the
design demonstrates true combinational behavior with zero latency. This structure is
particularly beneficial in datapaths where low-latency parallel accumulation is
required.

– Zero-Latency Result: Output is computed in the same cycle as the start signal.

– Adder Tree Hierarchy: Pairwise additions build intermediate results up to a
240-sum.

– Waveform Matching: All output signals match expected and captured values.

– Synthesis Success: Design meets timing and resource constraints based on fitter
and Fmax analysis.

Figure 27: Fitter Analysis

Figure 28: Fmax Analysis

23

Figure 29: Timing diagram of 18-bit combinational adder tree
showing intermediate and final sums

24

Verilog Code

comb adder 18b.sv

`include "lr_acc.svh"

module comb_adder_18b (

//Port Structure

input clk,

input reset,

input logic adder_start,

input logic [`ADDER_IN_SIZE_18b-1:0] op0,

input logic [`ADDER_IN_SIZE_18b-1:0] op1,

input logic [`ADDER_IN_SIZE_18b-1:0] op2,

input logic [`ADDER_IN_SIZE_18b-1:0] op3,

input logic [`ADDER_IN_SIZE_18b-1:0] op4,

input logic [`ADDER_IN_SIZE_18b-1:0] op5,

input logic [`ADDER_IN_SIZE_18b-1:0] op6,

input logic [`ADDER_IN_SIZE_18b-1:0] op7,

input logic [`ADDER_IN_SIZE_18b-1:0] op8,

input logic [`ADDER_IN_SIZE_18b-1:0] op9,

input logic [`ADDER_IN_SIZE_18b-1:0] opA,

input logic [`ADDER_IN_SIZE_18b-1:0] opB,

input logic [`ADDER_IN_SIZE_18b-1:0] opC,

input logic [`ADDER_IN_SIZE_18b-1:0] opD,

input logic [`ADDER_IN_SIZE_18b-1:0] opE,

input logic [`ADDER_IN_SIZE_18b-1:0] opF,

output logic [`ADDER_OUT_SIZE_18b-1:0] result

);

logic [`ADDER_IN_SIZE_18b-1:0] op01;

logic [`ADDER_IN_SIZE_18b-1:0] op23;

logic [`ADDER_IN_SIZE_18b-1:0] op45;

logic [`ADDER_IN_SIZE_18b-1:0] op67;

logic [`ADDER_IN_SIZE_18b-1:0] op89;

logic [`ADDER_IN_SIZE_18b-1:0] opAB;

logic [`ADDER_IN_SIZE_18b-1:0] opCD;

logic [`ADDER_IN_SIZE_18b-1:0] opEF;

unsigned_adder #(.WIDTH(18)) adder_inst0 (

.dataa(op0),

.datab(op1),

.cin('0),

.result(op01)

);

unsigned_adder #(.WIDTH(18)) adder_inst1 (

.dataa(op2),

25

.datab(op3),

.cin('0),

.result(op23)

);

unsigned_adder #(.WIDTH(18)) adder_inst2 (

.dataa(op4),

.datab(op5),

.cin('0),

.result(op45)

);

unsigned_adder #(.WIDTH(18)) adder_inst3 (

.dataa(op6),

.datab(op7),

.cin('0),

.result(op67)

);

unsigned_adder #(.WIDTH(18)) adder_inst4 (

.dataa(op8),

.datab(op9),

.cin('0),

.result(op89)

);

unsigned_adder #(.WIDTH(18)) adder_inst5 (

.dataa(opA),

.datab(opB),

.cin('0),

.result(opAB)

);

unsigned_adder #(.WIDTH(18)) adder_inst6 (

.dataa(opC),

.datab(opD),

.cin('0),

.result(opCD)

);

unsigned_adder #(.WIDTH(18)) adder_inst7 (

.dataa(opE),

.datab(opF),

.cin('0),

.result(opEF)

);

logic [`ADDER_IN_SIZE_18b:0] local_op01;

logic [`ADDER_IN_SIZE_18b-1:0] local_op23;

logic [`ADDER_IN_SIZE_18b-1:0] local_op45;

logic [`ADDER_IN_SIZE_18b-1:0] local_op67;

26

logic [`ADDER_IN_SIZE_18b-1:0] local_op89;

logic [`ADDER_IN_SIZE_18b-1:0] local_opAB;

logic [`ADDER_IN_SIZE_18b-1:0] local_opCD;

logic [`ADDER_IN_SIZE_18b-1:0] local_opEF;

always_ff @(posedge clk or posedge reset) begin

if (reset) begin

local_op01 <= '0;

local_op23 <= '0;

local_op45 <= '0;

local_op67 <= '0;

local_op89 <= '0;

local_opAB <= '0;

local_opCD <= '0;

local_opEF <= '0;

end else begin

local_op01 <= op01;

local_op23 <= op23;

local_op45 <= op45;

local_op67 <= op67;

local_op89 <= op89;

local_opAB <= opAB;

local_opCD <= opCD;

local_opEF <= opEF;

end

end

logic [`ADDER_IN_SIZE_18b-1:0] op0123;

logic [`ADDER_IN_SIZE_18b-1:0] op4567;

logic [`ADDER_IN_SIZE_18b-1:0] op89AB;

logic [`ADDER_IN_SIZE_18b-1:0] opCDEF;

unsigned_adder #(.WIDTH(18)) adder_inst00 (

.dataa(local_op01),

.datab(local_op23),

.cin('0),

.result(op0123)

);

unsigned_adder #(.WIDTH(18)) adder_inst01 (

.dataa(local_op45),

.datab(local_op67),

.cin('0),

.result(op4567)

);

unsigned_adder #(.WIDTH(18)) adder_inst02 (

.dataa(local_op89),

.datab(local_opAB),

.cin('0),

.result(op89AB)

27

);

unsigned_adder #(.WIDTH(18)) adder_inst03 (

.dataa(local_opCD),

.datab(local_opEF),

.cin('0),

.result(opCDEF)

);

logic [`ADDER_IN_SIZE_18b-1:0] local_op0123;

logic [`ADDER_IN_SIZE_18b-1:0] local_op4567;

logic [`ADDER_IN_SIZE_18b-1:0] local_op89AB;

logic [`ADDER_IN_SIZE_18b-1:0] local_opCDEF;

always_ff @(posedge clk or posedge reset) begin

if (reset) begin

local_op0123 <= '0;

local_op4567 <= '0;

local_op89AB <= '0;

local_opCDEF <= '0;

end else begin

local_op0123 <= op0123;

local_op4567 <= op4567;

local_op89AB <= op89AB;

local_opCDEF <= opCDEF;

end

end

logic [`ADDER_IN_SIZE_18b-1:0] op01234567;

logic [`ADDER_IN_SIZE_18b-1:0] op89ABCDEF;

unsigned_adder #(.WIDTH(18)) adder_inst000 (

.dataa(local_op0123),

.datab(local_op4567),

.cin('0),

.result(op01234567)

