
The Design Document for CSEE 4840 Embedded
System Design

Stephen A. Edwards (se2007)

Spring 2022

Contents
1 Introduction 2

2 System Block Diagram 2

3 Algorithms 8

4 Resource Budgets 11

5 The Hardware/Software Interface 13

1

1 Introduction
The design document should clearly illustrate what it is you plan to build and how
you plan to build it. It should capture all the high-level decisions, e.g., what should be
in hardware, what should be in software, what hardware modules you will develop,
how every piece of your system will communicate with other pieces, and how many
resources your design will consume.

Think of your system as an algorithm that will be run on some mix of hardware
and software. Describe both the algorithm and the hardware/software structures that
will execute it.

Your system will consist of multiple pieces that communicate. Spend an equal
amount of time describing the pieces and describing the communication among them.

2 System Block Diagram
Include a block diagram of your project that shows both hardware and software com-
ponents. Make this reasonably detailed and contain, say, about ten blocks. Every
project will include a DE1-SoC with software and hardware, but what software com-
ponents will you have and how will they communicate? Similarly, what hardware
components will you have and how will they communicate?

Block diagrams consist of functional blocks and communication pathways be-
tween them. Describe what each block does and the communication protocol used
along each pathway.

2

Figure 1: Block diagram of 2019’s BrickBreaker (Chen, Xu, Wu, and Shi). This should
have included more detail about how the video system actually worked; they didn’t
really use the vga_ball from Lab 3. There should have been more detail to the game
logic.

3

Figure 2: Block diagram from 2016’s Chip8 (Kling, Oliver, Taylor, and Watkins). They
should have included more detail about each block and connection, e.g., the width of
the connection to memory, how the keyboard communicated with Linux, and the size
of the framebu�er.

4

8/17/2019 GA Z77MX D3H Rev.1.0 Schematic

http://slidepdf.com/reader/full/ga-z77mx-d3h-rev10-schematic 3/34

 5

5

4

4

3

3

2

2

1

1

D D

C C

B B

A A

BLOCK DIAGRAM

 AZALIA BUS

PCH (Z77)

COMA

I/O PORTS :

SATAIII*2,SATAII*4

CHANNEL B

DMI

SATA III / II

LPC BUS

CHANNEL A

SPI BUS

LPC I/O ITE8728

INTEL LGA1155

 VRD12

KB/PS2

DUAL BIOS

FRONT PANEL /CPU FAN

 VIA VT2021

DDRIII DIMM X 2

DDRIII DIMM X 2

FDI

PCI EXPRESS X4
PCIE-4 gen2

PCI EXPRESS X16

PCIE-1 gen2

RGB, DVI, HDMI
Display

DDRIII BUS

PCI EXPRESS X1

PCI EXPRESS X8

Switch

 AR8151/8161 1Gb LAN
PCIE-1 gen2

USB 2.0

USB2.0 PORTS X14

USB3.0 PORTS X4
USB 3.0

SURR BACK

FRONT AUDIO

LINE_IN CD_IN

 AUDIO PORTS :

SURR

MIC

CEN/LFE

LIN_ OUT

GA-Z77MX-D3H 1.0

BLOCK DIAGRAM

Gigabyte Technology

C

3 34Tuesday, January 31, 2012

Title

Size Document Number Rev

Date: Sheet of

Figure 3: Block diagram for a commercial motherboard (Gigabyte GA-Z77MX-D3H).
This could have included more details about the width of the various busses. Since
this is largely a hardware design, it does not describe any software.

5

Figure 4: Block diagram of a system employing the TMS9918A Video Display Pro-
cessor (commercial, from TI). This is actually illustrating numerous possible systems
as they don’t intend for all four video outputs to be present simultaneously. Notice
also the deliberate di�erence in detail between user-supplied components such as the
CPU and the prescribed components such as the TMS9918A.

6

Figure 5: Block diagram of the TMS9918A Video Display Processor Chip (commercial,
from TI). This is far too detailed and its structure appears to be intended to �ll the
page rather than trying to convey the relationship among the blocks. The important
components are the various counters and registers in the lower left and the color
priority multiplexer they feed into, but the many seemingly unrelated registers on
the top half are distracting.

7

3 Algorithms
Describe the algorithms your project will implement, for both hardware and software.
For example, a game project using a tile-and-sprite graphics generator should describe
the game logic (e.g., rules for how the player and enemies move), the algorithm used
to generate the graphics (e.g., a dual-ported memory array that holds the sprite de-
scriptor table that the sprite controller consults at the beginning of each line to draw
each active sprite in a dual line bu�er), algorithms for generating sounds (e.g., a col-
lection of four square-wave oscillators whose amplitude and period is under software
control).

For hardware accelerator projects, this section is especially important. You need to
know your algorithm thoroughly before you attempt to implement it in hardware. The
best approach is to �rst write a protoype of your algorithm in your favorite language.
C is well-suited to this because things that are complicated in C (such as memory
management) is also di�cult in hardware.

