


SUPER MARIO
Bo Kizildag, Brandon Khadan, Nico De la Cruz



idea

Iconic Mario boss fight against Bowser

=>
Everyone else does the first level, for novelty’s sake we just had to 
go with the final level
=>



ACTUAL GAME 
SCREENSHOT 
OF BOWSER



design

Every particular build choice was made with memory safety as a 
priority. Each design module, from the sprites to the audio is 
optimized to consume as little resources as possible



controls

Keyboard scheme
A - left

D - right
SPACE - jump



peeking under 
the hood



DE1-SoC board



connections



hardware

- Sprites
Each sprite has its own memory file and module to handle access

- Pixel processing unit



camera & hitbox



sound engineering
The octave is divided into 12 logarithmically equal steps, each step being a semitone. This division means that 
the frequency ratio between any two adjacent notes (like C and C#, or E and F) is the twelfth root of two 
(21/1221/12), approximately 1.05946. This system allows for consistent intervals across keys, which is 
essential for the flexibility in modulation and transposition in modern music composition and performance.

Calculating frequencies:

To calculate the frequencies of the other notes from the reference pitch A4 = 440 Hz, gotta use the formula: 
Frequency of Note=440×2(𝑛12)Frequency of Note=440×2(12n ) where 𝑛n is the number of semitones away 
from A4. If 𝑛n is positive, the note is higher than A4; if 𝑛n is negative, the note is lower.

Example:

• C4 (Middle C) is 9 semitones below A4. Hence its frequency is: 
440×2−(912)≈261.63 Hz440×2−(129 )≈261.63 Hz

• D4 is 7 semitones below A4, so: 440×2−(712)≈293.66 Hz440×2−(127 )≈293.66 Hz

• E4 is 5 semitones below A4, so: 440×2−(512)≈329.63 Hz440×2−(125 )≈329.63 Hz

• F4 is 4 semitones below A4, so: 440×2−(412)≈349.23 Hz440×2−(124 )≈349.23 Hz

• G4 is 2 semitones below A4, so: 440×2−(212)≈392.00 Hz440×2−(122 )≈392.00 Hz



audio

NoteGenerator
Responsible for generating individual musical tones
I2S_Controller
1.Manages the I2S protocol to transmit audio data to the WM8731 

codec
AudioGenerator
Orchestrates the overall audio generation, managing the sequence of 
notes (it can also control when they play)



tones
Tone generation via a counter to create a square wave at a specific 
frequency determined by the half_period input

Utilizes an internal counter that increments on every clock cycle 
when note_enable is high

When the counter reaches the half_period value, the output 
(note_out) toggles, creating a square wave

The frequency of the square wave is determined by how quickly the 
counter reaches the half_period value, setting the tone's pitch



Wolfson DAC wm8731



software utilization

Platform and in-game struct generation
DAC configuration

(Thank you Dennis Ritchie!)

Everything else was built in 
SystemVerilog!



gameplay