);

unsigned_adder #(.WIDTH(18)) adder_inst001 (

.dataa(local_op89AB),

.datab(local_opCDEF),

.cin('0),

.result(op89ABCDEF)

);

logic [`ADDER_IN_SIZE_18b-1:0] local_op01234567;

logic [`ADDER_IN_SIZE_18b-1:0] local_op89ABCDEF;

always_ff @(posedge clk or posedge reset) begin

if (reset) begin

local_op01234567 <= '0;

28

local_op89ABCDEF <= '0;

end else begin

local_op01234567 <= op01234567;

local_op89ABCDEF <= op89ABCDEF;

end

end

logic [`ADDER_IN_SIZE_18b-1:0] final_sum;

// Final addition

unsigned_adder #(.WIDTH(18)) adder_final0000 (

.dataa(local_op01234567),

.datab(local_op89ABCDEF),

.cin('0),

.result(final_sum)

);

// Registered final result

logic [`ADDER_IN_SIZE_18b-1:0] final_sum_reg;

always_ff @(posedge clk or posedge reset) begin

if (reset)

final_sum_reg <= '0;

else

final_sum_reg <= final_sum;

end

assign result = final_sum_reg;

endmodule

comb mult 4b.sv

`include "lr_acc.svh"

module comb_mult_4b (

input [`MULT_INPUT_SIZE_4b-1:0] opa,

input [`MULT_INPUT_SIZE_4b-1:0] opb,

output [`MULT_OUTPUT_SIZE_8b-1:0] result

);

wire [`MULT_OUTPUT_SIZE_8b-1:0] p0 = opb[0] ? {4'b0, opa } : 8'b0;

wire [`MULT_OUTPUT_SIZE_8b-1:0] p1 = opb[1] ? {3'b0, opa, 1'b0} : 8'b0;

wire [`MULT_OUTPUT_SIZE_8b-1:0] p2 = opb[2] ? {2'b0, opa, 2'b0} : 8'b0;

wire [`MULT_OUTPUT_SIZE_8b-1:0] p3 = opb[3] ? {1'b0, opa, 3'b0} : 8'b0;

assign result = p0 + p1 + p2 + p3;

endmodule

29

lr acc 8b.sv

`include "lr_acc.svh"

module lr_acc_8b (

input logic clk,

input logic reset,

input logic start,

input logic [`SPLIT_DATA_LEN-1:0] x,

input logic [`SPLIT_DATA_LEN-1:0] y,

output logic [`MULT_DATA_IN_LEN-1:0] sum_x,

output logic [`MULT_DATA_IN_LEN-1:0] sum_y,

output logic [`MULT_DATA_IN_LEN-1:0] sum_x_squared,

output logic [`MULT_DATA_IN_LEN-1:0] sum_xy,

output logic done

);

// ----------- Pipeline Stage 1: Register Inputs -------------

logic [`SPLIT_DATA_LEN-1:0] local_x, local_y;

logic local_start;

always_ff @(posedge clk or posedge reset) begin

if (reset) begin

local_x <= '0;

local_y <= '0;

local_start <= 0;

end else if (start) begin

local_x <= x;

local_y <= y;

local_start <= 1;

end else begin

local_start <= 0;

end

end

// ---------- Pipeline Stage 2: Multiplier -------------------

logic [`MULT_OUTPUT_SIZE_8b-1:0] local_x_squared, local_x_times_y;

logic [`SPLIT_DATA_LEN-1:0] inp1, inp2;

multiplier #(.WIDTH(4)) mult_x_x (

.clk(clk),

.X(local_x),

.Y(local_x),

.I1(),

.I2(),

.P(local_x_squared)

);

30

multiplier #(.WIDTH(4)) mult_x_y (

.clk(clk),

.X(local_x),

.Y(local_y),

.I1(inp1),

.I2(inp2),

.P(local_x_times_y)

);

// ---------- Delay Stage to Capture Multiplier Outputs ------

logic delay_reg;

logic local_local_start;

always_ff @(posedge clk or posedge reset) begin

if (reset) begin

delay_reg <= 0;

local_local_start <= 0;

end else begin

delay_reg <= local_start;

local_local_start <= delay_reg;

end

end

// --------- Pipeline Register After Multipliers ------------

logic [`MULT_OUTPUT_SIZE_8b-1:0] x_squared, x_times_y;

logic [`SPLIT_DATA_LEN-1:0] inp_x, inp_y;

logic start_next_stage;

logic [`SPLIT_DATA_LEN-1:0] x_pipe, y_pipe;

always_ff @(posedge clk or posedge reset) begin

if (reset) begin

inp_x <= '0;

inp_y <= '0;

x_squared <= '0;

x_times_y <= '0;

x_pipe <= '0;

y_pipe <= '0;

start_next_stage <= 0;

end else if (local_local_start) begin

x_pipe <= local_x;

y_pipe <= local_y;

x_squared <= local_x_squared;

x_times_y <= local_x_times_y;

inp_x <= inp1; // corrected: use proper pipelined x

inp_y <= inp2; // corrected: use proper pipelined y

start_next_stage <= 1;

end else begin

start_next_stage <= 0;

end

end

31

// ---------- Pipeline Stage 3: Accumulator ------------------

logic [`MULT_DATA_IN_LEN-1:0] local_sum_x, local_sum_y;

logic [`MULT_DATA_IN_LEN-1:0] local_sum_xx, local_sum_xy;

logic sum_done;

always_ff @(posedge clk or posedge reset) begin

if (reset) begin

local_sum_x <= '0;

local_sum_y <= '0;

local_sum_xx <= '0;

local_sum_xy <= '0;

sum_done <= 0;

end else if (start_next_stage) begin

local_sum_x <= local_sum_x + inp_x;

local_sum_y <= local_sum_y + inp_y;

local_sum_xx <= local_sum_xx + x_squared;

local_sum_xy <= local_sum_xy + x_times_y;

sum_done <= 1;

end else begin

sum_done <= 0;

end

end

// ------------------- Output Assignment ---------------------

assign sum_x = local_sum_x;

assign sum_y = local_sum_y;

assign sum_x_squared = local_sum_xx;

assign sum_xy = local_sum_xy;

assign done = sum_done;

endmodule

lr acc 512 8b.sv

`include "lr_acc.svh"