8

3.1 Arbitrage Identification
Triangular arbitrage opportunities arise when a cycle is determined such that the edge weights satisfy the following
expression:

w1 * w2 * w3 * … * wn > 1

However, cycles that adhere to the above requirement are particulary difficult to find in graphs. Instead we must
transform the edge weights of the graph so that standard graph algorithms can be used. First we take the logarithm of
both sides, such that:

log(w1) + log(w2) + log(w3) + … + log(wn) > 0

If instead we take the negative log, this results in a sign flip:

log(w1) + log(w2) + log(w3) + … + log(wn) < 0

Thus, if we look for negative weight cycles using the logarithm of the edge weights, we will find cycles that satisfy the
requirements outlined above. Luckily, the Bellman-Ford algorithm is a standard graph algorithm that can be used to
easily detect negative weight cycles in O(VE) time.

3.2 Bellman-Ford Algorithm

Algorithm 3.1: Standard Bellman-Ford

Let G(V, E) be a graph with vertices, V, and edges, E.
Let w(x) denote the weight of vertex x.
Let w(i, j) denote the weight of the edge from source vertex i to destination vertex j.
Let p(j) denote the predecessor of vertex j.

for each vertex x in V do
 if x is source then
 w(x) = 0
 else
 w(x) = INFINITY
 p(x) = NULL
 end if
end for

for i = 1 to v - 1 do
 for each edge(i, j) in E do
 if w(i) + w(i, j) < w(j) then //Relaxation
 w(j) = w(i) + w(i, j)
 p(j) = i
 end if
 end for
end for

for each edge(i, j) in E do
 if w(j) > w(i) + w(i, j) then
 //Found Negative-Weight Cycle
 end if
end for

The Bellman-Ford algorthm is a standard graph algorithm that seeks to solve the single-source shortest path problem.
Mainly this problem describes the situation in which a source node is selected and the shortest paths to every other
node in the graph need to be determined. In unit graphs, breath first search may be used, but in graphs that have non-
unit edge weights the Bellman-Ford algorthm must be used.

Briefly, in the Bellman-Ford algorithm "each vertex maintains the weight of the shortest path from the source vertex to
itself and the vertex which precedes it in the shortest path. In each iteration, all edges are relaxed [w(i) + w(i, j) < w(j)]
and the weight of each vertex is updated if necessary. After the ith iteration, the algorithm finds all shorest paths
consisting of at most i edges." After all shortest paths have been identified, the algorithm loops through all of the
edges and looks for edges that can further decrease the value of the shortest path. If this case then a negative weight
cycle has been found since a path can have at most v-1 edges. Proof of correctness can be found in Introduction to
Algorithms by Cormen, Leiserson, Rivest, and Stein.

Figure 6: Algorithm description from the Forex project (2016: Gobieski, Kwan, Zhu,
and Liu). They looked for arbitrage opportunities by quickly performing Bellman-
Ford on the logarithms of exchange rates. Their pseudocode could have been more
consise, but at least the structure is clear.

9

The base hardware block used to find the FFT is the ButterflyModule, which performs a

single radix-2 FFT calculation. This module takes in two complex inputs, in addition to a static
complex coefficient, and produces two complex outputs. We use a single butterfly module in the
computation stage, iterating through the input buffer and writing the results of the butterfly
calculation to the same buffer location as the inputs. This allows us to cut the memory overhead
of the calculation stage in half . This is done down the entire buffer, and is repeated for 2

log2(NFFT) iterations (9 times for out 512 point output). Our sequential approach to calculating
FFTs is very similar to the method described by Cohen, and is explained more in-depth in his
1977 paper . 3

Figure 7: Algorithm description from Totally Not Shazam (2019: Kaplan, Rubianes,
and Pera-Chamblee). Part of their song recognition algorithm involved performing a
fast Fourier transform, illustrated here.

10

4 Resource Budgets
Resource budgets, e.g., for on-chip memory, multipliers on the FPGA, network band-
width, or anything else in limited supply that you plan to consume a lot of.

Graphic images and sampled audio both tend to consume a lot more memory than
you’d expect. The memory on the FPGA of the DE1-SoC is less than half a megabyte.
There is much more o�-chip, but it becomes increasingly di�cult to access.

For accelerators, the main consideration is how much input and how much output
need to reside in the FPGA at one time, and whether the FPGA can accommodate it
all. It’s always possible to move data into and out of the FPGA as it is being processed,
or even give the FPGA direct access to HPS memory, but these are much more di�cult

11

Figure 8: Graphics and audio memory budgets from 2019’s BrickBreaker (Chen, Xu,
Wu, and Shi).

12

5 The Hardware/Software Interface
Include a detailed plan for the hardware/software interface, i.e., the number, size, and
meaning of each bit in each status or control register. Most chip documentation boils
down to this sort of information: detailed instruction of how to write the software to
take advantage of the hardware.

13

Figure 9: A single register in the TMS9918A Video Display Processor (commercial,
from TI). Ultimately, this is the level of detail you need when describing control reg-
isters.

14

Figure 10: The Pattern Table in the TMS9918A Video Display Processor (commercial,
from TI). Here, each byte represents eight two-color pixels, and each byte is inter-
preted the same way, so a table makes more sense.

15