module lr_acc_512_8b (

//Port Structure

input logic clk,

input logic reset,

input logic [31:0] writedata,

input logic write,

input logic read,

input chipselect,

input logic [9:0] address,

output logic [31:0] readdata

32

);

logic master_done;

memory [`DATA_SET_SIZE-1:0] mem_bank;

pc_tracker [`PIPELINE_SETS-1:0] pc_status_bank;

logic go;

logic [`ADDRESS_BITS_SIZE-1:0] pc;

logic done;

logic done_trigger;

logic [`MULT_DATA_IN_LEN-1:0] local_s_1;

logic [`MULT_DATA_IN_LEN-1:0] global_s_1, global_s_2, global_s_3, global_s_4,

global_s_5;↪→

logic [`OUTPUT_DATA_LEN-1:0] s1s4_minus_s2s2;

logic [`OUTPUT_DATA_LEN-1:0] s3s4_minus_s2s5;

logic [`OUTPUT_DATA_LEN-1:0] s1s5_minus_s2s3;

always_ff @(posedge clk)

begin //Get data from SW

if (reset)

begin

go <= 1'b0;

master_done <= '0;

done <= '0;

done_trigger <= '0;

local_s_1 <= '0;

// global_s_1 <= '0;

// global_s_2 <= '0;

// global_s_3 <= '0;

// global_s_4 <= '0;

// global_s_5 <= '0;

// s1s4_minus_s2s2 <= '0;

// s3s4_minus_s2s5 <= '0;

// s1s5_minus_s2s3 <= '0;

for (int i = 0; i < `DATA_SET_SIZE; i++)

begin

mem_bank[i].x <= '0;

mem_bank[i].y <= '0;

end

end

else if (chipselect && write)

begin //Read data only when past operation is complete

case (address[`ADDRESS_BITS_SIZE])

1'h0:

begin

if (!go)

begin

mem_bank[address[8:0]].x <= writedata[3:0];

mem_bank[address[8:0]].y <= writedata[7:4];

33

end

end

1'h1:

begin

if (address[8:0] == 0)

begin

go <= 1'b0;

master_done <= '0;

done <= '0;

done_trigger <= '0;

local_s_1 <= '0;

// global_s_1 <= '0;

// global_s_2 <= '0;

// global_s_3 <= '0;

// global_s_4 <= '0;

// global_s_5 <= '0;

// s1s4_minus_s2s2 <= '0;

// s3s4_minus_s2s5 <= '0;

// s1s5_minus_s2s3 <= '0;

for (int i = 0; i < `DATA_SET_SIZE; i++)

begin

mem_bank[i].x <= '0;

mem_bank[i].y <= '0;

end

end

else

begin

go <= 1'b1;

local_s_1 <= address[8:0];

end

end

endcase

end

else if (chipselect && read)

begin //Read data only when past operation is complete

case (address)

10'h0:

begin

readdata <= master_done;

end

10'h1:

begin

readdata <= s1s4_minus_s2s2;

end

10'h2:

begin

readdata <= s3s4_minus_s2s5;

end

10'h3:

begin

readdata <= s1s5_minus_s2s3;

34

end

10'h4:

begin

readdata <= global_s_1;

end

10'h5:

begin

readdata <= global_s_2;

end

10'h6:

begin

readdata <= global_s_3;

end

10'h7:

begin

readdata <= global_s_4;

end

10'h8:

begin

readdata <= global_s_5;

end

endcase

end

if (done)

begin

done_trigger <= '1;

done <= '0;

end

else if (done_trigger)

begin

master_done <= '1;

done_trigger <= '0;

end

else if (pc == 496)

begin

go <= '0;

done <= '1;

end

end

logic [`PIPELINE_SETS-1:0] start ;

logic [`SPLIT_DATA_LEN-1:0] x [`PIPELINE_SETS-1:0];

logic [`SPLIT_DATA_LEN-1:0] y [`PIPELINE_SETS-1:0];

logic [`MULT_DATA_IN_LEN-1:0] sum_x [`PIPELINE_SETS-1:0];

logic [`MULT_DATA_IN_LEN-1:0] sum_y [`PIPELINE_SETS-1:0];

logic [`MULT_DATA_IN_LEN-1:0] sum_x_squared [`PIPELINE_SETS-1:0];

logic [`MULT_DATA_IN_LEN-1:0] sum_xy [`PIPELINE_SETS-1:0];

logic [`PIPELINE_SETS-1:0] local_done ;

35

logic [`PC_BITS_SIZE-1:0] local_pc [`PIPELINE_SETS-1:0];

logic [`PC_BITS_SIZE-1:0] dut_num;

logic master_start;

logic [`ADDRESS_BITS_SIZE-1:0] addr;

genvar i;

generate

for (i = 0; i < `PIPELINE_SETS; i = i + 1)

begin : lr_acc_gen

lr_acc_8b lr_acc_8b_0 (

.clk(clk),

.reset(reset),

.start(start[i]),

.x(x[i]),

.y(y[i]),

.sum_x(sum_x[i]),

.sum_y(sum_y[i]),

.sum_x_squared(sum_x_squared[i]),

.sum_xy(sum_xy[i]),

.done(local_done[i])

);

end

endgenerate

always_ff @(posedge clk)

begin

if (reset)

begin

pc <= '0;

master_start <= '0;

for (int i = 0; i < `PIPELINE_SETS; i++)

begin

start[i] <= '0;

x[i] <= '0;

y[i] <= '0;

end

addr <= '0;

// master_done <= '0;

// end

// else if (!master_start && go)

// begin

// for (int i = 0; i < `PIPELINE_SETS; i++)

// begin

// start[i] <= '0;

// end

// master_start <= '1;

// end

end else if (go)

begin

for (int i = 0; i < `PIPELINE_SETS; i++)

36

begin

addr <= pc + i;

x[i] <= mem_bank[pc + i].x;

y[i] <= mem_bank[pc + i].y;

start[i] <= '1;

pc_status_bank[i].pc <= pc + i;

pc_status_bank[i].dut_num <= pc + i;

pc_status_bank[i].done <= '0;

end

if(pc < 512)

begin

pc <= pc + 16;

end

else

begin

pc <= '0;

end

master_start <= '0;

end

else if (!go)

begin

for (int i = 0; i < `PIPELINE_SETS; i++)

begin

start[i] <= '0;

end

end

end

logic global_start_adders;

always_ff @(posedge clk)

begin

if(reset)

begin

for (int i = 0; i < `PIPELINE_SETS; i++)

begin

pc_status_bank[i].pc <= '0;

pc_status_bank[i].dut_num <= '0;

pc_status_bank[i].done <= '0;

pc_status_bank[i].local_s_2 <= '0;

pc_status_bank[i].local_s_3 <= '0;

pc_status_bank[i].local_s_4 <= '0;

pc_status_bank[i].local_s_5 <= '0;

end

global_start_adders <= '0;

end

else if (master_done)

begin

for (int i = 0; i < `PIPELINE_SETS; i++)

begin

37

pc_status_bank[i].done <= '1;

pc_status_bank[i].local_s_2 <= sum_x[i];

pc_status_bank[i].local_s_3 <= sum_y[i];

pc_status_bank[i].local_s_4 <= sum_x_squared[i];

pc_status_bank[i].local_s_5 <= sum_xy[i];

end

global_s_1 <= local_s_1;

global_start_adders <= '1;

end

end

comb_adder_18b sum_s2_calc (

.clk(clk),

.reset(reset),

.adder_start(global_start_adders),

.op0 (pc_status_bank[0].local_s_2),

.op1 (pc_status_bank[1].local_s_2),

.op2 (pc_status_bank[2].local_s_2),

.op3 (pc_status_bank[3].local_s_2),

.op4 (pc_status_bank[4].local_s_2),

.op5 (pc_status_bank[5].local_s_2),

.op6 (pc_status_bank[6].local_s_2),

.op7 (pc_status_bank[7].local_s_2),

.op8 (pc_status_bank[8].local_s_2),

.op9 (pc_status_bank[9].local_s_2),

.opA (pc_status_bank[10].local_s_2),

.opB (pc_status_bank[11].local_s_2),

.opC (pc_status_bank[12].local_s_2),

.opD (pc_status_bank[13].local_s_2),

.opE (pc_status_bank[14].local_s_2),

.opF (pc_status_bank[15].local_s_2),

.result(global_s_2)

);

comb_adder_18b sum_s3_calc (

.clk(clk),

.reset(reset),

.adder_start(global_start_adders),

.op0 (pc_status_bank[0].local_s_3),

.op1 (pc_status_bank[1].local_s_3),

.op2 (pc_status_bank[2].local_s_3),

.op3 (pc_status_bank[3].local_s_3),

.op4 (pc_status_bank[4].local_s_3),

.op5 (pc_status_bank[5].local_s_3),

.op6 (pc_status_bank[6].local_s_3),

.op7 (pc_status_bank[7].local_s_3),

38

.op8 (pc_status_bank[8].local_s_3),

.op9 (pc_status_bank[9].local_s_3),

.opA (pc_status_bank[10].local_s_3),

.opB (pc_status_bank[11].local_s_3),

.opC (pc_status_bank[12].local_s_3),

.opD (pc_status_bank[13].local_s_3),

.opE (pc_status_bank[14].local_s_3),

.opF (pc_status_bank[15].local_s_3),

.result(global_s_3)

);

comb_adder_18b sum_s4_calc (

.clk(clk),

.reset(reset),

.adder_start(global_start_adders),

.op0 (pc_status_bank[0].local_s_4),

.op1 (pc_status_bank[1].local_s_4),

.op2 (pc_status_bank[2].local_s_4),

.op3 (pc_status_bank[3].local_s_4),

.op4 (pc_status_bank[4].local_s_4),

.op5 (pc_status_bank[5].local_s_4),

.op6 (pc_status_bank[6].local_s_4),

.op7 (pc_status_bank[7].local_s_4),

.op8 (pc_status_bank[8].local_s_4),

.op9 (pc_status_bank[9].local_s_4),

.opA (pc_status_bank[10].local_s_4),

.opB (pc_status_bank[11].local_s_4),

.opC (pc_status_bank[12].local_s_4),

.opD (pc_status_bank[13].local_s_4),

.opE (pc_status_bank[14].local_s_4),

.opF (pc_status_bank[15].local_s_4),

.result(global_s_4)

);

comb_adder_18b sum_s5_calc (

.clk(clk),

.reset(reset),

.adder_start(global_start_adders),

.op0 (pc_status_bank[0].local_s_5),

.op1 (pc_status_bank[1].local_s_5),

.op2 (pc_status_bank[2].local_s_5),

.op3 (pc_status_bank[3].local_s_5),

.op4 (pc_status_bank[4].local_s_5),

.op5 (pc_status_bank[5].local_s_5),

.op6 (pc_status_bank[6].local_s_5),

.op7 (pc_status_bank[7].local_s_5),

39

.op8 (pc_status_bank[8].local_s_5),

.op9 (pc_status_bank[9].local_s_5),

.opA (pc_status_bank[10].local_s_5),

.opB (pc_status_bank[11].local_s_5),

.opC (pc_status_bank[12].local_s_5),

.opD (pc_status_bank[13].local_s_5),

.opE (pc_status_bank[14].local_s_5),

.opF (pc_status_bank[15].local_s_5),

.result(global_s_5)

);

logic [`MULT_DATA_IN_LEN-1:0] local_global_s_1, local_global_s_2,

local_global_s_3, local_global_s_4, local_global_s_5;↪→

always_ff @(posedge clk)

begin

if(reset)

begin

local_global_s_1 <= '0;

local_global_s_2 <= '0;

local_global_s_3 <= '0;

local_global_s_4 <= '0;

local_global_s_5 <= '0;

end

else

begin

local_global_s_1 <= global_s_1;

local_global_s_2 <= global_s_2;

local_global_s_3 <= global_s_3;

local_global_s_4 <= global_s_4;

local_global_s_5 <= global_s_5;

end

end

//assign s1_times_s4 = global_s_1 * global_s_4;

//assign s2_squared = global_s_2 * global_s_2;

//assign s3_times_s4 = global_s_3 * global_s_4;

//assign s2_times_s5 = global_s_2 * global_s_5;

//assign s1_times_s5 = global_s_1 * global_s_5;

//assign s2_times_s3 = global_s_2 * global_s_3;

logic [`DSP_MULT_OUT_SIZE-1:0] local_s1_times_s4;

logic [`DSP_MULT_OUT_SIZE-1:0] local_s2_squared;

logic [`DSP_MULT_OUT_SIZE-1:0] local_s3_times_s4;

logic [`DSP_MULT_OUT_SIZE-1:0] local_s2_times_s5;

logic [`DSP_MULT_OUT_SIZE-1:0] local_s1_times_s5;

logic [`DSP_MULT_OUT_SIZE-1:0] local_s2_times_s3;

40

multiplier m1 (

.clk(clk),

.X (local_global_s_1),

.Y (local_global_s_4),

.I1(),

.I2(),

.P (local_s1_times_s4)

);

multiplier m2 (

.clk(clk),

.X (local_global_s_2),

.Y (local_global_s_2),

.I1(),

.I2(),

.P (local_s2_squared)

);

multiplier m3 (

.clk(clk),

.X (local_global_s_3),

.Y (local_global_s_4),

.I1(),

.I2(),

.P (local_s3_times_s4)

);

multiplier m4 (

.clk(clk),

.X (local_global_s_2),

.Y (local_global_s_5),

.I1(),

.I2(),

.P (local_s2_times_s5)

);

multiplier m5 (

.clk(clk),

.X (local_global_s_1),

.Y (local_global_s_5),

.I1(),

.I2(),

.P (local_s1_times_s5)

);

multiplier m6 (

.clk(clk),

.X (local_global_s_2),

.Y (local_global_s_3),

.I1(),

.I2(),

41

.P (local_s2_times_s3)

);

logic [`DSP_MULT_OUT_SIZE-1:0] s1_times_s4;

logic [`DSP_MULT_OUT_SIZE-1:0] s2_squared;

logic [`DSP_MULT_OUT_SIZE-1:0] s3_times_s4;

logic [`DSP_MULT_OUT_SIZE-1:0] s2_times_s5;

logic [`DSP_MULT_OUT_SIZE-1:0] s1_times_s5;

logic [`DSP_MULT_OUT_SIZE-1:0] s2_times_s3;

always_ff @(posedge clk)

begin

if(reset)

begin

s1_times_s4 <= '0;

s2_squared <= '0;

s3_times_s4 <= '0;

s2_times_s5 <= '0;

s1_times_s5 <= '0;

s2_times_s3 <= '0;

end

else

begin

s1_times_s4 <= local_s1_times_s4;

s2_squared <= local_s2_squared;

s3_times_s4 <= local_s3_times_s4;

s2_times_s5 <= local_s2_times_s5;

s1_times_s5 <= local_s1_times_s5;

s2_times_s3 <= local_s2_times_s3;

end

end

assign s1s4_minus_s2s2 = s1_times_s4 - s2_squared;

assign s3s4_minus_s2s5 = s3_times_s4 - s2_times_s5;

assign s1s5_minus_s2s3 = s1_times_s5 - s2_times_s3;

endmodule

multiplier.sv

module multiplier

#(parameter WIDTH=18)

(

input clk,

input [WIDTH-1:0] X,

input [WIDTH-1:0] Y,

output reg [WIDTH-1:0] I1,

output reg [WIDTH-1:0] I2,

output reg [2*WIDTH-1:0] P

42

);

// Declare input and output registers

reg [WIDTH-1:0] dataa_reg;

reg [WIDTH-1:0] datab_reg;

wire [2*WIDTH-1:0] mult_out;

wire [2*WIDTH-1:0] in1;

wire [2*WIDTH-1:0] in2;

// Store the result of the multiply

assign mult_out = dataa_reg * datab_reg;

assign in1 = dataa_reg;

assign in2 = datab_reg;

// Update data

always @ (posedge clk)

begin

dataa_reg <= X;

datab_reg <= Y;

P <= mult_out;

I1 <= in1;

I2 <= in2;

end

endmodule

unsigned adder.sv

// Quartus Prime Verilog Template

// Unsigned Adder

module unsigned_adder

#(parameter WIDTH=16)

(

input [WIDTH-1:0] dataa,

input [WIDTH-1:0] datab,

input cin,

output [WIDTH:0] result

);

assign result = dataa + datab + cin;

endmodule

lr acc.svh

`ifndef __LR_ACC_SVH__

`define __LR_ACC_SVH__

43

`timescale 1ns/100ps

`ifndef CLOCK_PERIOD

`define CLOCK_PERIOD 10

`endif

`define SPLIT_DATA_LEN 4

`define INPUT_DATA_LEN 8

`define MULT_DATA_IN_LEN 18

`define OUTPUT_DATA_LEN 32

`define MEM_DATA_WIDTH 8

`define MEM_ADDR_WIDTH 9

`define MULT_4B_WIDTH 4

`define DATA_SET_SIZE 512

`define ADDRESS_BITS_SIZE £clog2(`DATA_SET_SIZE)

`define PIPELINE_SETS 16

`define PC_BITS_SIZE £clog2(`PIPELINE_SETS)

`define ADDER_IN_SIZE_18b 18

`define ADDER_OUT_SIZE_18b 18

`define ADDER_INPUT_SIZE_4b 4

`define ADDER_OUTPUT_SIZE_5b 5

`define MULT_INPUT_SIZE_4b 4

`define MULT_OUTPUT_SIZE_8b 8

`define DSP_MULT_IN_SIZE 18

`define DSP_MULT_OUT_SIZE 36

typedef struct packed {

logic [`SPLIT_DATA_LEN-1:0] x;

logic [`SPLIT_DATA_LEN-1:0] y;

} memory;

typedef struct packed {

logic [`ADDRESS_BITS_SIZE-1:0] pc;

logic [`PC_BITS_SIZE-1:0] dut_num;

logic done;

logic [`MULT_DATA_IN_LEN-1:0] local_s_2;

logic [`MULT_DATA_IN_LEN-1:0] local_s_3;

logic [`MULT_DATA_IN_LEN-1:0] local_s_4;

44

logic [`MULT_DATA_IN_LEN-1:0] local_s_5;

} pc_tracker;

`endif

Software Code

lr acc.c

#include <linux/module.h>

#include <linux/init.h>

#include <linux/errno.h>

#include <linux/version.h>

#include <linux/kernel.h>

#include <linux/platform_device.h>

#include <linux/miscdevice.h>

#include <linux/slab.h>

#include <linux/io.h>

#include <linux/of.h>

#include <linux/of_address.h>

#include <linux/fs.h>

#include <linux/uaccess.h>

#include "lr_acc.h"

#define DRIVER_NAME "lr_acc"

/* Device registers */

#define BG_RED(x) (x)

#define BG_GREEN(x) ((x) + 1)

#define BG_BLUE(x) ((x) + 2)

#define VGA_BACKGROUND_OFFSET 0

/*

* Information about our device

*/

struct lr_acc_dev

{

struct resource res; /* Resource: our registers */

void __iomem *virtbase; /* Where registers can be accessed in memory */

lr_acc_arg_t data;

lr_acc_read_data_t read_data;

} dev;

/* Write background color */

static void write_data(lr_acc_arg_t *data)

{

if (data->go)

45

{

iowrite32((u32)1, dev.virtbase + 4 * ((1 << 9) + data->address));

}

else

{

iowrite32((u32)data->data.data, dev.virtbase + 4 * data->address);

}

}

static void read_data(lr_acc_read_data_t *data)

{

int a = ioread32(dev.virtbase + 0);

int b = ioread32(dev.virtbase + 4);

int c = ioread32(dev.virtbase + 8);

int d = ioread32(dev.virtbase + 12);

int e = ioread32(dev.virtbase + 16);

int f = ioread32(dev.virtbase + 20);

int g = ioread32(dev.virtbase + 24);

int h = ioread32(dev.virtbase + 28);

int i = ioread32(dev.virtbase + 32);

data->master_done = a;

data->d = b;

data->n0 = c;

data->n1 = d;

data->s1 = e;

data->s2 = f;

data->s3 = g;

data->s4 = h;

data->s5 = i;

}

/*

* Handle ioctl() calls from userspace:

* Read or write the segments on single digits.

* Note extensive error checking of arguments

*/

static long lr_acc_ioctl(struct file *f, unsigned int cmd, unsigned long arg)

{

lr_acc_arg_t vla;

lr_acc_read_data_t obj;

switch (cmd)

{

case LR_ACC_WRITE_DATA:

if (copy_from_user(&vla, (lr_acc_arg_t *)arg,

sizeof(lr_acc_arg_t)))

return -EACCES;

write_data(&vla);

break;

46

case LR_ACC_READ_DATA:

read_data(&obj);

if (copy_to_user((lr_acc_read_data_t *)arg, &obj,

sizeof(lr_acc_read_data_t)))

return -EACCES;

break;

default:

return -EINVAL;

}

return 0;

}

/* The operations our device knows how to do */

static const struct file_operations lr_acc_fops = {

.owner = THIS_MODULE,

.unlocked_ioctl = lr_acc_ioctl,

};

/* Information about our device for the "misc" framework -- like a char dev */

static struct miscdevice lr_acc_misc_device = {

.minor = MISC_DYNAMIC_MINOR,

.name = DRIVER_NAME,

.fops = &lr_acc_fops,

};

/*

* Initialization code: get resources (registers) and display

* a welcome message

*/

static int __init lr_acc_probe(struct platform_device *pdev)

{

// lr_acc_color_t beige = { 0xf9, 0xe4, 0xb7 };

// lr_acc_color_t beige = { 0xff, 0xff, 0xff };

int ret;

/* Register ourselves as a misc device: creates /dev/lr_acc */

ret = misc_register(&lr_acc_misc_device);

/* Get the address of our registers from the device tree */

ret = of_address_to_resource(pdev->dev.of_node, 0, &dev.res);

if (ret)

{

ret = -ENOENT;

goto out_deregister;

}

47

/* Make sure we can use these registers */

if (request_mem_region(dev.res.start, resource_size(&dev.res),

DRIVER_NAME) == NULL)

{

ret = -EBUSY;

goto out_deregister;

}

/* Arrange access to our registers */

dev.virtbase = of_iomap(pdev->dev.of_node, 0);

if (dev.virtbase == NULL)

{

ret = -ENOMEM;

goto out_release_mem_region;

}

/* Set an initial color */

// write_background(&beige);

return 0;

out_release_mem_region:

release_mem_region(dev.res.start, resource_size(&dev.res));

out_deregister:

misc_deregister(&lr_acc_misc_device);

return ret;

}

/* Clean-up code: release resources */

static int lr_acc_remove(struct platform_device *pdev)

{

iounmap(dev.virtbase);

release_mem_region(dev.res.start, resource_size(&dev.res));

misc_deregister(&lr_acc_misc_device);

return 0;

}

/* Which "compatible" string(s) to search for in the Device Tree */

#ifdef CONFIG_OF

static const struct of_device_id lr_acc_of_match[] = {

{.compatible = "csee4840,lr_acc-1.0"},

{},

};

MODULE_DEVICE_TABLE(of, lr_acc_of_match);

#endif

/* Information for registering ourselves as a "platform" driver */

static struct platform_driver lr_acc_driver = {

.driver = {

.name = DRIVER_NAME,

48

.owner = THIS_MODULE,

.of_match_table = of_match_ptr(lr_acc_of_match),

},

.remove = __exit_p(lr_acc_remove),

};

/* Called when the module is loaded: set things up */

static int __init lr_acc_init(void)

{

pr_info(DRIVER_NAME ": init\n");

return platform_driver_probe(&lr_acc_driver, lr_acc_probe);

}

/* Calball when the module is unloaded: release resources */

static void __exit lr_acc_exit(void)

{

platform_driver_unregister(&lr_acc_driver);

pr_info(DRIVER_NAME ": exit\n");

}

module_init(lr_acc_init);

module_exit(lr_acc_exit);

MODULE_LICENSE("GPL");

MODULE_AUTHOR("Venkat Suprabath Bitra, Columbia University");

MODULE_DESCRIPTION("LR Accumulator Driver");

lr acc.h

#ifndef _lr_acc_H

#define _lr_acc_H

#include <linux/ioctl.h>

typedef struct {

char data;

} lr_acc_data_t;

typedef struct {

lr_acc_data_t data;

int address;

char go;

} lr_acc_arg_t;

typedef struct {

int master_done;

int d, n0, n1, s1, s2, s3, s4, s5;

} lr_acc_read_data_t;

49

#define LR_ACC_MAGIC 'q'

/* ioctls and their arguments */

#define LR_ACC_WRITE_DATA _IOW(LR_ACC_MAGIC, 1, lr_acc_arg_t)

#define LR_ACC_READ_DATA _IOR(LR_ACC_MAGIC, 2, lr_acc_read_data_t)

#endif

main.c

#include <stdio.h>

#include <time.h>

#include "lr_acc.h"

#include <sys/ioctl.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <string.h>

#include <unistd.h>

int lr_acc_fd;

static const unsigned int raw_data[][2] = {

{1, 15}, {1, 14}, {1, 15}, {1, 15}, {1, 15}, {1, 14}, {1, 15},

{1, 15}, {1, 14}, {1, 15}, {1, 14}, {1, 15}, {1, 15}, {1, 13},

{1, 15}, {1, 14}, {1, 15}, {1, 15}, {1, 15}, {1, 14}, {1, 14},

{1, 15}, {1, 15}, {1, 15}, {1, 15}, {1, 15}, {1, 14}, {1, 15},

{1, 15}, {1, 15}, {1, 15}, {1, 14}, {1, 15}, {1, 15}, {1, 15},

{1, 14}, {1, 14}, {1, 15}, {1, 14}, {1, 15}, {1, 15}, {1, 15},

{1, 14}, {1, 14}, {1, 14}, {1, 14}, {1, 14}, {1, 14}, {2, 12},

{2, 12}, {2, 12}, {2, 13}, {2, 12}, {2, 12}, {2, 13}, {2, 12},

{2, 12}, {2, 12}, {2, 12}, {2, 12}, {2, 12}, {2, 13}, {2, 12},

{2, 13}, {2, 13}, {2, 13}, {2, 13}, {2, 13}, {2, 13}, {2, 13},

{2, 12}, {2, 12}, {2, 12}, {2, 12}, {2, 12}, {2, 13}, {2, 13},

{2, 12}, {2, 12}, {2, 12}, {2, 12}, {2, 12}, {2, 13}, {2, 12},

{2, 12}, {2, 12}, {2, 12}, {2, 12}, {2, 12}, {2, 12}, {2, 12},

{2, 12}, {2, 12}, {2, 12}, {2, 12}, {2, 12}, {3, 12}, {3, 13},

{3, 13}, {3, 12}, {3, 12}, {3, 12}, {3, 12}, {3, 12}, {3, 12},

{3, 12}, {3, 12}, {3, 12}, {3, 11}, {3, 13}, {3, 12}, {3, 11},

50

{3, 12}, {3, 12}, {3, 12}, {3, 11}, {3, 12}, {3, 12}, {3, 12}, {3, 13}, {3, 12},

{3, 12}, {3, 12}, {3, 13}, {3, 13}, {3, 12}, {3, 12}, {3, 12}, {3, 12}, {3,

12}, {3, 12}, {3, 12}, {3, 12}, {3, 13}, {3, 12}, {3, 12}, {3, 12}, {3, 12},

{3, 12}, {3, 13}, {3, 12}, {3, 12}, {3, 12}, {3, 12}, {4, 10}, {4, 10}, {4,

10}, {4, 10}, {4, 11}, {4, 11}, {4, 10}, {4, 10}, {4, 10}, {4, 10}, {4, 10},

{4, 10}, {4, 10}, {4, 10}, {4, 10}, {4, 11}, {4, 10}, {4, 11}, {4, 11}, {4,

11}, {4, 10}, {4, 11}, {4, 11}, {4, 11}, {4, 11}, {4, 10}, {4, 10}, {4, 11},

{4, 10}, {4, 11}, {4, 11}, {4, 11}, {4, 10}, {4, 10}, {4, 10}, {4, 10}, {4,

10}, {4, 11}, {4, 10}, {4, 11}, {4, 10}, {4, 11}, {4, 11}, {4, 11}, {4, 11},

{4, 11}, {4, 11}, {4, 11}, {5, 7}, {5, 7}, {5, 8}, {5, 9}, {5, 9}, {5, 8},

{5, 9}, {5, 9}, {5, 9}, {5, 9}, {5, 8}, {5, 9}, {5, 8}, {5, 10}, {5, 8}, {5,

10}, {5, 9}, {5, 9}, {5, 10}, {5, 10}, {5, 11}, {5, 10}, {5, 10}, {5, 10},

{5, 10}, {5, 9}, {5, 9}, {5, 9}, {5, 9}, {5, 9}, {5, 10}, {5, 10}, {5, 9},

{5, 9}, {5, 9}, {5, 9}, {5, 9}, {5, 10}, {5, 10}, {5, 9}, {5, 10}, {5, 10},

{5, 9}, {5, 10}, {5, 10}, {5, 9}, {5, 9}, {5, 9}, {6, 6}, {6, 6}, {6, 6}, {6,

7}, {6, 7}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6},

{6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 5}, {6, 5}, {6, 5}, {6,

6}, {6, 5}, {6, 5}, {6, 5}, {6, 5}, {6, 6}, {6, 5}, {6, 5}, {6, 5}, {6, 5},

{6, 5}, {6, 5}, {6, 5}, {6, 6}, {6, 8}, {6, 8}, {6, 8}, {6, 8}, {6, 8}, {6,

8}, {6, 8}, {6, 8}, {6, 8}, {6, 8}, {6, 8}, {6, 8}, {7, 5}, {7, 5}, {7, 5},

{7, 5}, {7, 5}, {7, 5}, {7, 5}, {7, 5}, {7, 5}, {7, 5}, {7, 5}, {7, 5}, {7,

7}, {7, 6}, {7, 6}, {7, 7}, {7, 7}, {7, 6}, {7, 6}, {7, 6}, {7, 7}, {7, 7},

{7, 6}, {7, 6}, {7, 5}, {7, 5}, {7, 5}, {7, 4}, {7, 5}, {7, 5}, {7, 4}, {7,

4}, {7, 5}, {7, 5}, {7, 5}, {7, 5}, {7, 5}, {7, 4}, {7, 5}, {7, 5}, {7, 5},

{7, 5}, {7, 5}, {7, 5}, {7, 5}, {7, 5}, {7, 5}, {7, 5}, {8, 2}, {8, 2}, {8,

1}, {8, 2}, {8, 1}, {8, 1}, {8, 1}, {8, 1}, {8, 1}, {8, 1}, {8, 2}, {8, 1},

{8, 4}, {8, 4}, {8, 2}, {8, 0}, {8, 2}, {8, 2}, {8, 1}, {8, 2}, {8, 2}, {8,

2}, {8, 2}, {8, 1}, {8, 1}, {8, 1}, {8, 1}, {8, 1}, {8, 1}, {8, 2}, {8, 1},

{8, 1}, {8, 1}, {8, 1}, {8, 1}, {8, 1}, {8, 2}, {8, 1}, {8, 1}, {8, 2}, {8,

1}, {8, 1}, {8, 1}, {8, 1}, {8, 1}, {8, 2}, {8, 1}, {8, 1}, {9, 0}, {9, 0},

{9, 0}, {9, 0}, {9, 0}, {9, 0}, {9, 0}, {9, 0}, {9, 0}, {9, 0}, {9, 0}, {9,

0}, {9, 0}, {9, 0}, {9, 0}, {9, 1}, {9, 0}, {9, 0}, {9, 0}, {9, 1}, {9, 0},

{9, 0}, {9, 0}, {9, 0}, {9, 0}, {9, 2}, {9, 0}, {9, 0}, {9, 0}, {9, 0}, {9,

0}, {9, 0}, {9, 0}, {9, 1}, {9, 0}, {9, 0}, {9, 0}, {9, 0}, {9, 0}, {9, 0},

{9, 0}, {9, 0}, {9, 0}, {9, 0}, {9, 0}, {9, 0}, {9, 0}, {9, 0}

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

};

#define NUM_ENTRIES (sizeof(raw_data) / sizeof(raw_data[0]))

int read_data_from_array(char **data) {

*data = (char *)malloc(NUM_ENTRIES * sizeof(char));

if (*data == NULL) {

perror("Error allocating memory");

return -1;

}

for (int i = 0; i < NUM_ENTRIES; i++) {

unsigned int y = raw_data[i][0];

unsigned int x = raw_data[i][1];

(*data)[i] = (y << 4) | x;

}

51

return NUM_ENTRIES;

}

void set_lr_data(const lr_acc_arg_t *d)

{

if (ioctl(lr_acc_fd, LR_ACC_WRITE_DATA, d))

{

fprintf(stderr, "ioctl(LR_ACC_SET_DATA) failed");

return;

}

}

void read_lr_data(lr_acc_read_data_t *d)

{

if (ioctl(lr_acc_fd, LR_ACC_READ_DATA, d))

{

fprintf(stderr, "ioctl(LR_ACC_GET_DATA) failed");

return;

}

}

int main()

{

lr_acc_arg_t vla;

lr_acc_read_data_t obj;

int i;

static const char filename[] = "/dev/lr_acc";

if ((lr_acc_fd = open(filename, O_RDWR)) == -1)

{

fprintf(stderr, "could not open %s\n", filename);

return -1;

}

char *data = NULL;

int n = read_data_from_array(&data);

if (n < 0) {

fprintf(stderr, "Error reading data\n");

return -1;

}

fprintf(stderr, "Read %d data points\n", n);

lr_acc_data_t *d = (lr_acc_data_t *)malloc(sizeof(lr_acc_data_t));

clock_t start, end;

double cpu_time_used;

start = clock();

52

vla.go = 1;

vla.address = 0;

set_lr_data(&vla);

for (int i = 0; i < n; i++) {

d->data = data[i];

vla.data = *d;

vla.address = i;

vla.go = 0;

set_lr_data(&vla);

}

end = clock();

cpu_time_used = ((double)(end - start)) / CLOCKS_PER_SEC;

fprintf(stderr, "Time taken to send data: %f microseconds\n", cpu_time_used *

1e6);↪→

start = clock();

vla.go = 1;

vla.address = n;

set_lr_data(&vla);

while (1)

{

read_lr_data(&obj);

if (obj.master_done == 1)

break;

usleep(1);

}

end = clock();

cpu_time_used = ((double)(end - start)) / CLOCKS_PER_SEC;

fprintf(stderr, "Time taken to process and read data: %f microseconds\n",

cpu_time_used * 1e6);↪→

start = clock();

double w0 = (double)obj.n0 / (double)obj.d;

double w1 = (double)obj.n1 / (double)obj.d;

end = clock();

cpu_time_used = ((double)(end - start)) / CLOCKS_PER_SEC;

53

fprintf(stderr, "Time taken to calculate weights: %f microseconds\n",

cpu_time_used * 1e6);↪→

fprintf(stderr, "Device finished processing\n");

fprintf(stderr, "Results:\n");

fprintf(stderr, "d: %d\n", obj.d);

fprintf(stderr, "n0: %d\n", obj.n0);

fprintf(stderr, "n1: %d\n", obj.n1);

fprintf(stderr, "s1: %d\n", obj.s1);

fprintf(stderr, "s2: %d\n", obj.s2);

fprintf(stderr, "s3: %d\n", obj.s3);

fprintf(stderr, "s4: %d\n", obj.s4);

fprintf(stderr, "s5: %d\n", obj.s5);

fprintf(stderr, "Weights:\n");

fprintf(stderr, "w0: %f\n", w0);

fprintf(stderr, "w1: %f\n", w1);

fprintf(stderr, "Freeing allocated memory\n");

free(data);

free(d);

close(lr_acc_fd);

fprintf(stderr, "Closed the device file\n");

fprintf(stderr, "LR Accumulator Userspace program terminating\n");

return 0;

}

parsing.c

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#define MAX_LINES 100000

int n;

int x_vals[MAX_LINES];

int y_vals[MAX_LINES];

void read_data(const char *filename) {

FILE *fp = fopen(filename, "r");

if (!fp) {

perror("File opening failed");

exit(EXIT_FAILURE);

}

if (fscanf(fp, "%d", &n) != 1) {

fprintf(stderr, "Invalid file format\n");

fclose(fp);

54

exit(EXIT_FAILURE);

}

for (int i = 0; i < n; i++) {

if (fscanf(fp, "%d %d", &y_vals[i], &x_vals[i]) != 2) {

fprintf(stderr, "Invalid data at line %d\n", i + 2);

fclose(fp);

exit(EXIT_FAILURE);

}

}

fclose(fp);

}

void run(double *a, double *b) {

long long s2 = 0, s3 = 0, s4 = 0, s5 = 0;

for (int i = 0; i < n; i++) {

int x = x_vals[i];

int y = y_vals[i];

s2 += x;

s3 += y;

s4 += (long long)x * x;

s5 += (long long)x * y;

}

long long n0 = s4 * s3 - s2 * s5;

long long n1 = s5 * n - s2 * s3;

long long d = n * s4 - s2 * s2;

*a = (double)n0 / d;

*b = (double)n1 / d;

}

int main() {

read_data("preprocessed_data.txt");

double a = 0, b = 0;

clock_t start_clock = clock();

for (int i = 0; i < 1000; i++) {

run(&a, &b);

}

clock_t end_clock = clock();

double cpu_time = (double)(end_clock - start_clock) / CLOCKS_PER_SEC;

double avg_usec = (cpu_time / 1000.0) * 1e6;

55

printf("Elapsed time (CPU): %.6f us per run\n", avg_usec);

// printf("a: %.6f, b: %.6f\n", a, b);

return 0;

}

Fmax Timing Summary

Figure 18: Slow 1100mV 85°C Model Fmax Summary

The table in Figure 18 provides the maximum clock frequencies (Fmax) under the
slow timing corner (1100 mV, 85°C):

– clock 50 1 has a maximum frequency of 163.75 MHz, which is also the
restricted Fmax, indicating no additional constraints or timing bottlenecks were
applied to it.

– The HPS system clock path (long hierarchical name:
soc system:soc system0|...) achieves a significantly higher unrestricted Fmax
of 1184.83 MHz. However, the restricted Fmax is lowered to 717.36 MHz,
suggesting design or interface constraints limit this clock’s usable frequency to
avoid setup timing violations or to match external timing requirements.

These Fmax values help determine the safe and efficient operating frequencies for
different clock domains within the design.

56

